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Abstract

This paper addresses the problem of activity recogni-
tion for physically-embodied agent teams. We define
team activity recognition as the process of identifying
team behaviors from traces of agent positions over time;
for many physical domains, military or athletic, coordi-
nated team behaviors create distinctive spatio-temporal
patterns that can be used to identify low-level action
sequences. This paper focuses on the novel problem
of recoveringagent-to-teamassignments for complex
team tasks where team composition, the mapping of
agents into teams, changes over time. Withouta pri-
ori knowledge of current team assignments, the behav-
ior recognition problem is challenging since behaviors
are characterized by the aggregate motion of the entire
team and cannot generally be determined by observ-
ing the movements of a single agent in isolation. To
handle this problem, we introduce a new algorithm, Si-
multaneous Team Assignment and Behavior Recogni-
tion (STABR), that generates behavior annotations from
spatio-temporal agent traces. The proposed approach
is able to perform accurate team behavior recognition
without an exhaustive search over the combinatorial
space of potential team assignments, as demonstrated
on several scenarios of simulated military maneuvers.

Introduction
Although there has been considerable research on the prob-
lem of single-agent behavior recognition, there has been
substantially less work on multi-agent behavior recognition.
Most of the previous work makes one of two assumptions:
(1) each agent is a decoupled entity that can be analyzed
individually using a single-agent activity inferencing algo-
rithm or (2) the agents are always working together and
can be analyzed as a single cohesive entity represented by
a high-dimensional feature vector. In either case, team com-
position is generally assumed to bestatic; this paper specif-
ically addresses the problem of behavior recognition for
teams withdynamicteam composition. In scenarios with
dynamic team composition, agents are assumed to be inde-
pendent entities that coordinate with other agents to perform
team behaviors; teams disband when the behavior is com-
plete, merge with other teams to create larger formations,

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

and occasionally split into subteams to perform multiple be-
haviors in parallel. Relaxing the assumption of static team
assignment is desirable because it enables the analysis of
more complex team tasks. However this makes the team be-
havior recognition problem substantially more difficult since
behaviors are characterized by the aggregate motion of the
entire team and cannot generally be determined by observ-
ing the movements of a single agent in isolation.

In this paper, we introduce a new algorithm, Simultane-
ous Team Assignment and Behavior Recognition (STABR),
that recovers both team assignments and behavior anno-
tations from traces of agent position over time. STABR
leverages information from the spatial relationships of the
team members to create sets of potential team assignments
at selected time-steps. These spatial relationships are ef-
ficiently discovered using a randomized search technique,
RANSAC (Fischler & Bolles 1981), to generate potential
team assignment hypotheses. Sequences of team assign-
ment hypotheses are evaluated using dynamic programming
to derive a parsimonious explanation for the entire observed
spatio-temporal trace. To prune the number of hypothe-
ses, potential team assignments are fitted to a parameterized
team behavior model; poorly-fitting hypotheses are elimi-
nated before the dynamic programming phase. The pro-
posed approach is able to perform accurate team behavior
recognition without exhaustive search over the partition set
of potential team assignments, as demonstrated on several
scenarios of simulated military maneuvers.

The remainder of this paper is organized as follows. The
next section discusses related work on practical applications
of team behavior recognition. Then, we introduce our prob-
lem formulation and describe our algorithm, STABR (Si-
multaneous Team Assignment and Behavior Recognition).
We present experiments in the domain of military formation
recognition and discuss results.

Related Work
Multi-agent plan recognition has been developed for both
athletic and military domains. To recognize athletic behav-
iors, researchers have exploited simple region-based (Intille
& Bobick 1999) or distance-based (Riley & Veloso 2002)
heuristics to build accurate, but domain-specific classifiers.
For instance, based on the premise that all behaviors always
occur on the same playing field with a known number of en-
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Figure 1: (a) An example scenario with three teams of 4 agents,({a0, . . . , a3}, {a4, . . . , a7}, {a8, . . . , a11}) and four singleton
agents (a12, . . . , a15); (b) teams maneuver while maintaining formation and converge to central area; (c) the three teams disband
and regroup into four teams of 3 agents; (d) the various teams scatter as units. The interleaving of agent formations, the presence
of singletons and observation noise (suppressed here) makes the team assignment and behavior recognition challenging.

tities, it is often possible to divide the playing field into grids
or typed regions (e.g., goal, scrimmage line) that can be used
to classify player actions. Our algorithm does not rely on the
presence of these external landmarks; however if such fea-
tures exist, they can be incorporated into our framework both
to reduce the number of team assignments considered and to
potentially improve the behavior recognition accuracy. Pre-
vious work in this area typically assumes a known agent-
team composition whereas our research focuses on behavior
recognition for teams with dynamic composition.

There has also been work on extending single-agent
plan recognition frameworks (Tambe & Rosenbloom 1995;
Bui 2003), both to create symbolic (Tambe 1996) and prob-
abilistic (Saria & Mahadevan 2004) multi-agent plan recog-
nition frameworks. These efforts have focused on the use
of temporal behavior models and do not extensively utilize
spatial information; such models have also been employed
to detect teamwork failures (Kaminka & Tambe 2000) and
agent-coordination termination (Saria & Mahadevan 2004).
Due to the difficulty of acquiring reliable location data for
multiple entities, much of the research has been evaluated
in simulation; however improvements in sensor technology
such as the microwave position system described in (Beetz,
Kirchlechner, & Lames 2005) should make real-world de-
ployments possible in the future.

Problem Formulation
We formulate our problem as follows. LetA =
{a0, a1, . . . , aN−1} be the set of agents in the scenario. A
team consists of a subset of agents, and we require that an
agent only participate in one team at any given time; thus
a team assignmentis a set partition onA. An agent that
is not currently a member of any team is known as asin-
gleton, and is unrestricted in its motion. By contrast, the
agents in a team are constrained to move according to a set
of team behaviors, B. The subset of behaviors available
to a given team is specified by the domain and can depend
on the number of agents in the formation and their relative
configurations. For instance, the domain could specify that
four agents in a square formation may execute a “wheel”
(formation advances in an arc by rotating about a corner),
but not a “pivot” (formation rotates about its center), which

may be restricted to teams of three agents. In the course of
a scenario, agents (either singletons or subsets of disband-
ing teams) can assemble into new teams; similarly, teams
can disband to enable their members to form new teams or
to operate as singletons. Thus the team assignment is ex-
pected to change over time during the course of a scenario.
The team assignments over time and the behavior executed
by each team are hidden from our system. We assume that
our input consists only of aspatio-temporal trace, which
is a sequence of noisy observations of the 2D position of
each agent through time,ai(t) ∈ <2. We illustrate this
with an example: Figure 1 shows several frames from a sce-
nario with 16 agents. In Figure 1(a), 12 of the agents are
arrayed in three teams of four agents in a square forma-
tion, ({a0, . . . , a3}, {a4, . . . , a7}, {a8, . . . , a11}), with the
remaining four agents as singletons. In Figure 1(b), the
squares are converging towards the central area and the for-
mations are starting to interleave. In Figure 1(c), the squares
are disbanding and those are regrouping into four groups of
three, arrayed as triangles. Finally, in Figure 1(d), the trian-
gles are moving away from the central area. For illustration
purposes, observation noise is not shown in this figure.

Our goal is to recover a team and a behavior assignment
for every agentai ∈ A at every time-stept. This can be
succinctly expressed in the form of two tables: (1) an agent-
to-team assignmentai(t) 7→ S ⊂ A; (2) a team-to-behavior
assignmentSj(t) 7→ b ∈ B. It is important to note that one
cannot, in general, infer the behavior of a team by exam-
ining the motion trace of any single agent. Similarly, one
cannot assign an agent to a team without confirming that the
behavior of the team is legal.

Ideally, one may wish to consider every legal agent-to-
team assignment and team-to-behavior assignment at every
time-step and then select the sequence that best matches the
observed data. However, a straightforward implementation
of this idea is computationally infeasible. The pool of po-
tential agent-to-team assignments grows very quickly with
the number of agents; this is equivalent to the number of
partitions of a set, and is given by theBell numberof the
set (Rota 1964):

Bn =
n∑
0

S(k, n),



whereS(k, n) denotes a Stirling number of the second kind,

S(k, n) = S(k − 1, n− 1) + kS(k, n− 1) 1 ≤ k ≤ n

S(n, n) = S(n, 1) = 1.

For instance, the number of team assignments in the 16-
agent example shown in Figure 1,B16 > 1010. Clearly,
examining every potential team assignment at even a sin-
gle time-step is infeasible. And naively evaluating all of the
possible combinations of partitions over the entire spatio-
temporal sequence further increases the complexity in an ex-
ponential manner.

Fortunately, a closer examination of the problem re-
veals structure that can be exploited to generate a
computationally-feasible solution. The key observations be-
hind our algorithm are summarized as follows. First, at each
time-step, the relative positions of the agents in a team is
constrained by the spatial configuration of the formation.
Even though it may not be possible to unambiguously de-
termine from a single time-step that an observed subset of
agents is arrayed in a particular formation, one can prof-
itably employ a static analysis of agent positions to generate
hypotheses of valid team assignments and behaviors. Sec-
ond, although an analysis of the motion of a single agent
may not be sufficient to infer its behavior, an examination of
the aggregate movement of several agents in isolation (i.e., a
hypothesized team) generates significant information about
team behavior. Third, by defining appropriate cost functions
for the sequence, one can employ dynamic programming to
dramatically reduce the time needed to find good sequences
of team and behavior assignments through time. The next
section details each of these ideas and describes how they
contribute to the design of the STABR algorithm.

The STABR Algorithm

STABR analyzes spatio-temporal traces in three stages.
First, it performs a static analysis of agent positions at
each time-step to identify potential agent configurations that
may correspond to known formations; these are used as an
initial set of agent-to-team assignment hypotheses in later
stages. STABR maintains multiple potentially-conflicting
assignments for an agent, if there is spatial support. Sec-
ond, STABR examines hypothesized team assignments in
isolation and determines whether they have sufficient local
spatio-temporal support. Pruning unlikely hypotheses at this
stage is crucial since it greatly affects the performance of
the last stage. This analysis also enables STABR to deter-
mine plausible behavior assignments for each of the sur-
viving hypotheses. Third, these agent-to-team hypotheses
are used to generate complete partitions over the agents. In
the worst case, this state space could be exponential in the
number of surviving hypotheses, underscoring the benefits
of pruning. STABR then organizes the states (partitions)
over the spatio-temporal sequence in the form of a lattice
and employs dynamic programming to identify minimal cost
solutions. These correspond to agent-to-team and team-to-
behavior assignments that are a good fit to the observed se-
quence.

Static identification of agent formations
The first stage of the recognition process is to identify po-
tential team assignments, based on static spatial cues. We
do this by matching agent positions to pre-specified geomet-
ric formation templates; this enables the recovery of more
complicated team relationships than the standard approach
of clustering agents into teams based solely on proximity
(see Results for a comparison of approaches). STABR em-
ploys a statistically-robust technique, Random Sampling and
Consensus, RANSAC (Fischler & Bolles 1981), to generate
and test potential team assignment hypotheses at selected
time-steps. For each formation template, agents are drawn
uniformly and at random from both the template and the
scenario. These point correspondences are used to gener-
ate a transform hypothesis to project the remaining template
points into the scenario coordinate frame.

We define the set of legal transforms to be the class of sim-
ilarity transforms (rotation, translation, and scaling); these
can be parameterized in homogeneous coordinates as fol-
lows:

T =

[
s cos(θ) s sin(θ) x
−s sin(θ) s cos(θ) y

0 0 1

]
.

Then we apply the static formation recognition scheme
described in (Sukthankar & Sycara 2006) to efficiently iden-
tify matching transforms; this method is summarized be-
low. The randomly sampled minimal set of point correspon-
dences is expressed in homogeneous coordinates as the 3×3
matricesA andB respectively. SinceB = TA, we can re-
coverT directly using matrix inversion. The match quality
of the transform hypothesisT is assessed by projecting the
coordinates of the remaining agents, as given by the tem-
plate, into the scenario coordinate frame usingT. If the pre-
dicted positions are sufficiently close to the observations, the
template is accepted as valid and these agents are assigned
to a team.

Since RANSAC stochastically searches the space of pos-
sible transforms it is not guaranteed to find the best match.
However the following formula can be used to determine the
number of iterations that are required to find the best match
with a specified probability of success (Xu & Zhang 1996):

m =
⌈

log(1− P )
log[1− (1− ε)s]

⌉
.

P is the target probability (e.g.,P = 0.99 means the best
match is found 99% of the time).s is the number of elements
required to define the minimal set (s = 2 since a similarity
transform requires 2 pairs of point correspondences).ε is
the expected fraction of outliers in the data set. RANSAC is
highly efficient at detecting templates that consist of many
agents, since the number of iterations needed to achieve the
desired probability is independent of team size. Detecting
small teams in a scenario with many distracting agents is a
harder problem since the other agents function as outliers.
In the example scenario, where 75% of the points are effec-
tively outliers for the square formation, a reliable detection
of that template only requires 71 iterations, whereas an ex-
haustive search through the space would need16C4 = 1820
iterations.



Spatio-temporal analysis of individual teams
The first stage of the algorithm identified, independently for
each time-step, a set of hypothetical team assignments. The
second stage identifies those team assignments that have sig-
nificant temporal support, and generates behavior hypothe-
ses for each such team that are consistent with the observed
positions. The inability to find a plausible behavior to ex-
plain the motion of a hypothesized team is a strong indicator
that the hypothesis does not correspond to a real team, but
is rather a visual illusion caused by a coincidental configu-
ration of agents.

The behavior recognition proceeds on a team-by-team ba-
sis. Each team is independently evaluated over the temporal
intervals during which it was detected against a set of param-
eterized team behavior models. Although STABR can em-
ploy arbitrary motion models, in this paper, we model team
behaviors as a set of constrained rigid-body transforms, such
as “advance” (pure translation in the forward direction),
“wheel” (rotation about a forward corner), and “pivot” (rota-
tion about team centroid). If the team’s movement does not
fit any known behavior, the assignment is discarded since it
is likely to have been the result of a spurious detection. This
is best illustrated by an example. Consider a team hypothesis
that assigns three agents, (a1, a2, a3) to a “triangle” forma-
tion. Domain knowledge specifies the set of behaviors that
are available to each formation, and this imposes constraints
on their observed motion. For instance, a triangle formation
may only be allowed to pivot about its centroid or advance as
a wedge. The algorithm evaluates the likelihood of explain-
ing the observed team positions{a1(t),a2(t),a3(t)}, using
each behavior, over a sliding time window. Each behavior is
characterized by a small number of parameters; given these
parameters and an initial agent configuration, the behavior
specifies the position of each agent in the formation over the
time interval. For example, the pivot behavior for a trian-
gle formation is parameterized by the angular velocity,ω.
∀i ∈ {1, 2, 3}:

ai(t) =
[

cos ω(t− t0) sinω(t− t0)
− sinω(t− t0) cos ω(t− t0)

]
[ai(t0)− ā]+ā

whereā denotes the (stationary) centroid of the triangle for-
mation. Our algorithm attempts to fit the model to the ob-
served data. In this example, ifa1, a2 anda3 were really
executing a pivot, the algorithm should recover anω that
matches the observations well (in a least-squares sense). On
the other hand, ifa1, a2 anda3 were actually translating,
then the pivot behavior would fail to match (for any choice
of ω). Thus, we iterate through each behavior and prune
those behaviors that fail to match and (most importantly)
prune those team hypotheses that cannot be explained by
any legal behavior. The computational benefits of pruning
team hypotheses are discussed in the next section.

Explaining sequences of hypotheses
The final stage of STABR searches the space of team assign-
ment and behavior recognition hypotheses generated by ear-
lier stages for a consistent explanation over the entire spatio-
temporal trace. In general, there may be several consistent

explanations for the given observed agent movements; for
instance, it is always possible to explain any trace as a coin-
cidental convergence of uncoordinated singleton movement
(though this would be highly improbable). We employ a
cost function that encodes the intuition that an explanation
that requires fewer changes in team assignment and behavior
is preferable (Sukthankar & Sycara 2005). Given this cost
function, we apply dynamic programming over the sequence
to efficiently find the minimal-cost solution.

For every time slice, STABR generates a list of potential
set partitions from the team assignment labels returned by
the RANSAC template matching and validated by spatio-
temporal behavior analysis. This list of set partitions repre-
sents a potential world state for that time slice; each world
state contains a team assignment for every agent such that no
agent is assigned to multiple teams (see Discussion for ram-
ifications of relaxing this requirement). Generating a list of
consistent world states is exponential in the number of team
assignment hypotheses but is dramatically faster than con-
sidering the Bell number of total set partitions at that time
step. Thus, effective pruning of team assignment hypothe-
ses using spatio-temporal behavior analysis in earlier stages
can greatly reduce running time.

Any sequence through this set of partitions is both con-
sistent (all agents are assigned to teams and no agent is
assigned to multiple teams) and supported by local spatio-
temporal evidence. We use a cost function to select the
solution that most parsimoniously explains the scenario.
This can be formulated as a shortest path problem through
the space of consistent team and behavior assignments and
solved efficiently using dynamic programming. The cost,
CT−1 of explaining the entire sequence can be computed
using:

Cq
t+1 = min

∀p
{Cp

t + Dp,q}+ γ|q|

wherep andq are potential world states at time-stepst and
t+1 respectively,|q| denotes the number of teams in the par-
tition, andγ is a domain-specific parameter that controls the
degree to which STABR favors sequences with large teams.
D is a “distance” between states that captures differences in
both team membership and behavior:

Dp,q =
∑
∀ai∈A

βI[bp(ai), bq(ai)] + τI[tp(ai), tq(ai)]

whereI[., .] is an indicator variable;bp(ai) andbq(ai) re-
turn the behavior label for agentai under statesp and q
respectively;tp(ai) and tq(ai) return the team assignment
for agentai under statesp andq respectively;β andτ are
domain-specific parameters which can be tuned to improve
recognition accuracy.

Experiments
We evaluate STABR on a set of scenarios of simulated mili-
tary formations. The simulator generates traces for the posi-
tion of each agent, corrupted with iid Gaussian observation
noise and emits ground-truth data of the correct team as-
signments and behavior for the scenario. STABR processes
this data and generates a team-assignment and a behavior



for each agent, at every time-step. Our evaluation metrics
are summarized below:
1. team assignment accuracy: We score, at each time-step,

whether the team assignment for each agent is correct. We
employ a conservative metric and require the team mem-
berships to match exactly; e.g., the absence of a single
agent in ak-member team counts ask errors — one for
each of the incorrectly-labeled agents — rather than a sin-
gle assignment error. Team assignment accuracy is plot-
ted over time (Figure 2(a)) to show results on a particular
scenario and averaged over the scenario to generate ag-
gregate results (Table 1).

2. behavior recognition accuracy: This measures the qual-
ity of behavior recognition and is computed in an analo-
gous manner as team assignment accuracy, using the same
conservative metric.

3. hypothesis set size: We examine the number of hy-
potheses that are considered by STABR during various
stages. This enables us to assess the contribution of
spatio-temporal pruning.

Each of the following experiments examines a particular as-
pect of STABR to better understand its contributions. In
all of these experiments, the STABR parameters were set
to β = τ = 1 andγ=0.1, unless otherwise specified.

The first experiment evaluates the benefits of employing
the RANSAC-based formation template approach to identi-
fying teams against a standard proximity-based clustering.
K-means and agglomerative clustering are two popular un-
supervised clustering methods (Duda, Hart, & Stork 2001)
that are frequently employed to group agents into teams.
Since the former requires that the number of clusters be
externally-specified, we chose to compare STABR against
the latter. In this experiment, the first stage of STABR
is replaced with agglomerative clustering, where groups of
proximal agents were aggregated into teams. Figure 2(a)
presents the team assignment accuracy for both algorithms
on the scenario shown in Figure 1. Agglomerative clustering
and RANSAC both perform well when the agent teams are
well-separated. However, as the formations begin to inter-
leave, the accuracy of agglomerative clustering deteriorates
rapidly. This is because agents that are proximal should fre-
quently be assigned to different teams. The transient drop in
accuracy neart = 50 corresponds to frames where 12 agents
simultaneously transition from three groups of 4 agents to
four groups of 3 agents over the span of a few frames; al-
though either assignment would be correct during this inter-
val, the ground truth file arbitrarily selects a single transition
point, and STABR’s explanation is marked as incorrect. Re-
sults on behavior recognition (not shown) mirror those for
team assignment, since correctly identifying an agent’s be-
havior generally requires the algorithm to also group it into
the correct team.

Table 1 summarizes the agent team assignment accuracy
for STABR over several scenarios. While proximity-based
clustering can handle the simplest scenario, it copes poorly
with the interleaved formations in more complex scenarios.

The second experiment studies the contribution of the
spatio-temporal behavior recognition, not in terms of accu-
racy but rather in terms of reducing the number of hypothe-

Table 1: Agent team assignment accuracy, averaged over all
agents and time for a variety of scenarios. The benefits of
RANSAC over proximity-based clustering are clearly evi-
dent. The scenario illustrated in Figure 1 is Scenario D.

Cluster RANSAC
Scenario A 95.8% 97.8%
Scenario B 57.0% 99.3%
Scenario C 36.0% 99.5%
Scenario D 18.3% 98.5%
Scenario E 0.0% 95.0%

ses from which world-states need to be generated. Since
the execution time of STABR’s last stage can grow expo-
nentially with the size of this hypothesis set, it is impor-
tant to reduce the set of team assignment hypotheses (with-
out jeopardizing accuracy). Figure 2(b) shows (in semi-log
scale) the size of the hypothesis set before and after spatio-
temporal pruning along with the actual size of the consistent
set (which is not actually known until stage 3). As can be
seen, the spatio-temporal behavior recognition dramatically
reduces the number of hypotheses that need to be considered
by the third stage — without adversely affecting accuracy.

Discussion
In military scenarios, group assignment can be quite chal-
lenging because modern forces often split into multiple dis-
connected parts (e.g., far-ranging scouts, small diversion
groups, and flanking elements). Recognizing what the force
is doing is often possible once it is clear which units are in-
volved. STABR correctly recovers team assignments even in
cases of non-spatially contiguous divisions that foil standard
clustering approaches to team assignment.

The STABR approach is based on the following intu-
itions:
1. Initial agent-to-team assignments can be made on the ba-

sis of static spatial cues.
2. The aggregate agent movement for an incorrect team as-

signment will generally fail to match any behavior model;
this can be exploited to prune poor team assignments thus
speeding computation.

3. Desirable team and behavior assignments “explain” the
activities of a large number of agents over long chunks of
the spatio-temporal sequence.

The scenarios presented in this paper illustrate the operation
of STABR in environments that lack the external cues used
by other multi-agent plan recognition approaches, such as
landmarks, cleanly-clustered agent teams, and extensive do-
main knowledge. We believe that when such cues are avail-
able they can be directly incorporated into STABR, both to
improve accuracy and to prune hypotheses. STABR pro-
vides a principled framework for reasoning about dynamic
team assignments in spatial domains.

The chicken-and-egg problem of simultaneous team as-
signment and behavior recognition is conceptually similar
to other AI problems, such as image segmentation/object
recognition in computer vision. During the image segmen-



(a) team assignment accuracy (b) #hypotheses
Figure 2: (a) Team assignment accuracy for STABR comparing agglomerative clustering with RANSAC on the scenario shown
in Figure 1. Clearly proximity-based clustering is ineffective when agent formations are in close proximity. (b) Pruning team
assignment hypotheses based on spatio-temporal behavior recognition drastically reduces the number of hypotheses that STABR
considers. The number of hypotheses that remain after pruning closely follows the actual size of the consistent partitions.

tation phase, pixels are assigned to objects that are then clas-
sified by an object recognition algorithm. The choices made
by segmentation affect the quality of the object recognition;
thus one can favor segmentations that generate recognizable
objects. In the same way, STABR favors team assignments
that produce recognizable behaviors.

Although STABR was designed specifically for the anal-
ysis of spatio-temporal traces, we believe that STABR can
also be applied to a broader class of problems, where spatial
information does not govern team structure. For instance,
agents could be assigned to teams based on observed inter-
agent communication patterns in conjunction with role tem-
plates that represent functional relationship between agents.
In such domains, it may be necessary to relax the restriction
on team membership to allow an agent to simultaneously
belong to multiple teams. This change would simplify the
process of generating valid world states since it removes the
need for consistency checking at the expense of increasing
the number of potential hypotheses that need to be consid-
ered.

Conclusion
This paper introduces a new algorithm, STABR, that gener-
ates both behavior annotations and team assignments from
spatio-temporal agent traces. The proposed approach per-
forms accurate team behavior recognition without an ex-
haustive search over the combinatorial space of potential
team assignments. Experiments on several simulated mili-
tary maneuvers demonstrate that STABR is accurate at both
team assignment and behavior recognition. In future work,
we will integrate symbolic plan recognition into STABR to
analyze hierarchically-structured observation sequences ac-
quired from military urban training operations.
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