
Scaling Teamwork to Very Large Teams

Paul Scerri∗, Yang Xu+, Elizabeth Liao∗, Justin Lai∗ and Katia Sycara∗

∗ Carnegie Mellon University, + University of Pittsburgh

pscerri@cs.cmu.edu, xuy3@pitt.edu, eliao@andrew.cmu.edu, guomingl@andrew.cmu.edu, katia@cs.cmu.edu

Abstract

As a paradigm for coordinating cooperative agents in

dynamic environments, teamwork has been shown to be

capable of leading to flexible and robust behavior. How-

ever, when we apply teamwork to the problem of build-

ing teams with hundreds of members, fundamental lim-

itations become apparent. We have developed a model

of teamwork that addresses the limitations of existing

models as they apply to very large teams. A central idea

of the model is to organize team members into dynami-

cally evolving subteams. Additionally, we present a novel

approach to sharing information, leveraging the proper-

ties of small worlds networks. The algorithm provides

targeted, efficient information delivery. We have devel-

oped domain independant software proxies with which we

demonstrate teams at least an order of magnitude big-

ger than previously published. Moreover, the same prox-

ies proved effective for teamwork in two distinct domains,

illustrating the generality of the approach.

1. Introduction
When a group of agents coordinates via team-

work they can flexibly and robustly achieve joint
goals in a distributed, dynamic and potentially hos-
tile environment[6, 9]. Using basic teamwork ideas,
many systems have been successfully implemented, in-
cluding teams supporting human collaboration[2, 17],
teams for disaster response[12], for manufacturing[9],
for training[19] and for games[11]. While such teams
have been very successful, their size has been severely
limited. To address larger and more complex prob-
lems, we need teams that are substantially bigger but
retain the desirable properties of teamwork.

The key to the success of previous teamwork ap-
proaches is the explicit, detailed model each agent has
of the joint activity and of other members of the team.
Team members use these models to reason about ac-
tions that will aid the achievement of joint goals[8, 19].
However, when the size of a team is scaled up, it be-
comes infeasible to maintain up-to-date, detailed mod-
els of all other teammates, or even of all team ac-
tivities. Specifically, the communication required to

keep the models up to date does not scale well with
the number of agents. Without these models, key el-
ements of both the theory and operationalization of
teamwork break down. For example, without accurate
models of team activities, STEAM’s communication
reasoning[19] cannot be applied nor can Joint Inten-
tion’s reasoning about committments[8].

In this paper, we present a model of teamwork that
does not rely on the accurate models of the team that
previous approaches to teamwork use. By not requir-
ing accurate models we limit the required communi-
cation and thus make the approach applicable to very
large teams. However, giving up the accurate models
means that the cohesion guarantees provided by ap-
proaches such as Joint Intentions can no longer be pro-
vided. Instead, our algorithms are designed to lead to
cohesive, flexible and robust teamwork with high prob-

ability.
The basic idea is to organize the team into dynami-

cally evolving, overlapping subteams that work on sub-
goals of the overall team goal. Members of a subteam
maintain accurate models of each other and the spe-
cific subgoal on which they are working. To ensure co-
hesion and minimize inefficiency across the whole team,
we connect all agents in the whole team into a net-
work. By requiring agents to keep their neighbors in
the network informed of the subgoals of subteams they
are members of, there is high probability inefficiencies
can be detected and subsequently addressed. Using this
model we have been able to develop teams that were
effective, responsive and cohesive despite having 200
members. We identify three ideas in the model as be-
ing the keys to its success.

The first idea is to break the team into subteams,
working on subgoals of the overall team goal. The mem-
bers of a subteam will change dynamically as the over-
all team rearranges its resources to best meet the cur-
rent challenges, respond to failures or sieze opportuni-
ties. Within these subteams, the agents will have accu-
rate models of each other and the joint activity, in the
same way a team based on the STEAM model would.
Thus, using techniques developed for small teams, the

subteam can be flexible and robust. Moreover, we iden-
tify two distinct groups within the subteam: the team
members actually performing roles within the plan; and
team members who are not, e.g., agents involved via
role allocation. The fidelity of the model maintained
by the role performing agents is higher than that of
the non-role performing agents, which is in turn higher
than other agents in the wider team. Because mod-
els are limited to subteams, communication overhead
is limited.

To avoid potential inefficiencies due to subteams
working at cross purposes, our second idea is to in-
troduce an associates network. This network connects
all agents in the team and is independent of any rela-

tionships due to subteams. Specifically, the network is
a small worlds network [20](see figure 1), so that any
two team members are separated by a small number of
neighbors. Agents share information about their cur-
rent activities with their direct neighbors in the net-
work. Although the communication required to keep
neighbors in the associates network informed is low,
due to the small worlds properties of the network, there
is high probability for every possible pair of plans some
agent will know of both and, thus, can identify ineffi-
ciencies due to conflicts between the plans. For exam-
ple, it may be detected that two subteams are attempt-
ing to achieve the same goal or one subteam is using
plans that interfere with the plans of another subteam.
Once detected by any agent the subteams involved can
be notified and the inefficiency rectified.

A side effect of limiting models of joint activities
to the members of a subteam is that the overall team
loses the ability to leverage the sensing abilities of all

of its members. Specifically, an agent may locally de-
tect a piece of information unknown to the rest of the
team but does not know which members would find
the information relevant[7, 22]. For example, in a dis-
aster response team, a fire fighter may detect that a
road is impassable but not know which other fire fight-
ers or paramedics intend to use that road. While com-
munication in teams is an extensively studied problem,
[4, 10, 14, 21], current algorithms for sharing informa-
tion in teams either require infeasibly accurate mod-
els of team activities, e.g., STEAM’s decision theoretic
communication[19], or require that centralized infor-
mation brokers are kept up to date[18, 1] leading to
potential communication bottlenecks. We have devel-
oped a novel information sharing algorithm that lever-
ages the small worlds properties of the associates net-
work to allow agents to deliver information efficiently
despite not knowing who else needs it. The key idea is
that each team member builds a model of which of their
neighbors in the associates network will most likely ei-

ther want a particular piece of information or will know
who does. These models are inferred from other coor-
dination messages, e.g., for role allocation, and do not
require additional communication. Agents then simply
propogate information according to this model.

To evaluate our method for building large teams,
we have implemented the above approach in software
proxies[15] called Machinetta. A proxy encapsulating
coordination algorithms works closely with a “domain
level” agent and coordinates with other proxies. Al-
though Machinetta proxies build on the successful
TEAMCORE proxies[19] and have been used to build
small teams[16], they were not able to scale to large
teams without the fundamentally new algorithms and
concepts described above. In this paper, we report re-
sults of coordinating teams of 200 proxies that exhib-
ited effective, cohesive team behavior. Such teams are
an order of magnitude bigger than previously published
proxy-based teams[16], hence they represent a signifi-
cant step forward in building big teams. To ensure that
the approach is not leveraging peculiarities of a specific
domain for its improved performance, we tested the ap-
proach in two distinct domains using identical proxies.1

2. Building Large Teams
In this section, we provide a detailed model of the

organization and coordination of the team. At a high
level, the team behavior can be understood as fol-
lows. Team members detect events in the environment
that result in plans to achieve the team’s top level
goal. The team finds sub-teams to work on those plans
and within the subteams the agents communicate to
maintain accurate models to ensure cohesive behavior.
Across subteams, agents communicate the goals of the
subteams so that interactions between subteams can be
detected and conflicts resolved. Finally, agents share lo-
cally sensed information on the associates network to
allow the whole team to leverage the local sensing abil-
ities of each team member.

2.1. Organizing Large Teams
A team A consists of a large number of agents,

A = {a1, a2,, an}. The associates network arranges
the whole team into a small worlds network defined
by N(t) = ∪

a∈A
n(a), where n(a) are the neighbors of

agent a in the network. The minimum number of agents

a message must pass through to get from one agent
to another via the associates network is the distance

between those agents. For example, as shown in Fig-
ure 1, agents a1 and a3 are not neighbors but share
a neighbor, hence distance(a1, a3) = 1. We require

1 A small amount of code was changed to interface to different
domain agents.

Figure 1. Relationship between subteams and the as-

sociates network

that the network be a small worlds network, which
imposes two constraints. First, ∀a ∈ A, |n(a)| < K,
where K is a small integer, typically less than 10. Sec-
ond, ∀ai, aj ∈ A, distance(ai, aj) < D where D is a
small integer, typically less than 10.

Plans and Subteams
The team A has a top level goal, G to which the

team commits, with the semantics of STEAM. Achiev-
ing G requires achieving sub-goals, gi, that are
not known in advance but are a function of the
environment. For example, sub-goals of a high
level goal to respond to a disaster are to extin-
guish a fire and provide medical attention to in-
jured civilians. Each sub-goal is addressed with
a plan, plani =< gi, recipei, rolesi, di >. The over-
all team thus has plans Plans(t) = {plan1, . . . , plann},
though individual team members will not necessar-
ily know all plans. To maximize the responsiveness
of the team to changes in the environment, we al-
low any team member to commit the team to ex-
ecuting a plan, when it detects that gi is relevant.
recipei is a description of the way the sub-goal will be
achieved[8] and rolesi = {r1, r2, r3, ...rr} are the in-
dividual activities that must be performed in order
to execute that recipei. di is the domain specific in-
formation pertinant to the plan. For convenience, we
write perform(r, a) to signify that agent a is work-
ing on role r. We are using LA-DCOP for role
allocation[5] which results in a dynamically chang-
ing subset of the overall team involved in role alloca-
tion. We capture the identities of those agents involved
in role allocation with allocate(plani).

Mutual Beliefs and Subteams
Agents working on the plan and their neighbors in

the associates network, make up the subteam for the
plan (we write the subteam for plani as subteami).
Since allocation of team members to roles may change
due to failures or changing circumstances, the members

of a subteam also change. All subteam members must
be kept informed of the state of the plan, e.g., they
must be informed if the plan becomes irrelevant. This
maximizes cohesion and minimizes wasted effort. Typ-
ically |subteami| < 20, although it may vary with plan
complexity. Typically, subteami∩subteamj 6= ∅. These
subteams are the basis for our coordination framework
and leads to scalability in teams.

We distinguish between two sets of agents within
the subteam: those that are assigned to roles, rolesi,
in the plan and those that are not. The subteam mem-
bers actually assigned to roles in a plan plani, called
the role executing agents, REA(pi) = {a|a ∈ A, ∃r ∈
rolesi, perform(r, a)} The non-role executing agents
are called weakly goal related agents WGRA(pi) =
{a|a ∈ A, a ∈ allocate(pi) ∧ associate(allocate(pi)) ∧
associate(REA)}.

A key to scaling teamwork is the efficient sharing
of information pertaining to the activities of the team
members. Using the definitions of subteams, we can
provide relaxed requirements on mutual beliefs, mak-
ing it feasible to build much larger teams. Specifically,
agents in REAi must maintain mutual beliefs over all
pieces of information in plani, while agents only in
WGRAi must maintain mutual beliefs over only gi and
recipei. Maintaining these mutual beliefs within the
subteam requires relatively little communication, and
scales very well as more subteams are added.

Conflict Detection

Detecting conflicts or synergies between two known
plans is a challenging task[3, 13], but in the context of a
large team there is the critical additional problem of en-
suring that some team member knows of both recipes.
Here we focus on this additional challenge. When we al-
low an individual agent to commit the team to a goal,
there is the possibility that the team may be execut-
ing conflicting plans or plans which might be combined
into a single, more efficient plan. Once a conflict is de-
tected plan termination or merging is possible due to
the fact that the agents form a subteam and thus main-
tain mutual belief. Since it is infeasible to require that
every team member know all plans, we use a distributed
approach, leveraging the associates network. This ap-
proach leads to a high probability of detecting conflicts
and synergies, with very low overheads.

If two plans plani and planj have some
conflict or potential synergy, then we require
subteami ∩ subteamj 6= ∅ to detect it. A sim-
ple probability calculation reveals that the probability
of overlap between subteams is:

Pr(overlap) = 1 −
(n−k)Cm

nCm

where where n = number of agents, k = size of sub-
team A, m = size of subteam B and aCb denotes a
combination.

For example, if |subteami| = |subteamj| = 20 and
|A| = 200, then P (overlap) = 0.88, despite each sub-
team involving only 10% of the overall team. Since, the
constituents of a subteam change over time, this is ac-
tually a lower bound on the probability a conflict is de-
tected because over time more agents are actually in-
volved. In Section 4 we experimentally show that this
technique leads to a high probability of detecting con-
flicts.

3. Sharing Information in Large Teams
In the previous section, we showed how requiring

mutual beliefs only within subteams acting on specific
goals can dramatically reduce the communication re-
quired in a big team. However, individual team mem-
bers will sometimes get domain level information, via
local sensors, that is relevant to members of another
subteam. Due to the fact that team members do not
know what each other subteam is doing, they will some-
times have locally sensed information that they do
not know who requires. In this section, we present an
approach to sharing such information, leveraging the
small worlds properties of the associates network. The
basic idea is to forward information to whichever ac-
quaintance in the associates network is most likely to
either need the information or have a neighbor who
does.

Agents send information around the team
in messages. A message consists of four parts,
M =< sender, i, E, count >. The first two ele-
ments, sender and i, denote the agent that sent the
message and the piece of information being communi-
cated. With this algorithm, we are only interested in
delivering domain level information (as opposed to co-
ordination information). So I = {i1, i2, . . . , in}, defines
all the information that could be sent, here i is de-
fined according to di in Section 2. The last two
elements of a message, E and count, are used for im-
proving the team’s information flow (see below) and
determine when to stop forwarding a message, respec-
tively.

For the purposes of information sharing, the inter-
nal state of the team member a is represented by Sa =<

Ha, Ka, Pa >. Ha is the (possibly truncated) history of
messages received by the a. Ka ⊆ I is the local knowl-
edge of the agent. If i ∈ Ka, we say knows(a, i) = 1,
otherwise, knows(a, i) = 0. Typically, individual team
members will know only a small fraction of all the team
knows, i.e., |Ka| << |I|. Our algorithms are primarily
aimed at routing information in I−Ka, since it this in-
formation that needs to be shared. Thus, the agents are

Figure 2. Probability model example

reasoning in advance about how they would route infor-
mation. For example, a fire fighter might build a model
of who might be interested in particular street block-
ages.

Since the reason for sharing information between
teammates is to improve performance of a team, quan-
tifying the importance of a piece of information i to an
agent a at time t is needed. Specifically, we use the func-
tion U : I×A → R. The importance of the information
i is calculated by determining the expected increase in
utility for the agent with the information versus with-
out it. That is, U(a, i) = EU(a, Ka ∪ i) − EU(a, Ka) ,
where EU(a, Ka) is the expected utility of the agent
a with knowledge Ka. When U(a, i) > 0, knowledge
of i is useful to a, and the larger the value of U(a, i)
the more useful i is to a. Formally, the reward for the

team is reward(i) =

∑

a∈A

U(a,i)×knows(a,i)

∑

a∈A

knows(a,i) . Notice, that

since this calculation is based on knowing the use of a
piece of information to each agent, agents cannot com-
pute this locally. Thus, it is simply a metric to be used
to measure algorithm performance.

The heart of our algorithm is a model of the rel-
ative probabilities that sending a piece of informa-
tion to a neighbor will lead to an increase in the re-
ward as defined by our objective function. This is Pa

in the agent state. Pa is a matrix where Pa[i, b] →
[0, 1], b ∈ N(a), i ∈ I represents the probability that
neighbor b is the best neighbor to send information
i to. For example, if Pa[i, b] = 0.7, then a will usu-
ally forward i to agent b as b is very likely the best
of its neighbors to send. This situation is illustrated
in Figure 2. To obey the rules of probability, we re-
quire ∀i ∈ I,

∑

b∈N(a) P t
a[i, b] = 1.

In Algorithm 1, the function choose selects a neigh-
bor according to which to send the message, accord-
ing to the probabilities in P . Notice, that this function

Algorithm 1: Information Share(Sa)
(1) while true
(2) m← getMsg

(3) Sa ← δ(m,Sa)
(4) if m.count < MAX STEPS

(5) inc(m.count)
(6) next← choose(P [i, m])
(7) m.sender← next

(8) send(m)

can choose any neighbor, with likelihood proportional
to their probability of being the best to send to, rather
than always sending to the agent with the highest prob-
ability, which leads to some additional robustness when
inferences are wrong. δ is the function the agent uses
to update its state when it receives a message and is
defined below. As a piece of information gets propa-
gated around the associates network, the counter is in-
cremented. Once this counter reaches MAX STEPS

the information propagation is stopped. While this is
a simple stopping condition the agent does not have
enough information to do a more optimal calculation.

3.1. Building a Network Model

The more accurate the model of Pa, the more effi-
cient the information sharing, because the agent will
send information to agents that need it more often
and more quickly. Pa is inferred from incoming mes-
sages and thus the key to our algorithm is for the
agents to build the best possible model of Pa. Specif-
ically, when a message arrives, the agent state, Sa, is
updated by the transition function, δ, which has four
parts, δH , δK , δI

P and δE
P . First, the message is ap-

pended to the history, δH(m, Ha) = Ha ∪ m. Second,
the information contained in the message is added to
Ka, δH(m, Ka) = Ka ∪m.i. The details of how δI

P and
δE
P update Pa will be described below.

Intuitively, if agent a tells agent b about a fire at 50
Smith St, when agent b has information about the traf-
fic condition of Smith St, sending that information to
agent a is a reasonable thing to do, since a likely ei-
ther needs the information or knows who does. The ba-
sic idea is that received information can be interpreted
as evidence for which neighbor to send other informa-
tion to.

Underlying any algorithm that exploits the rela-
tionships between pieces of information must be a
model of those relationships. We write this function
as rel(i, j) → [0, 1], i, j ∈ I, where where rel(i, j) > 0.5
indicates that an agent interested in i will also be in-
terested in j, while rel(i, j) < 0.5 indicates that an
agent interested in i is unlikely to be interested in j. If
rel(i, j) = 0.5 then nothing can be inferred. Since rel

relates two pieces of domain level information, we as-

sume that it is given (or can be easily inferred from the
domain).

Applying the basic idea of Bayes’ Rules, we can de-
fine δI

P based on a message received from b in the fol-
lowing way:

∀i, j ∈ I, b ∈ N(a) δI
P (Pa[i, b], m =< c, j, ∅, k >)

=

Pa[i, b]× rel(i, j) × 2
|N | if i 6= j, b = c

Pa[i, b]× 1
|N | if i 6= j, b 6= c

ε if i = j, b = c

Then P must be normalized to ensure
∀i ∈ I,

∑

b∈N(a) P t
a[i, b] = 1. The first case in the

equation is the most important. It updates the proba-
bility that the agent that just sent some information is
the best to send other information to, based on the re-
lationships of other pieces of information to the one
just sent. The second case simply changes the prob-
ability of sending that information to agents other
then the sender in a way that ensures the normal-
ization works. The third case encodes the idea that
you would not want to send a piece of informa-
tion to an agent that sent it to you.

Consider the following example:
b c d e

P t
a =

i

j

k

0.6 0.1 0.2 0.1
0.4 0.2 0.3 0.1
0.4 0.4 0.1 0.1

The first row of the matrix shows that if a gets
information i it will likely send it to agent b, since
P [i, b] = 0.6. We assume that agents wanting infor-
mation i also probably want information j but those
wanting k definitely do not want j. That is,

rel(i, j) = 0.6 and rel(k, j) = 0.2
Then a message with information j arrives from

agent b, m =< b, j, ∅, 1 >. Applying δI
P to Pa we get

the following result:
b c d e

P t′

a =
i

j

k

0.643 0.089 0.179 0.089
ε 0.333 0.5 0.167

0.211 0.526 0.132 0.132

The effects on P are intuitive: (i) j will likely not
be sent back to b, i.e., Pa[i, b] = ε; (ii) the probability
of sending i to b is increased because agents wanting j

probably also want i; (iii) the probability of sending k

to b is decreased, since agents wanting j probably do
not want k.

3.2. Sharing Models to Improve Efficiency
By adding a small amount of information to each

message, i.e., e ∈ E in M =< sender, i, E, count >, the
agents can share their models and further improve per-
formance. Notice that there are many ways to achieve

this, here we present one technique that gives good re-
sults, with low computational overhead.

Intuitively, the idea is as follows. Whenever agent b

is sending a message to a it can also share part of its
model, so that future information can be more effec-
tively routed through the network. Specifically, if b de-
cides that it is well placed to route information i can
add additional information to a message to b, letting it
know to send i to it, if it ever receives it. Conversely, if
b knew it was not well placed to route i it could add in-
formation that told a not to send it i, if it received it.
The key to the efficiency of this technique is that b is
sending key parts of an accumulated model, hence with
many such messages the whole team can quickly get ac-
curate models of Pi and, thus, route information effec-
tively.

Specifically, we can determine what e an agent b

should send in a message to a in the following way.
First, we sum the evidence that the agent has re-
ceived from each of its neighbors about where to send
each piece of information. Specifically, we calculate
Qi

b =
∑

d∈N(b)

∏

j∈Kb from d 2×rel(i, j). The result can
be interpreted as the value of routing information i

through b. We choose to send the information that will
provide maximum value. Specifically we send model in-
formation such that:

argmax|∪i|≤m

∑

i∈Kb

(
∑

c∈(N(b)−a)

Qi
b)

When an agent receives extra model information in
the form of Q, it must update P accordingly. First we

define rel′(i, eb(i)) =
Qi

b

2× Qi
a

, as the local relationship

between i and eb(i). rel′(i, j) is the value of routing in-
formation i through b, from a’s perspective. We use
rel′(i, j) as a power factor to update Pa. The we can
write the update function the agent uses to update P

based on e as follows:

∀i, j ∈ I, b ∈ N(a) δI
P (Pa[i, b], m =< c, j, ec(i), l >)

=

{

Pa[i, b] + k × rel′(i, eb(i)) if b = c

Pa[i, b] if b 6= c

k is a weighting factor that captures how strongly
a lets P be influenced by the incoming information.
The best value to use for k must be determined em-
pirically. Then, as in the previous section, P must be
normalized.

To continue the example from above,
b c d e

P t
a =

i

j

k

0.643 0.089 0.179 0.089
ε 0.333 0.5 0.167

0.211 0.526 0.132 0.132

(a) (b)

Figure 3. Coordinating 200 agents in (a) disaster

response simulation (average on y-axis, fires, extin-

guished, conflicts and messages per agent on x-axis);

and (b) simulated UAVs in a battlespace (time on y-

axis, targets hit on x-axis).

when a message m =< b, j, { Qi
b = 5}, 1 >, and

Qi
a = 4, k = 0.1
then

b c d e

P t′

a =
i

j

k

0.683 0.079 0.158 0.079
ε 0.333 0.5 0.167

0.211 0.526 0.132 0.132

When a receives the extra information about i from
b, it increases the value of sending information i to
agent b, as shown in the first row of the array. As the
extra information has no relationship with j and k, the
second and third rows are not changed.

4. Experimental Results
In this section, we present empirical evidence of

the above approach with a combination of high and
low fidelity experiments. In Figures 3(a) and (b), we
show the results of an experiment using 200 Machinetta
proxies running the coordination algorithms described
in Section 2. These experiments represent high fidelity
tests of the coordination algorithms and illustrate the
overall effectiveness of the approach. In the first exper-
iment, the proxies control fire trucks responding to an
urban disaster. The trucks must travel around an en-
vironment, locate fires (which spread if they are not
extinguished) and extinguish them. The top level goal
of the team, G, was to put out all the fires. A sin-
gle plan requires that an individual fire be put out.
In this experiment, the plan had only one role which
was to put out the fire. We varied the sensing range
of the fire trucks (”‘Far”’ and ”‘Close”’) and mea-
sured some key parameters. The most critical thing
to note is that the approach was successful in coor-
dinating a very large team. The first column com-
pares the number of fires started. The ”‘Close”’ sens-
ing team required more searching to find fires, and as a
result, unsurprisingly, the fires spread more. However,
they were able extinguish them slightly faster than the

(a) (b)

Figure 4. (a) Small worlds network vs. Random net-

work (b) Distribution of number of steps required

”‘Far”’ sensing team, partly because the ”‘Far”’ sens-
ing team wasted resources in situations where there
were two plans for the same fire (see Column 3, ”‘Con-
flicts”’). Although these conflicts were resolved it took
an nontrivial amount of time and slightly lowered the
team’s ability to fight fires. Resolving conflicts also in-
creased the number of messages required (see Column
4), though most of the differences in the number of
messages can be attributed to more fire fighters sens-
ing fires and spreading that information. The experi-
ment showed that the overall number of messages re-
quired to effectively coordinate the team was extremely
low, partially due to the fact that no low level coordina-
tion between agents were required (since one fire truck
per plan). Figure 3(b) shows high level results from a
second domain using exactly the same proxy code. The
graph shows the rate at which 200 simulated UAVs, co-
ordinated with Machinetta proxies, searched a battle
space and destroyed targets. Taken together, the ex-
periments in the two domains show not only that our
approach effective at coordinating very large teams but
also suggests that it is reasonably general.

While experiments with large teams show the
feasability of the approach, it is extremely diffi-
cult to isolate specific factors affecting performance.
Hence, to better understand the key algorithms
we used Matlab to experiment with abstract prob-
lems. First, we tested our information sharing algo-
rithms on very large teams using different types of net-
work, a small worlds network and a network with
random links. We arranged 32000 agents into a net-
work and randomly picked one agent as the source
of a piece of information i and another as a sink
(i.e., for the sink agent U(i) is very large). The sink
agent sent out 30 messages with information re-
lated strongly related to i with MAX STEPS = 300.
Then the source agent sent out i and we measured
how long it takes to get to the sink agent. In the fig-
ure, MI indicates model inferring algorithm and
MS indicate the model sharing algorithm. The re-

4 8 12 16 20 24 28 32
100

200

300

400

500

600

700

Number of Messages

S
te

p
s

Figure 5. Association between number of relative

messages and delivery time

sult is shown in Figure 4(a). As anticipated, the two
algorithms together perform best and they perfor-
mance is best on a small worlds network. Using a sim-
ilar setup, we then measured the variation in the
length of time it takes to get a piece of information
to the sink. In Figure 4(b) we show a frequency dis-
tribution of the time taken for a network with 8000
agents and MAX STEP = 150. While a big percent-
age of messages arrive efficiently to the sink, a small
percentage get “lost” on the network, illustrating the
problem with a probabilistic approach. However, de-
spite some messages taking a long time to arrive, they
all eventually did and faster than if moved at ran-
dom.

Next we looked in detail at exactly how many mes-
sages must be propogated around the network to make
the routing efficient (Figure 5). Again using 8000 agents
we varied the number of messages the sink agent would
send before the source agent sent i onto the network.
Notice that only a few messages are required to dra-
matically affect the average message delivery time.

To understand the functionality of the associates
network, simulations were run to see the effect of hav-
ing associates on a dynamically changing subteam. We
wanted to demonstrate that if the subteams have com-
mon members (associates), then conflicts between sub-
teams can be detected more easily. Two subteams, each
composed of 1-20 members, were formed from a group
of 200. For each subteam size, members were chosen at
random and then checked against the other subteam
for any common team members. Figure 6a shows the
calculated percentage of team member overlap when
the subteam are initially formed during the simulation.
This graph matches closely with the calculated proba-

bility Pr(overlap) = 1 − (n−k)Cm

nCm
. Since subteams are

dynamic, in the case that both teams are mutually ex-
clusive, an team member was chosen at random to re-
place a current subteam member. Figure 6b shows the
average number of times that team members needed to
be replaced before a common team member was found.

5101520

0
10

20
30

0

0.2

0.4

0.6

0.8

1

Size of Subteam ASize of Subteam B

5
10

15
20

0

10

20

30

0

50

100

150

Size of Subteam ASize of Subteam B

(a) (b)

Figure 6. (a) The probability of having at least one

commonagents vs. subteamsize (b)Theaveragenum-

ber of times that agents need to be replaced in order

to have at least one common agents

5. Summary

In this paper, we have presented an approach to
building large teams that has allowed us to build teams
an order of magnitude bigger than previously pub-
lished. To achieve this fundamentally new ideas were
developed and new more scalable algorithms imple-
mented. Specifically, we presented an approach to or-
ganizing the team based on dynamically evolving sub-
teams. Potentially inefficient interactions between sub-
teams were detected by sharing information across a
network independant of any subteam relationships. We
leveraged the small worlds properties of these networks
to very efficiently share domain knowledge across the
team. While much work remains to be done to fully un-
derstand and be able to build large teams, this work
represents a significant step forward.

Acknowledgments

This research was supported by AFSORgrant F49620-01-

1-0542 and AFRL/MNK grant F08630-03-1-0005.

References

[1] M. H. Burstein and D. E. Diller. A framework
for dynamic information flow in mixed-initiative hu-
man/agent organizations. Applied Intelligence on

Agents and Process Management, 2004. Forthcoming.

[2] H.Chalupsky,Y.Gil,C.A.Knoblock,K.Lerman, J.Oh,
D. V. Pynadath, T. A. Russ, and M. Tambe. Electric
Elves: Agent technology for supporting human organi-
zations. AI Magazine, 23(2):11–24, 2002.

[3] B. Clement and E. Durfee. Scheduling high level tasks
among cooperative agents. InProc. of ICMAS’98, pages
96–103, 1998.

[4] E. Ephrati, M. Pollack, and S. Ur. Deriving multi-agent
communication through filtering strategies. In Proceed-

ings of IJCAI ’95, 1995.

[5] A. Farinelli, P. Scerri, and M. Tambe. Building large-
scale robot systems: Distributed role assignment in dy-

namic, uncertaindomains. InProc. ofWorkshop onRep-

resentations and Approaches for Time-Critical Decen-

tralized Resource, Role and Task Allocation, 2003.

[6] J. Giampapa and K. Sycara. Conversational case-based
planning for agent team coordination. In Proc. of the

Fourth Int. Conf. on Case-Based Reasoning, 2001.

[7] C. V. Goldman and S. Zilberstein. Optimizing informa-
tion exchange in cooperative multi-agent systems. In
Proc. of AAMAS’03, 2003.

[8] N. R. Jennings. Specification and implementation of a
belief-desire-joint-intention architecture for collabora-
tive problem solving. Intl. Journal of Intelligent and

Cooperative Information Systems, 2(3):289–318, 1993.

[9] N. Jennings. Controlling cooperative problem solving
in industrial multi-agent systems using joint intentions.
Artificial Intelligence, 75:195–240, 1995.

[10] K.JimandC.L.Giles. Howcommunication can improve
the performance of multi-agent systems. In Proceed-

ings of the fifth international conference on Autonomous

agents, 2001.

[11] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa,
, and H. Matsubara. RoboCup: A challenge problem for
AI. AI Magazine, 18(1):73–85, Spring 1997.

[12] R. Nair, T. Ito, M. Tambe, and S. Marsella. Task allo-
cation in robocup rescue simulation domain. In Proc. of

the International Symposium on RoboCup, 2002.

[13] M. Paolucci, O. Shehory, and K. Sycara. Interleaving
planning and execution in a multiagent team planning
environment. Journal of Electronic Transactions of Ar-

tificial Intelligence, May 2001.

[14] D.Pynadath andM. Tambe. Multiagent teamwork: An-
alyzing the optimality and complexity of key theories
and models. In Proc. of AAMAS’02, 2002.

[15] D. V. Pynadath and M. Tambe. An automated team-
work infrastructure for heterogeneous software agents
and humans. JAAMAS, Special Issue on Infrastructure

and Requirements for Building Research Grade Multi-

Agent Systems, 2002.

[16] P. Scerri, D. V. Pynadath, L. Johnson, P. Rosenbloom,
N. Schurr, M Si, and M. Tambe. A prototype infrastruc-
ture for distributed robot-agent-person teams. In Proc.

of AAMAS’03, 2003.

[17] K. Sycara and M. Lewis. Team Cognition, chapter Inte-
grating Agents into Human Teams. Erlbaum Publish-
ers, 2003.

[18] K. Sycara, A. Pannu, M. Williamson, and K. Decker.
Distributed intelligent agents. IEEE Expert: Intelligent

Systems and thier applications, 11(6):36–45, 1996.

[19] M. Tambe. Towards flexible teamwork. JAIR, 7:84-123,
1997.

[20] D. Watts and S. Strogatz. Collective dynamics of small
world networks. Nature, 393:440–442, 1998.

[21] P. Xuan, V. Lesser, and S. Zilberstein. Communication
decisions in multi-agent cooperation: Model and exper-
iments. In Proc. of Agents’01, 2001.

[22] J. Yen, J. Yin, T. R. Ioerger, M. S. Miller, D. Xu, and
R. A. Volz. Cast: Collaborative agents for simulating
teamwork. InProc. of IJCAI’01, pages 1135–1142, 2001.

