VISITOR-HOSTER: Towards An Intelligent Electronic
Secretary !

Katia P. Sycara Dajun Zeng
katia4+@Qcs.cmu.edu zeng+@cs.cmu.edu
(412)268-8825 (412)268-8815

The Robotics Institute
School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

1 Introduction

The ubiquity of network-based information resources have given impetus for
the development of intelligent software agents that will be able to (1) ex-
tract task-relevant information automatically or with little help from human
users from various on-line information resources, (2) resolve the potential
conflicts among acquired knowledge from different information resources,
and (3) more importantly, collectively solve tasks requested by human users
effectively without interrupting/bothering users too much.

In this preliminary report, we briefly present an implemented intelligent
information system aimed at helping a human secretary organize a visit in an
academic environment. The task of hosting a visitor involves arranging the
visitor’s schedule with faculty that match the interests that the visitor has
expressed in his/her visit request. In our system, called VISITOR-HOSTER,
various information agents are utilized to retrieve task-related information
from several real-world heterogeneous data resources, such as internet-based
finger, on-line electronic library, etc.

'This paper appears in the Proceedings of the CIKM-94 (International Conference on
Information and Knowledge Mangement) Workshop on Intelligent Information Agents.

VISITOR-HOSTER is part of the PLEIADES project at Carnegie Mellon
University. The broader goal of PLEIADES is to characterize and develop
distributed agent-based architectures that are composed of negotiating and
learning agents and apply them to tackle information and activity manage-
ment problems for everyday use.

2 Software Agent Architecture

We developed a layered architecture in which task-specific software agents
help users perform tasks by communicating with each other and/or query-
ing and exchanging information with information-specific software agents,
which provide intelligent access to a heterogeneous collection of databases.
For example, the meeting scheduling module could be a task-specific agent,
which will manage and update a particular user’s appointment and meeting
agenda. The general-purposed finger service module, which can extract
useful information from the network finger utility given user’s login name
and IP addresses, can be viewed as an information-specific software agent.
Although the boundary between these two types of software agents is quite
arbitrary and vague, we make the distinction that typically task-specific
agents access other agents (either task-specific or information-specific ones),
whereas information agents (usually) accesses only information sources, such
as library database records.
This architecture is mainly motivated by the following considerations:

e sharability: Many users can share information-specific software agents
or task-specific agents. Typically, user applications will access several
agents in parallel and one software agent can serve different application
programs. The behavior of a software agent, essentially, could be easily
described in a server-client model.

o modularity and reuseability: Although software agents will be oper-
ating on behalf of their patrons—human users, pieces of code can be
copied from one user to another without modifications or with little
adaptation according to particular users’ preferences or idiosyncrasies.
One of the basic ideas behind the distributed agent-based approach is
that software agents will be kept simple for ease of maintenance, ini-
tialization and customization.

o flexibility: software agents can interact in new configurations “on-
demand”, depending on the information requirements of a particular

decision making task.

3 Scenario: Organize a Visit

To examine the proposed software agent architecture, we chose organizing
visits in an academic environment as a testbed for several reasons. First,
hosting a visitor in an academic institution is a typical mundane secretarial
activity of practical interest. Second, organizing a visit involves multi-stage
decision makings among different agents. For example, a software agent
should be able to retrieve relevant personnel information about potential
meeting attendees and then set up meeting location and time between the
visitor and attendees. Third, the task of organizing a visit does not really in-
volve any deep specialized knowledge, which makes this application domain
to be a good illustrative example for agent-based architectures. A different
variation of the hosting visitor task has also been explored by Kautz and
his colleagues at Bell Labs [KSC94].
A visitor hosting agent should have the following capabilities:

e It should automate information retrievals in terms of finding personnel
information of potential meeting attendees. It should be able to ac-
cess various on-line public databases and information resources at the
disposal of the visit organizer. The system should also integrate the
results obtained from various databases, clarify ambiguities (e.g., the
synonyms for certain entities) and resolve the conflicts which might
arise from inconsistency between information resources. Some possi-
ble information resources that are common to a modern university are:
networking finger, on-line library, on-line phone-book, etc.

e It should create and manage schedule for visitors. It is also preferable
if the meeting location and equipment can be managed in a coherent
way.

o It should possess a graphical user interface which can interact with the
users. The GUI is applied for getting input from the user, presenting
acquired information, asking for user confirmation as well as advising
the user of the state of the system and its progress.

To achieve the above requirements, we implemented the VISITOR-HOSTER
system in the proposed layered architecture. Our prototype system focuses
on the information resources accessible at Carnegie-Mellon University (we

are planning to access other internet-based resources in the near future).
The currently available components of our implemented system are:

e Information-Specific Agents

1. Finger agent, which heuristically parses the retrieved informa-
tion from remotely residing finger data bases. The possible
types of information that can be acquired in this way include:
work title, research interests, work and home phone numbers,
vacation plan, etc.

2. Who’s-Who agent, which accesses on-line CMU who’s who database
through http-based queries. The fields in the database include:
name, title, affiliation, campus office, campus phone number,
home address and E-mail address.

3. Faculty Interests agent, which can be used to retrieve infor-
mation about the faculty members in the School of Computer
Science at CMU with respect to their research interests.

4. Computer-Science-Directory agent, which can get the infor-
mation about phone number, office number, home address, etc.
for all the members of the School of Computer Science at CMU,
including faculty members, staffs and students.

e Task-Specific Agents

1. Host-Visitor agent, which accepts input from the user concern-
ing the information about the visitor and intended specification of
possible meeting candidates, and initiates other related personnel
information agents and scheduling agents.

2. Scheduling agent, which takes the responsibility of maintaining a
visitor’s meeting schedule, coordinating among different meeting
requests meanwhile taking into consideration possible meeting
preferences of meeting attendees. For example, user A might
prefer to meet with the visitor in the afternoon although meeting
in the morning is also admissible.

3. Personnel Finder agent, which coordinates all personnel infor-
mation agents through a Database-Mapper, in which mapping
functionality from available knowledge to information assistants
containing desired information is provided. After answers from
information agents get collected, Personnel Finder will try to

resolve conflict heuristically 2 and merge them together to get a
coherent picture about meeting candidates.

4. Interface agent, which takes care of presenting acquired in-
formation from task or information specific agents to human
users. It also handles the input from users. Separating interface
functionalities from agent functionality helps increase the system
modularity and makes it possible to enhance human-computer
interface without affecting other parts of the system.

We take the following hypothetical visit to illustrate specifically how
VISITOR-HOSTER works. Suppose Marvin Minsky wants to visit CMU CS
department. And suppose Minsky wants to meet with some faculty mem-
bers at CMU who are interested in machine learning. The entrance point
to VISITOR-HOSTER would be that the secretary or the host of Minsky’s
visit inputs the relevant information about Minsky himself (affiliated orga-
nization, e-mail address, etc), the date of the visit, and his preference about
meeting attendees, i.e. machine learning researchers. Then the personnel
finder agent gets invoked and first accesses the Faculty Interests infor-
mation specific agent to get a list of potential meeting candidates whose
research interests match Minsky’s preference. Then the personal finder
agent spawns multiple queries trying to collect personnel information from
various information specific agents, such as the Finger agent, the Who’s-
Who agent, etc., simultaneously. The resulting information is merged, con-
flicts are resolved and VISITOR-HOSTER selects the e-mail addresses of the
senior faculty and automatically sends them e-mail asking if they would like
to meet with Minsky on the date of his visit. Upon receipt of answers as
to which faculty is interested in meeting with the visitor, VISITOR-HOSTER
starts its scheduling agent and works out a feasible schedule with the help
from involved meeting candidates’ software agents, e.g., through exchanging
appointment agenda and personal calendar information.

There are some interesting features in our implementation that deserve
being mentioned here: (1) Information specific agents have a term-translator
module associated with them. This translator module processes the re-
trieved data as to disambiguate the information as well as standardize and
transform the keys used later to compare information from different sources.

20One of the heuristic rules we are using is that if the information returned by Finger
is different from what Computer-Science-Directory found, we assume that the infor-
mation based on Finger is more relevant and up-to-date.

Take an example, the phone number prefix for CMU 412-268 is automat-
ically added to CMU extensions. Another example is that the field name
campus used by library Who’s-Who database is transformed to office — the
term used in other databases. (2) In our implementation of information
specific agents every separate process is handled with a timeout cap, which
guarantees that a hung-up database will not hang-up the whole system. A
default action gets called if the timeout is exceeded. Exceptional handling
mechanism could implement actions such as retry access or give up and
report failure.

4 Research Issues and Future Work

There are lots of interesting research issues in a distributed intelligent soft-
ware agent architecture. The following list contains some of them that we
consider are of importance and practical significance:

e What kind of communication protocol would be expressive and effi-
cient enough for multiple agents to exchange information, request some
particular action, etc.? Will KQML be powerful enough?

e Since inconsistencies and conflicts are almost ubiquitous, how to re-
solve them in a multi-agent environment is a serious problem. What
kind of bargaining/negotiation protocol will suffice? Will it enforce
truth-telling? Are independent mediators necessary? Do we need bro-
kers to make the multi-agent cooperation more effective?

e To bring down information retrieval costs, costly data base searches
should be minimized. One way of doing this is to have agents learn
data base regularities either through directly analyzing the database
or relying on previous retrieval experience to provide quick (maybe
less accurate) answers to queries.

We are currently exploring these issues and working on incorporating
our VISITOR-HOSTER system with other software agents available at CMU,
particularly, a calendar management agent CAP [DBM*92] and an E-mail
task apprentice agent to tackle the broaden problem of software agent archi-
tecture. We are also planning to apply our system into real-world everyday
use.

5 Acknowledgments

This research has been sponsored in part by ARPA Grant F33615-93-1-
1330. We want to thank Tom Mitchell, Dana Freitag, Sean Slittery, David
Zabowski and other members of the PLEIADES project for interesting dis-
cussions. We also want to thank Gilad Amiri for doing much of the imple-
mentation.

References

[DBMT92] Lisa Dent, Jesus Boticario, John McDermott, Tom Mitchell, and
David Zabowski. A personal learning apprentice. In Proceed-
ings of the Tenth National Conference on Artificial Intelligence.
AAAL 1992.

[KSC94] Henry A. Kautz, Bart Selman, and Michael Coen. Bottom-up
design of software agents. Communications of the ACM, 37(7),
July 1994.

