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Abstract— The ability to rise from a chair is a prerequisite 
for upright mobility and independent living.  We are 
developing an inexpensive stereo based system capable of
cheaply and automatically assessing the quality of “sit-to-
stand” movements in environments outside of clinics.    
Automated assessments have been designed to translate 
perceived kinematics onto assessment scores that are 
consistent with expert opinion on the Berg Balance Scale 
(BBS).  In addition, automated assessments reveal movement 
strategies associated with age and disability, like the use of the 
arms while rising or excess extension at the knees.  In this 
paper, we present preliminary work to translate perceived 
movement kinematics from community dwelling balance 
impaired elders onto expert assessments of sit-to-stand
health.  Our ultimate goal is to create automated tools to 
identify falls risk, quantify real-world movement changes that 
result from therapeutic interventions, and perform ergonomic 
analyses of elders’ seating arrangements in the home.
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I. INTRODUCTION 

The ability to rise from a chair is vital to functional 
mobility.  Difficulty rising from a chair, however, affects 
more than two million non-institutionalized Canadians over 
the age of 65 [1].  This difficulty is important for clinicians
to monitor as it correlates with an increased likelihood of 
sustaining a fall [2].  

We are currently working to develop affordable, home 
appropriate technologies to measure kinematic changes in 
elders’ motion that impact their ability to rise from a chair.  
Our primary purpose is to enable early detection of mobility 
patterns associated with instability.  In addition, we seek to
enable automatic assessment of rehabilitation outcomes as
they relate to activity at home, as well as interventions that
more accurately target real world behavior.  

Kinematic analyses of sit to stands have effectively 
been used to quantify postural abnormalities [3], the impact 
of seating on mobility [4], and the impact of therapeutic
interventions. Some kinematics found to distinguish 
between the sit to stands of young and elderly individuals 
include the angular velocity of the torso during transitions
as well as the position of the base of support relative to the 

center of mass [5].  Biomechanical researchers have used 
kinematics to constrain models of momentum transfer 
during sit to stand [6] and to better understand sit to stands
that are likely to result in a fall [7].

Kinematic analyses, however, are typically made in 
laboratory settings and with commercial motion capture 
devices [5-7]; such devices often cost as much as
$100,000CAN.  Although these devices are clinically 
common, consistent and precise, they are expensive and not 
readily portable to homes.  In this paper, we explore the 
clinically utility of affordable and home appropriate motion 
capture alternatives that use multiple USB web cameras, 
each of which retails at about $100CAN.  

Our work is related to [12], wherein a single camera was 
used to explore kinematic differences in sit to stands of 
young and older adults. Our work builds upon this research 
in several ways.  First, we explore the use of multiple
cameras as opposed to a single camera.  This provides 
access to diagnostic kinematics irrespective of the subject’s 
position relative to the camera, and allows for tracking that 
is reasonably robust to occlusions.  Second, we explore the 
ability of cameras to capture diagnostic kinematics based on 
movement that takes place in a community setting, not a 
laboratory.  In this setting, backgrounds are complicated, 
people turn away from the cameras, therapists occasionally 
intervene to make movement corrections, etcetera.  

In the sections which follow, we first describe the
kinematic tracking system we have engineered.  We then 
conduct a preliminary test of its ability to capture kinematic 
data that discriminates between the assessments of balance 
impaired elders.  We currently use expert opinions as our 
“gold standard” for measurement of balance, as there is no
motion capture device available in our target environment.

II. SYTSEM DESCRIPTION

Video based motion capture has received a great deal of 
recent attention from the computer vision and biomechanics 
community [8, 9] and, in some cases, has proven to operate 
as accurately as motion capture even without markers [10].  
Clinical applications, however, are only just beginning to be 
explored; examples include posture identification for 
ergonomic workplace analysis [11], automated stroke 
assessment [19] and as input to assistive Functional 
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Electrical Stimulation devices [13]. 
Vision algorithms used to track the body are as varied as 

the applications in which they are embedded.  For dense and 
multi-camera stereo applications, iteratively deriving the 
three dimensional volume of the body from sets of human 
silhouettes or contours is popular [9].   Reconstructions 
produced this way may yield more surface detail than is 
possible with traditional motion capture devices [9].   
Volumetric methods, however, are also time consuming, 
computationally intensive and generally run off-line. 

Alternate and comparatively computationally light 
algorithms employ “blob like” representations of body 
parts.  Three dimensional reconstructions are then based on
triangulation of “blob” features, like centroids [14].   While 
“blob” tracking tools do not recover surface detail well, they 
allow tracking to take place quickly.  In our application, we
employ similar “blob-like” body representations. We do this
because we ultimately want to facilitate relatively fast 
analysis of large volumes of movement data from the home.  

Our current system includes three Logitech web cameras 
that record at a rate of 30 frames per second and are 
synchronized by means of a DirectShow filter. Video is 
encoded in MPEG4 format, at a resolution of 340 x 280 
pixels, and is transferred to a laptop via USB.  To make it 
easier to see parts of the body in small images, we are 
currently asking subjects to wear a colorful shirt and 
colorful swatches of fabric on their legs.  We expect 
ultimately to integrate automatic appearance acquisition 
algorithms [20] into the system, so as to avoid the need for 
this outfit.

To build three dimensional reconstructions of people, a 
three step process is employed.  In the first step, potential 
“blobs”, or ellipsoids, corresponding to the head, torso and 
feet are detected.  Pixels are defined as members of “blobs” 
based on their color.  More specifically, at each frame a pre-
trained quadratic logistic regression is used to separate
colors corresponding to limb segments from colors of the 
background; collections of pixels identified as the 
appropriate color are then grouped into ellipsoidal “blobs”.  
Color separation functions are trained before tracking 
begins by a human who manually subjects’ torsos, heads 
and feet in one example image from each Logitech camera.

In the second step, groups of “blobs” are assembled into 
two dimensional “bodies” in each two dimensional image.  
To group detected blobs into “body” arrangements, simple 
heuristics are used.  The feet, for example, are constrained 
to be below the torso while the head is constrained to be 
above it.  All parts of the body, moreover, are constrained to 
lie within a fixed radius of the prior position estimates for 
the same parts. 

Finally, to create complete three dimensional 
reconstructions of the body, we triangulate centroids of 
“blobs” across the three camera views.  This generates a set 
of three dimensional points that correspond to the positions 
of the head, torso and feet.  The complete reconstruction 

process is illustrated in Figure 1. 

Figure 1. The recording system. Three Logitech USB cameras are used to 
record subjects as they perform functional activities on balance 
assessments.  At the top left of the figure is an input image from one of the 
cameras.  In the first stage of image processing, likely parts of the body 
(i.e. head, torso, feet) are detected based on their color.  In the second stage 
of processing, collections of blobs are parameterized as ellipses and 
grouped to form a two dimensional “body”.  Two dimensional “bodies” are 
then triangulated to create three dimensional reconstructions.  In the 
subfigure labeled ‘3’, a 3D reconstruction generated from all camera data 
has been back projected onto the input image.  Faces have been blurred in 
these images to protect subjects’ identities.

III. METHODS

A. Experimental Paradigm

Table 1: Subject demographics. The total BBS is the summed score 
achieved across all “items” on the Berg Balance Scale (range is 0 to 56).  

The STS BBS score is the score on the Berg item where subjects rise from 
sitting to standing without use of the arms (range is 0 to 4).

Subject Age
Total BBS Sit to Stand 

BBS
Medical 

Conditions

1 84 54 4 arthritis

2 79 53 4 none

3 73 54 4 none

4 76 50 3 neuropathy

5 86 42 4 neuropathy

To determine the clinical utility of kinematic 
measurements made with web cameras, we performed a 
pilot experiment in which the sit to stand motions of five 
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elderly and balance impaired subjects were recorded.  
Kinematics were then extracted from recorded video and 
related to balance assessments from therapists.  The goal of 
the experiment was to determine measurable statistics that 
significantly correlated with expert opinions of functional 
health during “sit-to-stands” and which revealed movement 
strategies (like the use of the arms while rising) that are 
known to reflect disability [1]. 

Each of the five subjects were referred by a healthcare 
professional to participate in an outpatient Falls Prevention 
Program at a local Toronto hospital.  The mean age of the 
group was 79 years (5.4 years standard deviation) and all 
provided informed consent.  Basic demographics of the 
group are in Table 1.

All sit-to-stand movements were recorded during intake 
assessment to the Falls Program. The intake assessment 
used was the Berg Balance Scale (BBS); this consists of 14 
functional movement items that require some balance.  
Scores are assigned to the “sit-to-stand” item in particular 
based on use of the arms to rise from the seat, the degree of 
assistance required, and the perceived overall quality of the 
motion.  The BBS is the standard assessment for the Falls 
Prevention Program; the only alterations to the program’s 
intake procedure required for this study involved attaching
colored fabric to subjects’ clothes.

Figure 2.  The angular velocity of the torso for one subject during a sit to 
stand motion.  At frame 1, angular velocity is at a peak; the subject is 
building the momentum required to transfer weight from the chair onto her
legs.  This velocity slows at frame 2; here, the subject is completing her
weight transfer horizontally.  Velocity increases again at frame 3, as the 
subject moves her center of mass vertically to complete the stand.

Video corresponding to each subject’s performance of the 
“sit-to-stand” BBS item was manually extracted.  The 
beginning of each segment was located at the first frame in 
which movement to rise was visible, and the end of each 

segment was at the first frame in which subjects were seen 
to stably stand on two feet.  Kinematic data were 
reconstructed only for extracted video segments.  After 
reconstructing kinematics, all 3d point trajectories were 
smoothed with a fourth order low pass Butterworth filter.  
Example kinematic reconstructions from one subjects’ “sit-
to-stand” movement are illustrated in Figure 2.  

From the kinematic trajectories, a variety of mobility 

statistics were computed to characterize “sit-to-stand”
performance.  Statistics were based on prior kinematic 
studies of sit to stand motions and included the angular 
velocity of the torso [4, 16], the smoothness of angular 
velocities, and the time required for to move the body off of 
the seat [4].  Smoothness has typically been characterized
based on frequency dispersions [18] or the sum of squared 
jerk; we compute smoothness, however, based on the 
number of “peaks” in recorded velocity profiles.  “Peaks” 
are detected by scanning velocity profiles, and locating 
spots where the values of profiles are elevated relative to 
neighbors in time.  

To detect the time required to move off the seat, the 
distance of subjects’ heads from their starting positions was 
computed at every frame. At the last point where the
distance was over 10% of its maximum, the subject was 
said to have left his or her seat.  This distance is illustrated 
for two subjects in Figure 3. To compare between subjects, 
the time of lift off was normalized with respect to the total
time required for the subject to complete the movement.

Finally, statistics were related to expert assessments using 
Pearson correlations. “Significant” correlations were 
determined to be those with p-values below 0.05.

IV. RESULTS

In Table 2 we report Pearson correlations between 
select computed statistics and BBS scores.  We report

Figure 3.  Recorded distance of the head from its start position for a 
high and low scoring subject.  Periods of time where the subject was 
determined to be on the chair are indicated in red.  The subject at the 
bottom failed to rise on his first effort to stand and fell backwards into 
the chair.  His Berg score is relatively low.  
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correlations with overall BBS scores as well as with the “sit-
to-stand” item in specific.  We also report 95% confidence 
intervals surrounding correlations and p-values.

Table 2: Relationships between measured statistics and BBS scores. The 
correlations between BBS scores and measured statistics are reported with 

95% CIs surrounding correlations.  ‘BBS Correlations’ are correlations 
with overall BBS scores.  ‘STS Correlations’ are correlations with scores 

on the “Sit to Stand” item.  P-values below 0.05 are indicated in bold.

Statistic BBS Correlation P-
valu

e

STS Correlation P-
value

Time to rise from the 
seat

-0.94 (-1,-0.35) 0.02 -0.2 (-0.92,0.83) 0.75

Variance in torso 
flexion

0.61 (-0.59,0.97)  0.27 0.54 (-0.65,0.96) 0.34

Mean angular 
velocity

0.75 (-0.39,0.98) 0.14 0.59 (-0.61,0.97) 0.29

Peaks in angular 
velocity

-0.73 (-0.98,0.43) 0.16 -0.72 (-0.98,0.45) 0.17

The time required to leave the seat proved to be the 
statistic most strongly related to functional score; the p-
value relating this statistic to overall BBS score was 0.02.   
Interestingly, this statistic was not strongly related to the 
score for the “sit-to-stand” item in specific.  The range of 
scores for this particular item, however, was extremely 
limited in our preliminary subject pool. Mean angular 
velocities and the smoothness of angular velocities also 
proved to be strongly, but not significantly, related to 
overall functional scores. The p-values relating both these 
statistics to BBS scores were below 0.2.

V. DISCUSSION

Elderly individuals have been found to rise from a chair 
slowly relative to young individuals, to have less variation 
in their torso motion and less speed [5, 17].  A decrease in 
smoothness of torso motion has also been documented 
among the elderly and balance impaired [18].  In [18], 
fractal analysis of data from an inertial sensor located on 
elders’ torsos revealed less erratic sit to stand velocities after 
rehabilitation.  

Our preliminary results are consistent with prior analyses
and demonstrate the potential to measure well known and 
clinically meaningful kinematic statistics affordably and in 
community situations.  Vision based tools may therefore be 
able to perform some quantitative balance assessment in 
real world settings both economically and effectively.  In 
future work, we will be gathering data from more subjects 
so as to make more confident correlations.  We will also 
relate our measurements to analyses of stability from 
standard clinical instruments, like commercial motion 
capture and force plates.
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