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Abstract—Postural sway is a well known measure of postural 
stability in the elderly.  Sway measurements, however, are 
typically made using expensive equipment in a laboratory.  We 
report on efforts to make clinically significant and quantitative
measurements of postural sway in a community center with a 
single un-calibrated video camera.  Results indicate that simple 
tracking technologies can capture some aspects of sway in a 
community center in a way that is perceptually accurate and 
capable of distinguishing expert-assigned levels of balance 
performance in an elderly, balance impaired cohort.  

I. INTRODUCTION

ncreased postural sway as recorded during quiet standing
has been found to correlate both with ageing [1,2] and an 

increased likelihood of falling [3,4,5].  Traditionally, 
postural sway has been measured by recording an 
individual’s center of pressure (COP) with a posturographic
platform [1,6,7] or by inferring center of mass trajectories 
using kinematic estimates provided by commercial motion 
tracking devices [8].  Both measurement systems are 
extremely accurate, but they are also expensive, not readily 
portable, and require the subject to wear potentially 
cumbersome markers.

As new technologies develop, however, it is becoming 
increasingly possible to measure movements like postural 
sway more cheaply, in a wider range of situations and 
environments, and without the need for on-person markers.
Accelerometers, for example, have proven to accurately 
detect abnormal postural sway in the elderly [8].  
Unfortunately, accelerometers still require individuals to
wear external sensors.

Movement data recorded by video cameras provide a 
potential alternative for affordable capture of human motion
in a wide range of settings, possibly without markers.  
Markerless motion capture, in fact, has received a great deal 
of recent attention from the computer vision and 
biomechanics community [10,11], and, in some 
circumstances, has proven to yield kinematic reconstructions
comparable to those from high cost tools, even when based 
on single camera views [12].  The clinical applications of 
such tracking technologies, however, have not been
extensively explored until recently.  Markerless video tools 
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have be used for posture identification for ergonomic 
workplace analysis [13], biomechanical analysis of sit to 
stand movements [14], and as input to assistive functional 
electric stimulation (FES) devices [15].  

  The purpose of this paper is to determine if a single un-
calibrated camera in a community center can measure
clinically meaningful statistics of postural sway among an 
elderly, balance impaired cohort.  We are not using dense or 
multi-camera stereo methods as in [11]; our focus, rather, is 
on the clinical utility of coarse camera-based measurements 
that can be made robustly and quickly.  Our work is most 
closely related to [16], wherein a single camera was used to 
distinguish between standing conditions (eyes open, eyes 
closed, etc.) among a population of young subjects.  Our 
work builds upon this research in several important ways.  
First, we explore the use of a camera positioned in front of 
subjects as opposed to laterally with respect to the subject. 
This provides access to medio-lateral sway measurements, 
which have been shown to increase with age [4]. Second, we 
explore the use of un-calibrated cameras in a real world 
scenario that involves balance impaired elders.  Finally, we
validate accuracy of measurements by determining if they 
capture expert determined levels of functional balance 
performance in the elders we record.  The opinions of human 
experts are the common “gold standards” for clinical 
measurement of functional balance in community centers, so 
we use these opinions as our “gold standards” as well.

II. METHODS

A. Experimental Paradigm
TABLE I

SUBJECT DEMOGRAPHICS

ID Age
Total
BBS

Postural 
Sway
BBS 

Medical History

1 81 37 (49) 3 (4) Arthritis, stroke, knee 
replacement

2 86 3 (7) 0 (0) Arthritis, macular 
degeneration

3 77 41 (44) 4 (4) Arthritis, Parkinson’s, hip 
replacement

4 85 23 (26) 0 (0) Stroke

5 87 19 (22) 1 (3) Arthritis, diabetes

Table 1.  The total BBS is the summed score achieved across all “items” 
on the Berg Balance Scale (range is 0 to 56).  The Postural Sway BBS score 
is the score received on the Berg item which demands that subjects stand, 
feet together, for 1 minute (range is 0 to 4).  Scores outside of parentheses 
were recorded BEFORE the balance classes.  Scores in parentheses were 
recorded AFTER classes were completed.
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Five community living elderly individuals participated in 
the study.  Each had a history of falls and had been referred 
by a healthcare professional to participate in an eight week 
exercise course at a local community center.  Their course
consisted of two weekly 60 minute exercise sessions 
containing strength, endurance and functional balance 
exercises that were led by a licensed physical therapist.  
Exercises were selected based on clinical measures, 
including the BBS.  The mean age of the cohort was 83 years 
(4.1 years standard deviation) and all provided informed 
consent.  Basic demographics of the group are in Table 1. 

Before and after the balance training classes, each 
participant was recorded with a video camera as they were 
assessed by a physical therapist for balance performance.  
The assessment used was the Berg Balance Scale (BBS), 
which consists of 14 movement items such as standing in 
place and reaching forward.  Scores are assigned based on
the time to complete each action, the degree of assistance 
required and the perceived quality of the underlying motion.  
The assessment was chosen because it is common, has high 
inter-rater and intra-rater reliability, and has been found to be 
specific and sensitive when it comes to the detecting likely 
fallers [17].

The camera used to make recordings was a Sony 
Handycam DCR-DVD 108 camcorder.  This camera was 
placed by the physical therapist approximately 10 meters
directly in front of each participant before assessments.  
Recordings were made on mini-DVD at a rate of 30 frames 
per second and a resolution of 740 by 480 pixels. Cameras 
were un-calibrated and the distance between the camera and 
subject varied from recording to recording.  This simplified 
the recording task for therapists at the cost of creating
variability in the character of each video.  

To analyze postural sway, video corresponding to 
performances of the “Standing Feet Together” item on the 
BBS was manually extracted.  The beginning and ends of the 
extracted videos were synchronized with points in time when 
the attending therapist was seen to hit a button on his or her
stopwatch.  The duration of each extracted video was one 
minute in length, except for videos corresponding to subject 
2.  This individual was not able to complete the task.

B.   Data Processing

To track postural sway in the extracted videos a template 
tracker was engineered to track the position of individuals’
heads and feet.  This template tracker required the definition 
of “targets”, or regions of image intensities in an example 
image.  In every image subsequent to this example, the 
motion of targets was assumed to be explainable by 
translations.  To track “targets”, the translation required to
maximize the normalized correlation between intensities in 
the original target template and corresponding regions in any 
subsequent image was identified.   More complex template 
trackers might allow for various target region deformations
or for the template to adapt and change over time.  Template 

tracking is well represented in computer vision applications; 
examples include [18,19].

In our application, templates for the head were 60 by 60 
pixels in size, while templates for the feet were 40 by 40 
pixels in size.  Templates were initialized by a human 
operator in the first image of every video sequence.  Search 
windows for estimates of template positions were confined to 
regions 100 by 100 pixels wide and surrounding prior 
location estimates.  

Once the movement tracks for each body part were 
computed, they were substantially smoothed to remove noise 
caused by occlusions, shadows or momentary changes in 
lighting.  Smoothing involved first identifying and discarding 
“spurious” translations between image frames; these spurious 
translations were defined as those greater than 20 pixels in 
length.  Next, tracks were filtered with a median filter that 
was 500ms in width.  Finally, tracks were smoothed with a 
fourth order low pass Butterworth filter and their spatial 

accuracy was validated by human inspection.  
Example head movements recorded from three subjects 

are illustrated in Figure 1.  In the figure, lines surround the 
area in which head movements were recorded.  Lines also
indicate the recorded trajectories of either foot.  In all cases, 
trajectories were confined to relatively small image areas.

Before computing any statistics, all head and foot 
displacements were ‘standardized’ across subjects by 
dividing them by the average width between subjects’ feet.  
All statistics that are reported, then, are in units determined 
by the base of support of each individual.

From ‘standardized’ tracks of heads and feet, a variety of 
mobility statistics were computed to characterize the velocity 
and overall medio-lateral displacement of the head as well as 
the smoothness and regularity of body sway.  To 
parameterize head displacement, displacement tracks were 
mean centered and both the standard deviation and absolute
medio-lateral range of displacement was computed. In 
addition, the overall image area spanned by head movement
was calculated by means of the convex hull surrounding all
head positions. Means and standard deviations were also 
computed for head velocities.

Figure 1.  Images of three subjects recorded by therapists in a 
community center setting.  An outline surrounds the area spanned by 
head movement during recordings. Lines also indicate the recorded 
paths of feet, which are very small.



To parameterize smoothness and periodicity, the number 
and spacing of “peaks” in recorded profiles was explored.  
These “peaks” were detected by scanning profiles, and 
locating spots where the values of profiles were elevated
relative to neighbors in time.  Statistics computed from 
detected peaks included the mean number of peaks per 
second, the average temporal spacing between peaks and the 
deviation in spacing between peaks.  Examples of smoothed 
head velocities for two subjects and the “peaks” associated 
with these profiles are shown in Figure 2.  

To determine the ability of each statistic to accurately 
quantify functional balance performance, statistics were 
related to clinical performance measures.  In specific, we 
report Pearson correlations between computed statistics and
therapists’ BBS scores for the “Standing Feet Together”
item.  The best possible score for this item is 4, which 
indicates the ability to stand stably without supervision for a 
minute.  The lowest score is 0, which indicates the need for 
assistance or an inability to hold the position.  We also report 
95% confidence intervals surrounding correlations as well as 
the p-value for each correlation.  Significance was defined by
a p-value below .05.  Finally, for statistics with significant 
correlations, we report on regressions relating statistics to 
Standing Feet Together scores.  Specifically, we report r-
squared and F-test results.

III. RESULTS

Results for the correlation analysis are shown in Table II.  
The average head velocity was found to have a significant 
and inverse relationship to Standing Feet Together scores.  
The same negative relationship was found to exist between 
scores and both the standard deviations in head displacement 
and the absolute range of head displacement.  In addition, the 
number of extremely large velocity peaks (i.e. those over 
100% of the foot width per second) as well as the average 
amplitude of velocity peaks was found to correlate with 
Standing Feet Together scores. 

In Table III are the results for regression analyses relating
statistics with significant correlations to Standing Feet 

Together scores.  The R-squared values for each regression 
are reported in the table in addition to F statistics and P-
values.  The number of high amplitude peaks per second was 
found to be statistic that best explained variance in scores; 
this R-squared is 0.48.

TABLE II
RELATIONSHIP BETWEEN MEASURED STATISTICS AND FUNCTIONAL SCORES

Statistic Corr. P

mean head velocity -0.67 (-0.91, -0.07) 0.03* 

standard deviation in head velocity -0.62 (-0.9, 0.021) 0.06

number of head velocity peaks/second -0.03 (-0.65, 0.61) 0.93
num. head velocity peaks > foot width
per second -0.69 (-0.92, -0.12) 0.03*

mean amplitude of head velocity peaks -0.67 (-0.91, -0.07) 0.03*

variance in time b/t head velocity peaks 0.6 (-0.049, 0.89) 0.07

standard deviation in head position -0.67 (-0.91, -0.07) 0.03*

range of head position (max – min) -0.65 (-0.91, -0.03) 0.04*
num. of head position peaks (i.e. points 
of max deviation from mean)/second 0.4 (-0.31, 0.82) 0.26

mean amplitude of head position peaks -0.64 (-0.9, -0.015) 0.05

variance in time b/t head position peaks 0.23 (-0.47, 0.75) 0.53

volume spanned by head position -0.54 (-0.87, 0.13) 0.10

mean foot velocity -0.54 (-0.87, 0.14) 0.11

standard deviation in foot velocity -0.56 (-0.88, 0.1) 0.09
Table 2. The correlations between item specific BBS scores and each 

measured motor statistic are reported in addition to the 95% CIs 
surrounding these correlations.  P-values for each correlation are also 
reported and those below .05 are indicated with an asterisk. 

TABLE III
REGRESSION STATISTICS FOR VARIABLES WITH SIGNIFICANT CORRELATIONS

Statistic
R-

squared
F-statistic 

(1,5)
P

mean head velocity 0.45 6.54 0.05
number velocity peaks > foot width
per second 0.48 7.45 0.04*

mean amplitude of velocity peaks 0.45 6.54 0.05

standard in head position 0.45 6.52 0.05

range of head position (max – min) 0.45 5.71 0.06

In Figure 3 we illustrate the regression relating the number 
of high amplitude velocity peaks to the BBS score for the 
“Standing Feet Together” item.  Statistics for each subject 
have been color coded.  Statistics measured before classes 
are indicated with the suffix “(a)” while statistics measured 
after classes are indicated with the suffix “(b)”.   Although 
there is an obvious overall inverse relationship between the
number of peaks in individuals’ velocity profiles and their 
expert assigned scores, a change in score is not consistently
reflected by a decrease in sway.  For individuals with scores 

Figure 2.  Recorded head velocities for subjects with high and low 
Standing Feet Together scores.  Time is reported as the frame number 
in the recording.  Red dots denote detected “peaks” in velocity 
profiles.  Low scoring individuals were found to exhibit peaks with 
more average magnitude and variability in timing.  



other than zero, the amount of sway measured before balance 
classes is larger than that measured after classes.  For those 
with a score of zero, however, there is an increase in sway 
after classes relative to before.  This increase, however, is 
not reflected in decrease in score.  Likewise, for subject 3, 
who had a higher overall BBS score than other subjects 
(41/56 before classes, 44/56 after), a decrease in sway does 
not improve an already maximal item score of 4.  Thus, sway 
measurements may highlight known ceiling and floor effects 
in the BBS [20].

IV. DISCUSSION

Prior work has shown that postural sway increases with 

age [1,2] and, moreover, that it may be an indicator of falls 
risk [3,4,5].  In [4], for example, the average speed of sway
in institutionalized elderly, measured both laterally and front 
to back, was found be greater for those who fell one or more 
times in the past year than for those who did not fall.  The 
amount of sway that has been fount to distinguish young 
from old individuals, however, tends to be small (on the 
order of 3 mm/sec when looking at COP trajectories [21]).  It 
may therefore be possible to distinguish extremely impaired 
from less impaired individuals using a camera based sway 
measurement, as we have done; distinguishing young from 
old, for example, may require more detail in measurement 
that a single camera can provide.

The effect of age on the smoothness and timing of postural 
corrections has also been documented in prior literature
[21,22].  In [22], for example, Fourier analysis was used to 
show that elderly individuals have a less consistent period of 
sway relative to younger individuals, and that this 
inconsistent periodicity is manifest in the dispersion of 
frequencies found in COP trajectories.  The authors of [22]
found this inconsistency, moreover, to be particularly 
manifest in the medio-lateral direction.  Instead of utilizing 
spectral analysis, we have chosen to look at the variation in 

timing between velocity peaks as a measure of aperiodicity.
Although our results validate analyses that have previously 

been done in highly instrumented labs, the pertinent result 
indicates that low cost tools in community center settings can 
be used to perform some postural sway analyses that are 
consistent with the assessments of human clinicians.   Vision 
based tools may therefore be able to perform some
quantitative balance assessment in real world settings both 
economically and effectively.  In future work, we will relate 
similarly coarse measurements made with low cost cameras 
to analyses of stability from standard clinical instruments,
like commercial motion capture devices and force plates.
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Figure 3.  The number of high amplitude head velocity peaks per 
second.  High velocity is defined as a peak over 150% of an 
individual’s foot width per second.  An (a) indicates data recorded 
before classes began, and a (b) indicates data recorded after classes.  


