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ABSTRACT
This paper presents a framework for robustly recognizing
physical team behaviors by exploiting spatio-temporal pat-
terns. Agent team behaviors in athletic and military do-
mains typically exhibit an observable structure character-
ized by the relative positions of teammates and external
landmarks, such as a team of soldiers ambushing an op-
ponent or a soccer player moving to receive a pass. We
demonstrate how complex team relationships that are not
easily expressed by region-based heuristics can be modeled
from data and domain knowledge in a way that is robust
to noise and spatial variation. To represent team behav-
iors in our domain of MOUT (Military Operations in Ur-
ban Terrain) planning, we employ two classes of spatial
models: 1) team templates that encode static relationships
between team members and external landmarks; and 2)
spatially-invariant Hidden Markov Models (HMMs) to rep-
resent evolving agent team configurations over time. These
two classes of models can be combined to improve recogni-
tion accuracy, particularly for behaviors that appear similar
in static snapshots. We evaluate our modeling techniques on
large urban maps and position traces of two-person human
teams performing MOUT behaviors in a customized version
of Unreal Tournament (a commercially available first-person
shooter game).

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Miscellaneous; I.2.11 [Distri-
buted Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms
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multi-agent plan recognition, RANSAC, HMMs
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1. INTRODUCTION
In certain domains tasks are too complicated to be per-

formed by individual agents and must be achieved through
the coordinated efforts of a group of agents over a period
of time. To analyze performance of these tasks, we need to
extend existing behavior recognition formalisms to accom-
modate group behaviors. Due to the increase in number
of actions generated, assuming that each agent is simul-
taneously executing actions, team behaviors have a more
complicated temporal structure than single agent behaviors.
However team plans involving physical movement also pos-
sess a distinctive spatial structure, characterized by the rel-
ative positions of teammates and external landmarks, that
can be exploited to classify team behaviors. This paper
presents a framework for constructing spatio-temporal mod-
els to robustly recognize physical team behaviors from posi-
tion traces of the agents’ movement.

We demonstrate our method in the domain of MOUT
(Military Operations in Urban Terrain) team planning to
recognize military team behaviors customarily performed
by human soldiers while moving through an urban environ-
ment. Examples of team behaviors include building entry,
perimeter guarding, opponent flanking, and formation move-
ment, such as stacked and bounding overwatch.1 Although
this paper focuses on MOUT team behaviors, our algorithms
are also applicable for recognizing team behaviors in other
military, robotic, and athletic domains.

In this paper, we present two classes of spatial models and
illustrate how they can be used to robustly recognize team
behaviors in the presence of spatial variations, noise, clutter,
and human variability in behavior execution.

team templates: models encoding static spatial relation-
ships between team members and external landmarks.
These models are composed of the relative positions
of map entities and can be generalized to different ge-
ographic layouts using similarity transforms. To effi-
ciently identify team templates over large map areas
without using exhaustive search, we employ an effi-
cient randomized search technique, RANSAC (Ran-
dom Sampling and Consensus) [4].

spatially-invariant HMMs: a set of Hidden Markov Model
classifiers applied over short overlapping time windows
to identify temporal patterns in agent team configura-

1See Section 3 for more details on MOUT team behaviors



tions. By representing the agents’ positions in a canon-
ical reference frame, the classifier is robust to certain
spatial variations.

We evaluate our modeling and recognition techniques on
two different types of data: 1) large urban simulation bat-
tle maps and 2) position traces of two-person human teams
performing designated sequences of MOUT behaviors in a
customized version of Unreal Tournament (a commercially
available first-person shooter game).

2. RELATED WORK
Previous work on team behavior recognition has been pri-

marily evaluated within athletic domains, including Ameri-
can football [6], basketball [7], and Robocup soccer simula-
tions [14, 15]. Recognition for military air-combat scenar-
ios has been examined in the context of event tracking [18]
and teammate monitoring [8], Finally, a general framework
for multi-agent plan recognition (Hierarchical Multiagent
Markov Processes) [16] has been demonstrated for a single
pair of humans moving around a laboratory.

The research described in this paper focuses on the pat-
tern classification aspect of team behavior recognition—how
to systematically model and identify complex spatio-temporal
patterns that are created by agent team behaviors. Most
previous research in the area of team behavior recognition
either leverages the existence of domain-specific features to
classify spatial patterns [6, 7] or relies on identifying tempo-
ral patterns in behavior sequences [18, 8, 16], largely ignor-
ing implicit spatial information. For many athletic behav-
iors, researchers have been able to exploit simple region-
based or distance-based heuristics to build accurate, but
domain-specific classifiers. Based on the premise that all be-
haviors always occur on the same playing field with a known
number of entities, it is often possible to discretize the play-
ing field into grids [15] or typed regions (goal, scrimmage
line) [6] that can be used to classify player actions. Prior
work on spatial representations for the MOUT domain [2,
11] only addresses the problem of behavior generation, not
recognition.

3. MOUT DOMAIN
MOUT (Military Operations in Urban Terrain) scenar-

ios involve moving teams of soldiers and vehicles through
heavily-cluttered urban areas to accomplish high-level strate-
gic objectives. A common task performed by human soldiers
is building clearing, during which a firing-team of soldiers
must enter a building and clear it of enemy occupants and
hazards; the challenge is to explore unknown areas while
constantly remaining in a defensible position against enemy
attack. To achieve this, soldiers move through the urban ter-
rain using set procedures that maintain a defensive position
while still propelling the team forward.

The cognitive task analysis of building clearing given in [12]
emphasizes the importance of spatial cues in the soldiers’ de-
cision making process. Features such as proximity to other
buildings, opportunities for cover, open spaces, windows in
the building, street layout, fortifications, height of buildings,
locations of stairways, obstacles, potential booby-traps, and
doors, are critical cues that expert human decision-makers
must take into account while performing the task. Certain
team behaviors are triggered by the spatial characteristics

Figure 1: MOUT scenario in customized Unreal
Tournament environment from spectator viewpoint.
A pair of human players control soldiers A and B
as they execute the procedure for traversing a T-
shaped intersection. The bot models and animations
were modified to conform to the appearance of real
human soldiers rather than the larger-than-life UT
fantasy fighter models.

of the terrain; for instance, firing-teams have special pro-
cedures for moving through L-shaped and T-shaped street
intersections. In these cases, we hypothesize that static spa-
tial configurations, such as the ones described in our team
template models, are highly predictive of the teams’ actions.

However, there are some cases, particularly for smaller
two-soldier subteams, in which static spatial configurations,
by themselves, lack predictive power. The second part of
the paper focuses on the three such behaviors, stacked move-
ment, bounding overwatch, and buttonhook entry commonly
used during the building clearing task. These behaviors are
difficult to identify solely on the basis of static snapshots
due to their spatial similarities (see Figure 3).

During stacked movement the purpose is to move the team
in such a way that their gun angles completely span all pos-
sible areas of approach; the team moves slowly and in syn-
chrony. For moving through open areas or intersections,
this approach is less feasible since it’s difficult to cover all
possible threatened areas. In this case, the bounding over-
watch behavior is used; one soldier moves forward while the
other remains stationary. The buttonhook entry is similar to
bounding overwatch; one soldier moves through the doorway
hugging the wall while the other soldier waits and guards.
After the entry is clear, the second soldier moves through
the doorway hugging the opposite wall. To recognize these
behaviors, our classifier needs to exploit the temporal in-
formation in behavior sequences in conjunction with spatial
information on the position and velocities of team members
in a way that is robust to geographic variations that modify
the execution of the behavior.

4. METHODS
In this section, we present our methodology for develop-

ing spatial models and using them to classify instances of
team behavior. Section 4.1 discusses the representation and



Figure 2: Spatial model authoring and matching
system. The library of previously created spatial
models are shown to the right of the screen; the
left side of the GUI displays an annotated map to
be analyzed. A fire team of soldiers (blue circles)
examining a hazard (orange inverted triangle) are
displayed on the map; a second fire team prepares
to enter the building through the door (marked by
the white rectangle). Our matching technique suc-
cessfully associates both groupings of soldiers with
the correct spatial models; hollow circles and rect-
angles show the locations of the entities as predicted
by model projection.

authoring of team templates to encode static spatial rela-
tionships between team members and external landmarks.
Section 4.2 provides an overview of the randomized search
technique, RANSAC (Random Sampling and Consensus)
that we use to efficiently and robustly identify these tem-
plates over large simulation map areas without resorting to
exhaustive search. In Section 4.4 we describe the Unreal
Tournament simulation environment that we use to collect
data from pairs of human subjects performing the three
types of statically-similar team behaviors (bounding over-
watch, buttonhook entry, stacked movement). Finally, Sec-
tion 4.5 presents our procedure for converting agent position
traces into the canonical representation used by our Hidden
Markov Model classifiers (Section 4.6).

4.1 Team Template Representation
To model team behaviors, we developed a tool that en-

ables the author to describe behaviors by designating a set
of characteristic spatial relationships that commonly occur
during the execution of a behavior. Once a library of spatial
models has been constructed, they can be used to classify
formations of MOUT entities on a 2D annotated urban map.
If labeled training data of team behaviors exists, these team
templates could potentially be learned from data using a su-
pervised classifier; however all the experiments described in
this paper were created with the authoring interface shown
in Figure 2.

Each team template contains the following attributes:

behavior name: Behaviors are represented by collections
of spatial models; however no particular temporal struc-
ture, or execution order, is attached to the collection.
Each spatial model can only belong to a single behav-

ior; we do not include models which appear in a large
set of behaviors since they are unlikely to help in dis-
criminating between multiple behaviors.

spatial position of relevant entities: Entities are repre-
sented by a single (x,y) coordinate of their centroid;
larger entities are represented as groups of points con-
nected by visibility constraints.

entity type: For our library of MOUT behaviors, we des-
ignated eleven types of entities including person (un-
known), civilian, teammate, opponent, hard cover, soft
cover, empty area, windows, intersections, doorways,
hazards, and objectives.

One consideration in developing models is generalization—
how well do models developed for one scenario match behav-
iors executed in a different spatial layout? Without general-
ization it becomes impractical to exhaustively enumerate all
possible spatial relationships that can occur across different
maps. To solve this problem, we define a set of legal trans-
forms to project models to new spatial layouts and score the
quality of the match. We define the set of legal transforms to
be the class of similarity transforms (rotation, translation,
and scaling); these can be parameterized in homogeneous
coordinates as follows:

T =

 s cos(θ) s sin(θ) x
−s sin(θ) s cos(θ) y

0 0 1


where θ is the angle of rotation, s is a scale factor, x is the x-
translation, and y is the y-translation. This formulation can
easily be extended to model three dimensional transforms by
increasing the matrix to 4 × 4. The next section describes
a robust and efficient technique for searching the space of
possible transforms.

4.2 Efficient Template Matching
Given a set of spatial models and valid transforms, the

problem of determining which spatial models are applicable
to the current map can be solved by searching the space of
potential transforms and models to find all the combinations
of model plus transform that result in a match of sufficient
quality. A commonly-used approach is exhaustive template
matching [1]. Each template is applied to all possible loca-
tions in the map using a sliding window; the distance func-
tion is calculated over the window area and those matches
that score under the threshold are retained. This process
is exhaustively repeated for a range of scales and rotations,
over all models in the library. Unfortunately this process is
time consuming, scales poorly to higher dimensional trans-
forms, and is sensitive to noise, occlusion and misalignment.

Instead, we employ a statistically-robust technique, Ran-
dom Sampling and Consensus (RANSAC) [4], to efficiently
sample the space of transforms using hypotheses generated
from minimal sample sets of point correspondences. The
algorithm can be summarized as follows:

hypothesis generation: entities are drawn uniformly and
at random from the annotated map and associated
with randomly-selected entities of the same type in
the model. Two pairs of corresponding entities are
sufficient to uniquely specify a transform hypothesis.
This data-driven method of generating hypotheses is
much more efficient than uniformly sampling the space



of possible transforms or exhaustively searching a dis-
cretization of the transform space.

hypothesis testing: Given a transform hypothesis, we pro-
ject all of the entities in the model to the coordinate
frame of the map and assess the quality of the match
based on both spatial similarity and type matching.
This gives us the likelihood that the given hypothesis
could have generated the observed data in the map.

For each spatial model, we use RANSAC to randomly gen-
erate and test a large number of plausible transforms and
select those hypotheses (a combination of a model and a
valid transform) with match quality better than a specified
threshold.

Since our spatial transforms have four degrees of freedom,
they can be fully specified by two pairs of point correspon-
dences. First, we randomly select two entities from the
model under consideration; then based on the types of the
entities (e.g., civilians, hard cover, hazard) we randomly se-
lect candidate entities on the map with compatible object
types. The positions of these entities is used as the minimal
set to generate a transform hypothesis as follows.

Given the minimal set {(x1, y1), (x2, y2)} from the model
and the corresponding set of points {(X1, Y1), (X2, Y2)} from
the map, we generate a third virtual pair of correspondences
(x3, y3) 7→ (X3, Y3) where

x3 = x1 + y2 − y1

y3 = y1 + x1 − x2

X3 = X1 + Y2 − Y1

Y3 = Y1 + X1 −X2

From these three correspondences, we can directly recover
T using matrix inversion. t11 t12 t13

t21 t22 t23
t31 t32 t33

 =

 X1 X2 X3

Y1 Y2 Y3

1 1 1

  x1 x2 x3

y1 y2 y3

1 1 1

−1

This is a solution to a general affine transform [5] given three
pairs of point correspondences, however T is guaranteed to
be a valid, orientation-preserving similarity transform due
to our construction of the third point.

To score a hypotheses, we transform the location of ev-
ery entity in the model to the map using the transform T.
Each model entity contributes a positive vote for the given
hypothesis if the distance from its predicted location to the
closest map entity of compatible type falls below a speci-
fied threshold. The quality of a hypothesis is defined as the
normalized sum of these individual votes.

Since RANSAC stochastically searches the space of pos-
sible transforms it is not guaranteed to find the best match.
However the following formula can be used to determine how
many iterations are necessary to achieve the best match with
a specified probability of success [19]:

m =

⌈
log(1− P )

log[1− (1− ε)s]

⌉
P is the target probability (e.g., P = 0.99 means the best
match is found 99% of the time). s is the number of elements
required to define the minimal set (s = 2 since a similarity
transform requires 2 pairs of point correspondences). ε is the
expected fraction of outliers in the data set. In traditional

RANSAC applications ε is typically only about 0.1 (10% of
the points are expected to be invalid). For our application,
the fraction of outliers refers to the number of map anno-
tations that do not match a single model; since each map
actually contains multiple models in addition to entities that
do not match any model the fraction of expected outliers is
approximately 0.95. From the formula above, this indicates
that the number of RANSAC iterations required to reliably
find the best match is 1840. Note that executing the given
number of iterations does not guarantee a particular level
of classification accuracy; it merely ensures that there is
only a 0.01% probability that a similarity transform exists
that would achieve a higher score than the one returned by
RANSAC. In Section 5.1, we present classification results
for identifying team behaviors from 2D annotated maps of
simulated urban layouts using our team template model and
RANSAC.

4.3 Spatio-temporal Classification
There are some cases, particularly for smaller two-soldier

subteams, in which static spatial configurations, by them-
selves, lack predictive power. To recognize these behaviors,
our classifiers need to exploit the temporal information in be-
havior sequences in conjunction with spatial information on
the position and velocities of team members. Since team be-
haviors can be executed in a variety of terrains, the classifiers
must be robust to deviations in behavior execution caused
by the team’s response to local terrain features. However,
arbitrarily introducing similarity transforms in the middle of
a behavior sequence can destroy the spatio-temporal pattern
created by the team’s movements. To address the problem,
we developed spatially-invariant classifiers, by transforming
our position data into a canonical reference frame defined
by the team’s motion, and applying a set of Hidden Markov
Model classifiers to recognize three statically similar team
behaviors (bounding overwatch, buttonhook entry, stacked
movement).

4.4 Human Data Collection
To evaluate our spatio-temporal classifiers, we collected

data from a pair of human players using our modified Unreal
Tournament game interface to manipulate “bots” through a
small urban layout while performing a particular sequence of
team behaviors (see Figure 1). Note that the subjects were
not playing Unreal Tournament, but using Unreal Tourna-
ment to execute sequences of commonly used MOUT team
maneuvers. To directly monitor the performance of human
players, we customized Unreal Tournament (UT) using the
game development language Unrealscript. Many of the orig-
inal UT game classes were written in Unrealscript and thus
can be directly subclassed to produce modified versions of
the game (known as mods); for example, Gamebots [9] is an
example of a mod that allows external programs to control
game characters using network sockets.

We developed our own TrainingBot mod that allows us
to save the state of all the bots in the scenario; currently we
save each player’s ID number, position (x, y.z), and rotation
(θ,φ) every 0.15 seconds. This information is useful for both
offline behavior analysis and for a separate replay mode that
allows us to create bots that follow the paths recorded by
the original players.



4.5 Canonical Representation
Due to the continuous nature of the domain, automati-

cally determining the exact transition points between team
behaviors is a difficult problem. While approaching and en-
tering buildings, the players continue moving their bots,
changing team behaviors as appropriate for the physical
layout. We address this issue by dividing the traces into
short, overlapping time windows during which we assume
that a single behavior is dominant; these windows are clas-
sified independently as described in Section 4.6. To rec-
ognize team behaviors performed in different physical lay-
outs, it is important for our classifier to be rotationally-
and translationally-invariant; we achieve this by transform-
ing the data in each window into a canonical coordinate
frame as described below.

More formally, we define:

• a ∈ 1, . . . , A is an index over A agents;

• j is an index over W overlapping windows;

• t ∈ 1, . . . , T is an index over the T frames in a given
window;

• xa,j,t is the vector containing the (x, y) position of
agent a at frame t in window j.

The centroid of the positions of the agents in any given
frame can be calculated as:

Cj,t =
1

A

∑
∀a

xa,j,t.

We describe the configuration of the agent team at any given
time relative to this centroid to achieve translation invari-
ance. However, rather than rotating each frame indepen-
dently we define a shared canonical orientation for all of the
frames in a window. This is important because it allows
us to distinguish between similar formations moving in dif-
ferent directions (e.g., agents moving line abreast vs. single
file). One standard technique for defining a canonical orien-
tation is to use the principal axis of the data points for that
window, which can be calculated using principal component
analysis (PCA). However for efficiency we have empirically
determined that we can achieve similar results by defining
the canonical orientation as the displacement of the team
centroid over the window: dj = Cj,T −Cj,1.

We rotate all of the data in each window so as to align
its canonical orientation with the x-axis, using the rotation
matrix Rj . Thus the canonical coordinates, x′, can be calcu-
lated as follows: x′a,j,t ≡ Rjxa,j,t − cj,t. Our current recog-
nition technique (described in Section 4.6) also relies on ob-
servations of agents’ velocity as a feature which we locally
compute as: va,j,t ≡ ||x′a,j,t+1 − x′a,j,t||.

4.6 HMM Classification
For each canonically-transformed window in our trace,

our goal is to select the best behavior model. We perform
this classification task by developing a set of hidden Markov
models (HMMs), one for each behavior b, and selecting the
model with the highest log-likelihood of generating the ob-
served data. Our models ({λb}) are parameterized by the
following:

• N , the number of hidden states for the behavior;

• A = {aij}, the matrix of state transition probabilities,
where aij = Pr(qt+1 = j|qt = i),∀i, j and qt denotes
the state at frame t;

• B = {bi(ot)}, where bi(ot) = N (µi, Σi). The observa-
tion space is continuous and approximated by a single
multivariate Gaussian distribution with mean, µi and
a covariance matrix, Σi, for each state i;

• π = {πi}, the initial state distribution.

For our problem, given A agents in a team, the observations
at time t and window w are the tuple:

ot = (x′1,w,t, v1,w,t, . . . ,x
′
A,w,t, vA,w,t).

We determine the structure for each behavior HMM based
on our domain knowledge. For instance, the stacked be-
havior can be described using only two states (N = 2),
whereas we represent the more complicated bounding over-
watch behavior using six states connected in a ring. Each
hidden state captures an idealized snapshot of the team for-
mation at some point in time, where the observation tu-
ple (in canonical coordinates) is well modeled by a single
Gaussian. Rather than initializing the HMMs with random
parameters, we use reasonable starting values. These can
be polished using expectation-maximization (EM) [3] on la-
beled training data.

To determine the probability, Pr(o1...T |λb), of generating
the observed data with the model λb, we employ the forward
algorithm [13] as implemented in the Hidden Markov Model
toolbox [10]. We classify each window segment with the
label of the model that generated the highest log-likelihood.

5. RESULTS
We evaluate our methods using two sets of experiments:

1) formation recognition in simulated 2-D overhead maps of
urban areas annotated with the location of MOUT entities
(see Section 4.1). 2) behavior identification from activity
traces of two-person human teams performing sequences of
MOUT behaviors (see Section 4.4). The former assesses the
accuracy of the RANSAC-based method while the latter ex-
amines the performance of spatially-invariant HMMs. The
two methods are complementary, and Section 6 discusses
strategies for combining them to further improve recogni-
tion accuracy.

5.1 Team Template Matching
To test the robustness of our team template matching ap-

proach, we add clutter to the maps and distort formations
by perturbing the positions of MOUT entities. Figure 4 re-
ports the precision (fraction of correctly-classified results)
and recall (fraction of formations that were detected) of
our classifier under different conditions of clutter and lo-
cation perturbation. Note that our approach independently
matches each template against the data; thus, all matches
that exceed the threshold score are reported as detections.
The precision/recall curves are generated by varying this
threshold parameter. There is no intrinsic restriction against
assigning the same map entity to different templates — this
enables us to create templates corresponding to a team and
its component sub-teams, and to simultaneously recognize
both.



Figure 3: Team Behaviors: Stacked Formation (top), Bounding Overwatch (middle), Buttonhook Entry
(bottom). Schematics for each behavior, along with the canonical representation for several frames, are
depicted in the left column. A sample raw trace for each behavior is shown in the right column; the
coordinates of the axes are in Unreal Tournament length units.



In each experiment, we randomly place fifty MOUT for-
mations on the urban map and report the precision and re-
call averaged over ten RANSAC searches. The left panel of
Figure 4 shows the effects of adding clutter (spurious MOUT
entities of the appropriate type) to the map, without increas-
ing the number of RANSAC iterations. The percentage of
clutter is measured against the total number of MOUT enti-
ties in the formations on the map (thus 100% clutter denotes
a 1:1 ratio between spurious and desired MOUT entities).
The results show that, as expected, the RANSAC-based ap-
proach is very resistant to the presence of spurious entities
on the map, and that precision/recall are both very high
even at the extreme clutter levels. The right panel of Fig-
ure 4 shows precision/recall results for experiments where
the locations of each of the MOUT entities were perturbed
with iid Gaussian noise. As expected, the performance de-
grades as noise is added since the spatial configuration of the
formation ceases to resemble the formation represented by
the idealized model. However, we note that the technique is
successful at identifying an acceptable number (80%) of the
formations under reasonable noise conditions.

5.2 Spatially-Invariant HMMs
To evaluate our spatio-temporal classification method, we

developed HMM models for three behaviors typically em-
ployed by two-person firing teams during the building clear-
ing task: stacked movement, bounding overwatch, and but-
tonhook entry (see Figure 3). Note that these three be-
haviors look very similar in static snapshots and can only
be robustly recognized by observing spatio-temporal traces.
Position data was simultaneously recorded from two sub-
jects at 0.15 second intervals using our TrainingBot mod
(see Section 4.4). Players executed team behaviors in pre-
designated sequences, transitioning smoothly from one be-
havior into the next, adapting each behavior as needed to
the local physical layout (turning corridors, entering rooms).
The traces were divided into overlapping 20 frame (3 second)
windows, which were transformed into a canonical coordi-
nate frame as described in Section 4.5 (illustrated in the
inset of Figure 3). The window size was empirically selected
base on the observed average speed of the MOUT soldiers.

By using real data collected from human players rather
than simulated traces, we can evaluate the robustness of our
approach to realistic deviations during behavior execution.
Figure 3 (right) shows a raw trace for each behavior; note
that consecutive executions of the same behavior exhibit
significant variation, particularly noticeable in the bound-
ing overwatch behavior. Each behavior was also performed
in a variety of local physical layouts. Table 1 presents the
classification results (confusion matrix) for the three mod-
eled behaviors; the accuracy of the HMM approach is good,
particularly for the stacked formation. Buttonhook entry
is sometimes confused with bounding overwatch, as may be
expected from similarities in the canonical representation
shown in Figure 3.

6. DISCUSSION
The two approaches presented in this paper, team tem-

plates and spatially-invariant HMMs, are complementary.
Team templates are easy to author and can be rapidly exe-
cuted over large, cluttered maps. Spatially-invariant HMMs
are more difficult to design, but are well-suited for classifying
statically-indistinguishable behaviors. We believe that com-

Table 1: Confusion matrix for HMM behavior clas-
sification. The ground truth is given in the left col-
umn; the classification result is given in the top row.
The spatially-invariant Hidden Markov Model ap-
proach achieves good accuracy. Buttonhook entry
is often confused with bounding overwatch, as may
be expected from similarities in the canonical rep-
resentation as shown in Figure 3.

stacked bounding buttonhook
stacked 90% 10% 0%
bounding 14% 67% 19%
buttonhook 0% 33% 67%

bining outputs from both models should lead to improved
recognition accuracy. Team templates are effective at deter-
mining the spatial context of an observed behavior, enabling
improved discrimination between behaviors that display a
similar temporal structure. For instance, although a but-
tonhook entry and a bounding overwatch often appear sim-
ilar to the spatially-invariant HMM, the presence of context
can enable us to disambiguate them since the former behav-
ior is typically performed to enter a door or window, while
the latter is used to move the formation down a corridor or
street.

We are interested in applying our algorithms to the recog-
nition of large team formations [17]. The efficient team tem-
plate matching strategy described in the first half of the pa-
per scales well to larger team sizes. Introducing more points
into the team template is actually beneficial for two reasons:
1) the minimal set required to calculate the transform is in-
dependent of team size; 2) including additional model enti-
ties improves the robustness of the matching since a greater
number of entities can contribute votes in support of the
best hypothesis, and it is less probable that a configuration
of spurious entities will be a good match.

In principle, the spatially-invariant HMM approach can
also be applied to larger teams; however constructing mod-
els for teams with more members can become difficult since
having more team members creates many more possible con-
figurations (even in our canonical representation). For our
particular domain, separating larger teams (of 8 or 16) into
two-person subteams which can be be analyzed separately is
a feasible approach. We are investigating strategies for com-
bining multiple classifiers to recognize team behaviors; using
repeated executions of static template matching followed by
the use of more specialized classifiers designed for detect-
ing particular behaviors. Larger team behaviors would be
detected by combining the outputs of specialized classifiers
(e.g., detecting invariants) rather than using a single highly-
complex classifier.

7. CONCLUSION AND FUTURE WORK
This paper presents two methods for recognizing physical

team behaviors from spatio-temporal movement patterns.
We demonstrate that our techniques are robust to the ef-
fects of local spatial variations, clutter, noise, and human
variability during behavior execution. In future work, we
are particularly interested in the following problems: 1) in-
corporating the outputs of our classifiers into a framework



Figure 4: Precision and recall curves for matching team templates using the RANSAC-based method. Fifty
formations were placed on an urban map using randomized similarity transforms. Each run employed 100,000
iterations and the precision/recall averaged over 10 trials is shown. The left panel shows the effect of adding
spurious MOUT entities (clutter) while maintaining the same number of iterations. The right panel shows
the results of distorting observed formations by perturbing the location of each MOUT entity on the map
with iid Gaussian noise.

for symbolic team plan recognition; 2) evaluating our mod-
els on MOUT data from human domain experts; and 3)
evaluating alternate temporal classifier formalisms.
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