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This article describes how the modeling and simulation environment of the OneSAF Testbed Base-
line (OTB) v1.0 has been extended to enable the testing of heterogeneous algorithms that are being
designed for real-world C4ISR applications. This has been accomplished by building an architec-
ture that extends functional and logical components of the OTB system in the following ways: the
use of the OTB Compact Terrain Database for terrain analysis and preliminary threat assessment,
the addition of the RETSINA-OTB Bridge for the real-time query and control of OTB entities, and the
addition of new DIS-based sensor entities for interoperation with Command and Control algorithms,
to name a few. This article illustrates how to make a few small but general extensions to a modeling
and simulation system to create a larger testbed system with minimum impact on the native system
and with great potential for the range of applications that can exploit it.
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1. Introduction

To research and design the automation of real-world in-
telligence gathering, analysis, and fusion systems, it is
necessary to have a test system that models uncertainty of
information, behavior, and environment. For example, if
there are navigational errors of a sensor platform such as an
unmanned air vehicle (UAV), it will either be too far away
from its target site to adequately gather intelligence—or,
worse, it may report “intelligence” for the wrong loca-
tion. Such errors must be detected and mitigated by the
algorithms that are controlling the UAV and using its
data. It is very difficult and expensive, however, in terms
of time, cost, and labor, to acquire such uncertainty models,
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let alone to develop a model and simulation system for
them, and there is always the risk that the models that re-
searchers create are biased toward their own algorithms and
approaches. To address the need for such models, we have
adopted the use of the OneSAF Testbed Baseline (OTB)
v1.0 (http://www.onesaf.org) as a modeling and simulation
environment. It models common military vehicles, aircraft,
sensors, and munitions. OTB simulates (a) unpredictabil-
ities of action (e.g., tanks not following the exact path in
successive iterations of a simulation scenario and getting
stuck in difficult terrain on some iterations while making it
through in others), (b) conditions that serve as force multi-
pliers (e.g., improved hit and survivability rates if tanks fire
in an echelon form or from behind tree lines), and (c) in-
formation uncertainty from the sensors that it models (e.g.,
the inaccuracies of OTB entities in identifying objects that
are partially occluded by trees, smoke, or clutter). We focus
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on OTB v1.0 because it is accessible1 and because of our
extensive experience with ModSAF 5.0, the main simula-
tor on which it is based. Other military simulators exist,
such as the Objective OneSAF System (OOS) and other
SAFs with emphases on different force models and simu-
lation architectural constructs. Based on experiences from
integrating with a variety of legacy systems [1], we imag-
ine that many of the same extension techniques described
in this article can be applied to those systems as well.

OTB was written to be extensible in three ways: (1)
by compiling new entities, entity behaviors, and function-
alities into its code base of nearly one million lines of
C code and more than 500 software libraries [2], (2) by
adding other simulators that can communicate with it via
multicast-based distributed interactive simulation (DIS)
protocol data units (PDUs) [3], and (3) through interop-
erability with High-Level Architecture (HLA)–compliant
systems. This has some drawbacks, however, particularly
for the use of OTB as a testbed for new algorithms for com-
mand, control, communications, computers, intelligence,
surveillance, and reconnaissance (C4ISR) applications,
such as the automated performance of high-level infor-
mation fusion (described in section 2), the automated de-
velopment and analysis of courses of action (COAs), the
automation of the intelligence preparation of the battle-
field (IPB) [4] process, and the automated development of
the modified, combined obstacle overlay (MCOO) [5] arti-
fact. Namely, the integration of external software entities,
either directly or through HLA, requires that they be mod-
ified to be invoked through OTB’s data- and event-driven
software architecture, and many C4ISR algorithms do not
lend themselves easily to such conversions. Communica-
tion by DIS PDUs does not affect interoperability with such
algorithms either, since DIS PDUs are bit-encoded words
that represent a hierarchy of OTB system control, com-
munication, and entity state information. A command and
control (C2) algorithm for the automatic role assessment
and assignment of two autonomous entities [6], for exam-
ple, requires the exchange of messages following a differ-
ent protocol or knowledge representation scheme that can-
not map to PDUs. There are additional problems derived
from the fact that DIS packets are transmitted via multicast,
which is a stateless protocol that is prone to high rates of
packet loss and suppression by network routers. Not only
would distributed C4ISR algorithms need to be modified
to handle such transmission unreliability, but they would
also need to communicate significantly more state infor-
mation to be effective. Such requirements would actually
be counter to the proposed environments in which such
algorithms would be used.

The algorithms that we use for gathering, analyzing,
and fusing the information derived from OTB are written
and maintained in a non-OTB, native format. That is, the
designs of algorithms, data structures, and communication
protocols are made with consideration of the problems that

1. OTB v2.0 was released while this article was being written.
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Figure 1. The RETSINA command, control, communica-
tions, computers, intelligence, surveillance, and reconnais-
sance (C4ISR) architecture

they address, not the implementation of the specific testing
environment in which they are evaluated. This has been ac-
complished by building an architecture that extends func-
tional and logical components of the OTB system in six
ways.

Figure 1 illustrates our extensions to OTB, implemented
in RETSINA [1], which is briefly described in section 2.
The first extension (lower left corner) is the use of the OTB
compact terrain database (CTDB) for purposes other than
OTB’s internal modeling and simulation. Information flow,
indicated by the solid black line (“Logical Connection”) is
unidirectional, from the CTDB to the components that use
CTDB terrain data. The entities of Figure 1 that receive
CTDB data do not necessarily communicate directly with
each other. The module labeled Terrain Analysis identifies
recent work that is described in section 3. The module
labeled OtherTA Systems (OtherTerrainAnalysis Systems)
refers to other uses of CTDBs, such as for agent-based
route planning [7], or for its inclusion in a virtual reality
simulation system [8].

The second extension to OTB is indicated by the boxes
of Figure 1 that are labeled Line-Oriented OTB Command
Batch Interface and Line-Oriented Commands, respec-
tively. They are explained in section 4.

The third extension to OTB is the addition of the SAF
Broker and SAF Manager agents, which are described in
section 5. As can be seen from Figure 1, the SAF Broker
agents listen to DIS PDUs and then transmit them to a SAF
Manager agent, which collects and organizes the informa-
tion that they contain about any one entity for any other
agent or system that subscribes to its information updates.

The RETSINA-OTB Bridge, described in section 6, was
a significant fourth extension to the OTB simulation envi-
ronment. It enables the direct creation, addressability, and
tasking of any SAF entity. It also allows for the custom
specification of OTB tasks and for entities’ partially exe-
cuted tasks to be interrupted or modified.

2 SIMULATION Volume 80, Number 11
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The fifth component of the RETSINA C4ISR testbed
is the addition of a TCP-based Batch Control Agent that
can configure and execute experiments in OTB that are
expressed in a High-Level Behavior Specification. Thus,
it is possible to specify the creation of SAF entities, their
being ordered to execute a certain task, and to specify the
termination conditions of their task (e.g., “fight for X min-
utes” or “fight until either side sustains more than 80%
losses,” etc.). We have used the Batch Control Agent to
run hundreds of unsupervised batch experiment iterations
in which random tank configurations (e.g., vee, echelon
right, wedge, etc.) were evaluated to determine their ef-
fects as force multipliers.

The sixth and final component shown in Figure 1, the
X-Sim Manager Agents and the X-Sim Agents, illustrates
how completely novel sensor types can be added to OTB,
mounted on SAF entities, and integrated in a C2 applica-
tion. The sensors are described in section 7.

A recurring motif of this article is that many of the inte-
grations and extensions to OTB are with agent-based sys-
tems. The reasons for this are discussed in section 2 along
with some of the background of this work. We conclude in
section 8.

2. Motivations and Background

Our particular motivation for having a C4ISR testbed is to
have an environment in which algorithms for higher levels
of information fusion can be developed and tested. Infor-
mation fusion is described in terms of levels by some U.S.
Department of Defense (DoD) organizations. The lowest
levels, 0 and 1, are concerned with the identification of in-
dividual entities (e.g., U.S. M1A1 tank, Krasnovian T80
tank, etc.) from the fusion of often low-confidence data
from multiple types of sensors. Level 2 fusion attempts to
associate the individual entities into larger organizational
structures such as force echelons to perform reasoning at
the third level of information fusion, on the expected be-
havior, intent, or threat that those organizational structures
may pose. Level 4 fusion is concerned with the informa-
tion acquisition process that was used throughout the lower
levels and on performing meta-level reasoning about how
that process may be adjusted to be more accurate or use
resources more efficiently in the gathering of that intel-
ligence. For example, if the surveillance and reconnais-
sance of an area yields high-confidence information that
suggests that the intelligence-gathering activities should
be redirected to another area, the algorithms that made
that assessment would be classified as level 4 information
fusion algorithms.

Information fusion occurs at a variety of levels and in a
variety of circumstances. An example of a military process
that exercises all four levels of information fusion is the
IPB [4], an intelligence-gathering process that begins with
terrain analysis as its foundation. One of the procedures for
performing terrain analysis is a create-and-revise process
known as MCOO [5], which produces annotations of ter-

rain, known obstacle and force deployments, and the identi-
fication of likely avenues of approach, engagement areas,
and named areas of interest. Avenues of approach (AA)
are paths of relative least resistance that a military force
can take to reach an objective. Military planners will usu-
ally identify a primary AA and alternative, secondary AAs
when planning their missions. Engagement areas (EAs)
are usually open areas of terrain where two opposing mil-
itary forces are likely to meet and fight. Named areas of
interest (NAIs) are tactically significant entities such as key
terrain, bridges, or buildings, the control of which would
offer superior or decisive advantage in a battle. Generat-
ing the MCOO is often a level 3 fusion process, as it is
based on general knowledge of opposing force (OPFOR)
capabilities and tactics and on specific—though typically
incomplete—knowledge of OPFOR forces in a comman-
der’s sector. Once the MCOO artifacts have been gener-
ated, military staff officers then generate worst-case, most-
probable, and, rarely, best-case scenarios, as time permits,
called COAs, which they then war game, or simulate, to
imagine how the COAs might evolve. Through this human,
mental simulation exercise, military staff can determine the
consistency of the information that they gather. If informa-
tion that can be critical to a scenario is missing, the staff
may request that a commander task assets to attempt to
acquire the missing information—a level 4 process.

The modeling and automation of these types of
information-fusion processes, particularly those of a goal-
directed and dynamic nature, lend themselves to solutions
based on a multiagent system (MAS) such as RETSINA2

[1]. In our vision and implementations of RETSINA agent-
based systems, agents demonstrate autonomy at three lev-
els. An agent is autonomous toward the human user if it
is capable of understanding the human user’s intentions,
goals, and the context in which the user acts on his or
her intentions or attempts to achieve his or her goals. An
agent can exhibit decision autonomy if it demonstrates
goal-directed behavior and that it is capable of achieving
that goal via diverse techniques that are chosen based on the
agent’s sensitivity to its operating environment and knowl-
edge of past performance. And an agent is autonomous to-
ward other agents (we also call this system-level autonomy)
when it demonstrates behaviors of seeking and attempting
to semantically interoperate with other autonomous agents.
By semantic interoperation, we refer to the ability of agents
to collaboratively perform a task (e.g., solve a problem or
produce a service) based on the exchange of meaningful
information and not based on the choreographed timing of
their collective program executions.

Another reason for using MAS technology for the re-
search, development, and testing of information fusion al-
gorithms is that multiagent systems presume a common
abstract architecture of functional services that can be
implemented in heterogeneous ways. This facilitates the

2. RETSINA is an acronym for REusable Task Structured Intelligent
Network Agents.
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integration of a myriad of disparate software systems and
components. These abstract architectures also guide deci-
sions about how components within the architecture will
interface with each other. The reader is referred to Sycara
et al. [1] for a complete explanation of these architectures
(and other features) and justifications for developing ap-
plications as multiagent systems.

3. Compact Terrain Database Component

CTDB terrain data represent elevation, slopes, vegeta-
tion, soil type, surface drainage, soil characteristics due
to weather conditions, bodies of water, minefields, and
trenches. Although the CTDB component is not used as
a dynamic interface to our extensions of OTB, the ability
to automatically read and process CTDB data is essential
to providing context for information fusion level 3 threat
inferencing and for determining where to task assets to
look for OPFOR forces (level 4). Much work has been
put into terrain analysis, particularly for the impact that
terrain features have on computer-generated force (CGF)
behaviors [9, 10], for maximizing visibility of a terrain via
line-of-sight calculations, for route planning [11], and for
determining artillery fans. However, in our literature search
and informal interviews with military personnel, we were
unable to find descriptions of implemented systems that
perform the type of reasoning that is normally performed
in the generation of an MCOO. Inspired by some work in
robotic path planning [12] and our own intuitions, we de-
veloped analysis modules that can use CTDB information
to evaluate terrain in terms of the types of echelons that
can use or traverse it (trafficability and configuration space
analysis) and for the identification of avenues of approach,
engagement areas, and areas of interest [13]. Future plans
include the use of automatic terrain analysis to automati-
cally generate courses of action.

Figure 2 shows the results a subject matter expert per-
forming the MCOO process on terrain from the OTB
CTDB. Figure 3 shows the results produced by our algo-
rithms, which automate the MCOO process. In both maps
(16 × 10 km), the analysis is for an attacking force try-
ing to reach an objective in the bottom-right corner of the
map. Both attacking and defending forces are battalion
sized. The algorithms worked directly with data from the
CTDB, creating this overlay in approximately 1 minute
on a 2.4-GHz Intel P4 processor, with 2.0 GB RAM. The
particular overlay shown in Figure 2 was produced in a
little more than 30 minutes. Other subject matter experts,
who produced results closer to those represented in Fig-
ure 3, needed closer to 60 minutes to produce their over-
lays. More details of the algorithms and experiments are
provided in Glinton et al. [5].

4. Line-Oriented OTB Command Batch Interface

The “unextended” version of OneSAF has two interfaces
that can be used to place, query, and control entities. One

Figure 2. An expert’s modified, combined obstacle overlay
(MCOO). Key: double-headed arrow—primary avenue of
approach (AA), single-headed arrows—secondary AAs, large
boxes—engagement areas (EAs), small boxes—named areas
of interest (NAIs).

Figure 3. Auto-generated modified, combined obstacle
overlay (MCOO). Key: solid arrow—primary AA, dashed
arrow—secondary Avenues of approach (AA), dark circles—
engagement areas (EAs), small dots along arrows—
observation posts.

interface is the Command Editor, a graphic user interface
(GUI) that allows a user to place SAF entities on its ren-
dering of a CTDB map. The other interface is a text-based
command-line parser. This interface allows a user to create,
place, and query entities in OTB through a command-line
parser. This latter interface, also referred to as the OTB de-
bug interface, is highly interactive, processing one human-
entered command line at a time. While faster than navigat-
ing the GUI (for an expert user), it quickly becomes evident
how tedious this interface is for effecting any complex and
nontrivial operations in OTB.

4 SIMULATION Volume 80, Number 11
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We modified the library that manages the processing
of commands through this interface to also read and write
files that contain such commands. Such files are logically
indicated in the box labeled Line-Oriented Commands in
Figure 1. The extension is designed to poll a directory for
the existence of a file containing line-oriented commands.
If the process detects such a file, it renames the file so that it
will not be detected again, opens it for reading, and begins
to execute the commands that it contains, one line at a time.
The executions are blocking, meaning that no command
line or batch file will execute before its predecessor has
completed. If one of the commands is to query the status
of an entity, then the line-oriented OTB command batch
interface (LOOCBI) will write the status information to a
file.

Since files can be created, renamed, or accessed by hu-
mans, agents, or Web services, this interface can be used to
perform rudimentary batch mode experiments. While this
type of extension is fairly quick to implement and easy to
learn to use, the drawbacks of this method are that it (1)
requires meticulous manual preparation and editing of the
command files, (2) requires the meticulous tracking of SAF
entity addition/deletion requests for a person or program
to know the OTB identification number of an entity, and
(3) only offers coarse-grain query and control capabilities.
That is, a command file must first finish executing before
OTB will execute another command file.

Despite its limitations, this extension has been success-
fully used to test the coordination of three M1 tank platoons
by autonomous agents in a dynamic environment [6]. In
more recent experiments, this interface proved useful in
the rapid development and testing of algorithms for level
2 fusion, as illustrated by Figure 4, such as the recogni-
tion of tank platoons, companies, and their behaviors (e.g.,
bounding overwatch movement).

5. SAF Broker and SAF Manager Agents

SAF Broker agents listen to DIS PDUs that are in the same
multicast group as the OTB that transmits them. A SAF
Broker can listen to as many multiple OTB simulations
as are on a multicast channel but cannot listen to multiple
multicast channels. Other agents, such as a SAF Manager
agent, can subscribe to SAF Broker services and request
that the brokers filter only PDUs that originate from a cer-
tain OTB simulation image or that pertain to a specific en-
tity. If multiple simulators produce PDUs about the same
SAF entity, a SAF Manager agent will accumulate such up-
dates, add them to its internal database, and forward only
those updates that have been requested by a subscribing
program or agent.

Applications that use this agent system [8] should fol-
low OTB expectations of performing their own dead reck-
oning, which is an extrapolated estimation of an entity’s
state until the next PDU to update its state is received. As
unsequenced, stateless UDP packets that are sent to ether-
net addresses within the same multicast group, DIS PDUs

Figure 4. Level 2 information fusion: Recognizing echelon
types and behaviors

may be lost or dropped without consequence. At the typi-
cal rate of 30 DIS PDUs per second, even if tens of PDU
packets never reach their destination, the next packet that
does will contain all of the current state information of the
simulation environment. In a network with a high loss rate
due to high volumes of message traffic and congestion,
it is expected that the entity reading the DIS packets will
perform its own dead reckoning.

Although it was recognized that converting DIS PDU
messages into TCP messages could dramatically increase
network traffic, our use of this system did not cause any
perceptible degradation of the quality of the OTB updates.
We believe that this has been because (1) clients to the
SAF Broker typically only need to read state information
for visualization effects, and the overhead of parsing TCP
messages for such state information is enough to handle
multiple messages per millisecond; (2) since the TCP mes-
sages are generated from transport-unreliable UDP pack-
ets, if the client needs to have high-fidelity knowledge of
entity state, it must implement dead reckoning anyway;
and (3) because of this, the use of dead reckoning obviates
the need to improve the data communications model of the
SAF Brokers and SAF Manager.

6. The RETSINA-OTB Bridge

The purpose of the RETSINA-OTB Bridge is to allow for
the finer-grained access and control of OTB entities and the
simulation system itself. It was implemented by adding a
reduced (optimized for speed) C version of the RETSINA
Communicator [14] program library to OTB and build-
ing lightweight message-processing routines to translate
Communicator messages to and from OTB events and call-
back registrations. This internal library is called libretsina.
The libretsina module receives specially formatted TCP
messages and, depending on the content, dispatches the
content to the appropriate OTB event-handling routine. If
the message contains a query, then a RETSINA callback

Volume 80, Number 11 SIMULATION 5
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Table 1. Impact of the RETSINA libraries on OneSAF Testbed Baseline (OTB)

RETSINA
Number of Number of OTB Updates per
Platoons Entities Threading Optimized Second

69 276 Single Optimized 0
68 272 Single Optimized 1
66 264 Single Optimized 5
65 260 Single No 0
65 260 Single No 1
64 256 Multi No 0
63 252 Multi No 5
61 244 Single No 5
60 240 Multi No 5

is registered with the OTB event processor. If the message
contains a command or a task, then the corresponding OTB
function is registered for execution.

The RETSINA-OTB Bridge, proper, resides outside of
OTB so that it can optimize the streaming of messages
to and from libretsina in OTB. Since OTB executes as
a single-threaded process, any backups due to incoming
message queue overflows will cause a degradation of sys-
tem performance. As an external process, the Bridge can
manage the message pacing into OTB without adversely
affecting its performance. Messages leaving OTB have less
of an impact on the system but can still reduce the accuracy
of simulation of OTB if queried too frequently.

Table 1 illustrates the impact of polling once and five
times per second on OTB. Zero RETSINA updates per sec-
ond (cf. Table 1) indicates that libretsina has not been reg-
istered with the OTB event processor. These results were
produced by using the native OTB benchmark program
to determine how many entities OTB can simulate in par-
allel at real-time speed without OTB reporting that it is
not able to “keep up” with internal entity state updates.
On a 2.4-GHz dual-processor Intel XEON computer with
2.0 GB of RAM, running a multithreaded RedHat Linux
7.1, kernel 2.4.20, connected to the 100-mbs campus ether-
net network, that limit has been around 272 M1A1 tanks,
with the variations due roughly to the complexity of the
terrain and the degree of interaction among the simulated
entities. The reader should note that OTB was designed as
a single-threaded architecture, hence its abysmal perfor-
mance when multithreading was enabled. Many parame-
ters can be tweaked in an attempt to tune the performance
of an OTB system, and many of these parameters depend
on the nature of the operating environment and what is be-
ing simulated. Since most of our simulation exercises have
been at the platoon and company levels, we have typically
run the simulator with 50 to 75 internal SAF-native enti-
ties plus another 30 to 50 external SAF entities, such as the
SARSim, EOSim, GMTISim, and so on, associated with
some of the SAF-native entities, all in the same image.

Communications based on the RETSINA-OTB Bridge
need more careful considerations of the implications of

transport reliability since both the Bridge and the TCP
communication end-point are considered to be trans-
port reliable. While we have been able to achieve a
message-signaling throughput3 of multiple messages per
millisecond via the RETSINA-OTB Bridge, the effective
throughput4 depends greatly on the type of message pro-
cessing that must be performed by the Bridge client appli-
cation. Some applications, such as one that visualizes and
animates point-to-point communications between SAF en-
tities, are not able to keep pace with the RETSINA-OTB
Bridge updates and so would block the reception of further
Bridge updates until it could empty its network of incoming
message queues. This blocking of the transmissions would
cause the Bridge, in turn, to block the iteration of SAF
simulation cycles, and thus OTB would appear to freeze at
times. This problem was resolved by enabling a RETSINA
Communicator option, whereby input messages can be dis-
carded if the client application could afford to drop mes-
sages and its input message queues were full. Other areas
where performance tuning can be effected are in adjusting
the size of the message queues and adjusting the size of the
messages. We noticed increases in performance as smaller
messages were joined into larger messages, their content
was streamlined into a flat structure for rapid extraction,
and dead reckoning was employed by client applications,
if appropriate.

7. Simulated Mounted Sensor

One of our significant contributions to OTB is to add three
simulated mounted sensors—SARSim (synthetic aperture
radar simulator), EOSim (electro-optical simulator), and
GMTISim (ground moving target indicator simulator)—to
the simulation environment, thereby increasing the types of
surveillance and reconnaissance that can be performed and
augmenting the type of level 1 fusion data that can be used
for the development of our fusion algorithms. The simple

3. The signaling rate indicates how fast we can generate and transmit
TCP [IN?] a message.

4. The effective throughput is how many messages the client program
can effectively process.
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models were generously provided by Northrop-Grumman,
and we assisted with their integration into the RETSINA
multiagent system and OTB. High-fidelity versions of such
systems exist, but they are either classified or prohibitively
expensive and, ultimately, inaccessible to a research group
that is interested in developing and testing command and
control algorithms that manage the scheduling and task-
ing of such simulated platforms as a C-130, F-16, UAV, or
WASM (wide-area search munition), on which the sensors
can be mounted. Considering that multiple sensors may be
mounted on the same platform or that some platforms may
double as a munition as well as a sensor, the command
and control of such platforms with such wide-ranging and
diverse capabilities is a nontrivial task, and using OTB for
the simulation of their real-world dynamics and behaviors
would allow us to begin to investigate such problems. The
three sensor models were integrated with OTB as exter-
nal modules—rather than compiled directly into OTB—
for better modularity, expediency, and convenience. With
a code base of nearly one million lines of code and more
than 500 software libraries [2] in which entity behavior is
determined by inherited behaviors from multiple classes, it
was easier, quicker, safer, and just as effective and scalable
to integrate these sensors as external entities instead of as
internal, compiled entities.

The SARSim simulates an automatic target recognition
(ATR) system that receives its input from a synthetic aper-
ture radar (SAR) that operates in spotlight mode. In spot-
light mode, an SAR scans an area of terrain, and the ATR
will attempt to recognize any stationary object that is either
completely or partially within the bounds of that scanned
area. Just like for a real SAR/ATR system, the output from
the SARSim is a list of all friendly and threat candidate tar-
get types (e.g., U.S. M1, Krasnovian T80, Krasnovian 2S6,
U.S. M977, etc.), with confidence levels indicated as per-
centages for every potential target type that the SAR/ATR
system can recognize. While a real SAR/ATR system will
report confidence levels for around three dozen entities, the
SARSim will report confidence levels for a dozen entities
and clutter. Just as for a real SAR/ATR system, it may re-
port entities where they do not exist in the simulation (e.g.,
“false positives”) and fail to recognize entities that, in fact,
are present (e.g., “false negatives”) [15].

The GMTISim simulates a ground moving target indica-
tor (GMTI) radar, which focuses a radar beam on one spot,
and if it detects a moving target there with its ATR system,
a motion tracker mechanism follows the movement of the
target. While very similar in output and behavior to the
SARSim, it is complementary because it only recognizes
entities that are moving, while the SARSim only recog-
nizes entities that are stationary. The EOSim simulates an
electro-optical sensor that detects targets at distances and
in conditions in which they would be detectable in the ul-
traviolet, visible, and infrared light spectra.

Other features that the above three sensors have in com-
mon with real sensor systems are that multiple simula-
tors may be used in the same exercise and on the same

platform5, the simulated sensors must be within sensor
range to observe an area, they must be aimed with a cer-
tain angle at the target area, and, in the case of SARSim
and GMTISim, the simulated sensor must be moving at
a certain speed to be able to scan an area. These sensing
constraints impose flight path constraints on the OTB as-
sets on which the simulators are mounted, which can leave
some of the assets vulnerable to anti-aircraft missiles, thus
injecting elements of risk, vulnerability, and uncertainty
(of retaining or losing the asset) into the scenarios that
our C4ISR algorithms are being designed to address. The
only critical functional divergence between the above three
simulators and the real systems that they model is that the
simulators do not yet model occlusion effects caused by
terrain and vegetation, such as mountains or tree canopies.
This shortcoming is partially obviated by the low accuracy
of the recognition, which is described in section 7.1.

7.1 Sensor Characteristics and Algorithms

The three sensor simulators have many characteristics in
common, so we will first describe the SARSim so as to es-
tablish an understanding of their characteristics. Real SAR
sensors have the capability of maintaining the same spatial
resolution (i.e., feet, meters, etc.) independent of range, al-
though the farther a sensor is from a target in some modes of
operation, the more prone it is to error due to atmospheric
conditions. Standoff ranges for publicly documented SAR
sensors range from 10 to 100 km and have resolutions rang-
ing from 1 meter to less than 1 foot. For example, the SAR
mounted on a GlobalHawk UAV flying at 650 km/h at an
altitude of 65,000 feet is capable of imaging an area in spot-
light mode that is 100 km away at a resolution of 1 foot.
Integration time, or the time that it takes the SAR to acquire
an image, is roughly a function of parameters such as arc
length, velocity, subtended angle, angle from broadside,
radar wavelength, and desired resolution. For a platform
flying at 560 km/h, looking straight on at its target, imag-
ing in a 1-foot resolution spotlight mode with a 3-cm (10
GHz) radar wavelength, the time to acquire an image is
roughly 7.7 seconds. The SARSim model that Northrop-
Grumman developed allows for the setting of all of these
parameters. For the purposes of our simulations, and given
that our terrain maps are typically around 75 × 75 km, we
have configured the SARSim to sense at a range of 25 km,
mounted on an F-16D, flying at around 600 km/h. Com-
bined with a negligible time for ATR processing, the total
integration time for scanning an area is usually completed
in 10 seconds or less. The GMTISim has roughly the same
configurable parameters as the SARSim, so for the pur-
poses of our simulations, we also mount the GMTISim on
an F-16D, flying at around 600 km/h and activating at a
standoff range of 25 km to the target. The standoff range

5. We currently only allow one sensor type per asset, so it is possible
to have GMTISim, SARSim, and EOSim on the same F-16 but not to
have the same F-16 mount two SARSims, for example.
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for EO sensors is much shorter, so we configure our EOSim
to sense at 15 km from the target.

The three simulators interoperate with OTB by receiv-
ing ground truth data about the OTB entities and “confus-
ing” them according to a sensor-specific confusion matrix
model. The sensors begin by subscribing to entity updates
that arrive via DIS packets and maintain an internal table
of all such entities and their ground truth status. When the
sensor is tasked to scan an area, and the sensor is within
sensor range, it reads the entity ID, as well as its orientation
on the ground relative to the sensor, and then produces a list
of possible target identities with associated levels of confi-
dence according its confusion matrix model. The confusion
matrix does not model the real fidelity of the sensor, as that
is classified, but it does provide a series of low-confidence
estimates in which the highest confidence identification is
not necessarily the correct classification. Thus, it is possi-
ble for a simulated sensor to confuse an M1 tank with a T-80
tank. So as to produce false positives and false negatives,
the sensors have random functions that either generate en-
tities where they do not exist or that suppress the reporting
of entities where they do exist.

7.2 OTB, X-Sim, and RETSINA Integration

X-Sim is the abstraction used to describe the architecture
that is common to the SARSim, EOSim, and GMTISim
simulators. The following enumerated sequence describes
the activity represented in Figure 5.

An entity is created within OTB and has an identifica-
tion number assigned to it by OTB. In this example, that
number is “1034.” (1) As soon as an entity is created in
OTB, entity state PDUs are multicast via DIS packets to
all programs that are part of the same multicast group and
exercise identifier as the OTB simulation. The X-Sim cre-
ates an entry in its “World State” table for every entity that
is created in OTB. (2) Entity state information is transmit-
ted to the RETSINA-OTB Bridge via RETSINA messages,
which are based on the TCP protocol. (3) The RETSINA-
OTB Bridge transmits all entity state information messages
to whichever agents are subscribed to receive its update no-
tifications. In Figure 5, this is the X-Sim Manager. (4) A
System Control Agent contacts the X-Sim Manager and
issues the command to associate an X-Sim instance (e.g.,
“X-Sim-1”) with a particular OTB entity (e.g., “1034”). (5)
The X-Sim Manager spawns a new thread, which creates a
new RETSINA Communicator [14] proxy with the identity
of the newly requested X-Sim instance (e.g., “X-Sim-1”).
The X-Sim Manager will route all communications for the
X-Sim entity to that proxy. (6) The X-Sim-1 proxy sends
an “install” command that notifies the X-Sim module that
there should be a new instance of a simulation model, that
it should be associated with a specific OTB entity (e.g.,
“1034”), and that it will base its behavior on the simu-
lated behavior of that specific asset (e.g., entity “1034”).
(7) Should the “install” command be received before the X-
Sim has received the DIS packet announcing the existence

Simulated World

Entity Id:  1034

Baseline (OTB)
OneSAF Testbed

1
14

RETSINA−OTB
Bridge

Controller
Agent

X−Sim−1

System
Control
Agent

World State

X−Sim Id:  1
Entity Id:  1034

X−Sim

Cueing
Agent

Information
Fuser Agent

DIS

2 13

12
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4

X−Sim Manager

8 9
5 16

10

10

15

Figure 5. An application of the RETSINA-OTB Bridge and
X-Sim modules. The activity sequence is described in sec-
tion 7.2.

of the entity, the X-Sim will reply to the X-Sim-1 proxy
that the entity was not found. The X-Sim-1 proxy will con-
tinue to resend its “install” request after a small delay until
the X-Sim acknowledges the entity or until the “install”
command is canceled. (8) A cueing agent sends a message
request to the X-Sim Manager to scan an area. Requests
are queued in the order that they are received and assigned
to the proxy of the first available OTB asset (e.g., proxy
“X-Sim-1” for entity “1034”) without consideration of that
asset’s proximity to the target area. Requests to cancel a
scan may be sent to the X-Sim Manager. (9) At any time,
a service-requesting agent such as the Information Fuser
Agent, Belief Display Agent, or an interface agent that dis-
plays the X-Sim data can submit a monitor query request to
receive any and all notifications from the X-Sim Manager.
Those notifications will be generated by the X-Sim sen-
sor instances that the X-Sim Manager controls. (10) The
assigned X-Sim proxy (e.g., “X-Sim-1”) generates a new
OTB destination and path plan for its asset to travel. This
“order” is submitted to a controller agent, which manages
the scheduling of multiple requests from other agents in
the simulation system. (11) In parallel with the asset order,
the assigned X-Sim proxy “orders” the simulation model
instance to survey the area when the asset on which it is
mounted is within the sensor’s range. (12) The controller
agent sends the next scheduled task for the asset to the
RETSINA-OTB Bridge. (13) The RETSINA-OTB Bridge
checks the received task for syntactic and semantic cor-
rectness and, if valid, forwards the request to OTB. The
RETSINA library within OTB interprets and applies the
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Figure 6. The command and control (C2) of simulated sen-
sors and sensor platforms in OTB. The activity sequence is
described in section 7.3.

task to the entity (e.g., “1034”). (14) When an entity state
PDU indicates that the asset on which the sensor is mounted
is within range of the area to scan, the sensor simulator, “X-
Sim,” “turns on” its simulation instance (e.g., “X-Sim Id:
1”) for the duration required by that modeled sensor to per-
form its task. (15) Once the sensor simulator has completed
its imaging, it sends the results back to its X-Sim Manager
proxy. If the asset on which the sensor was mounted moved
out of range before the sensor finished the task, the sensor
returns partial results, if that is what it would do in reality;
otherwise, no results are returned. If the asset on which
the sensor is mounted is destroyed, then the X-Sim Man-
ager will delete its proxy and notify the X-Sim to delete
the simulator instance that was mounted on that asset. The
task that was assigned to the asset and sensor is also lost
and will need to be rescheduled. (16) The X-Sim Manager
proxy sends any and all results from the simulator to all
agents that are subscribed to its notification service.

7.3 C2 of Agent Sensors on OTB Platforms

This section describes a scenario that illustrates how the
RETSINA-OTB Bridge provides support for the real-time
interoperable tasking and execution of agents, sensors, and
simulated vehicles in OTB. The scenario presumes that
other intelligence, surveillance, and reconnaissance (ISR)
events have already taken place. Such events may have
been the human or automated analysis of terrain and the
creation of an MCOO, similar to what is described in sec-
tion 3 and in Figures 2 and 3, or that long-range sensors,
such as a 100-km SAR, have already scanned the terrain
to provide a first-pass detection of units that might be sit-
uated at significant areas of interest.6 This scenario also
used a SIGINT7 Sensor Agent, which models a sensor that

6. We use the term areas of interest to indicate areas on the map that
our algorithms must further analyze and to distinguish the term from the
typical military term, named area of interest (NAI).

7. SIGINT is the acronym for SIGnals INTelligence.

can detect enemy signals from radio and radar emissions
to determine where the enemy might be located.

Part of the initialization of the scenario requires the
System Control Agent to install instances of the X-Sim
sensors on particular OTB entities, as described in step 4
of Figure 5. At this point, the sequence of steps that fol-
low makes reference to Figure 6. (1) The cueing agent is
triggered, and it announces areas of interest to the X-Sim
(e.g., SARSim, EOSim, GMTISim) Managers for them
to scan. (2) As described in steps 9 to 15 of Figure 5,
the OTB entities on which the X-Sims are mounted are
tasked by their respective managers to fly certain routes
to begin sensing the areas of interest. (3) As the X-Sims
sense entities in OTB, each updates their respective infor-
mation displays and sends their low-confidence data to the
Information Fuser Agent. (4) The Information Fuser Agent
maintains all intelligence reports that it receives from the
various sensor and simulated opticalVSpotter (discussed at
the end of this section) sources but currently only displays
one report with the highest confidence rating for any given
entity. The Information FuserAgent also displays the name
of the originator of the report. If a human is interested in
reviewing all of the reports for an entity, he or she may do
so via the interface. (5) When an area of interest has been
sufficiently scanned to indicate a concentration of entities
that requires a closer inspection, the human commander,
via the System Control Agent, may order a UAV to fly in
for a closer look. (6) If a UAV is tasked, the Information
Fuser Agent will subscribe to and receive the UAV’s vi-
sual VSpotter reports. Such reports are considered to have
a much higher confidence rating than the other sensor re-
ports. (7) When enough high-confidence reports of enemy
units have been accumulated for an area of interest, the
commander may then decide to attack them. If the com-
mander does, he or she will order the attack based on the
fused data from the Information Fuser Agent.

To begin planning the attack, (8) theTarget MatrixAgent
will receive the list of entities from the Information Fuser
Agent. The Target Matrix Agent will convert the entities
into a prioritized list of targets. For example, if an entity is
a Scud missile, it will have a much higher target priority
than, say, a T-72 tank. The Target Matrix Agent is designed
to be modified to associate the names of weapons that can
be used effectively against that target. (9) The ATMatrix-
Prep Agent will receive target data from the Target Matrix
Agent and asset data from the Flight Matrix Agent that in-
dicate which planes are in the sky and what is their current
location. It will format both types of information into a
form that is suitable for the Scheduler Agent.

(10) There are a few types of scheduling agents repre-
sented by the box labeled Scheduler: the main Scheduler
Task Agent (STA), an Optimized Scheduling Agent (OSA)
that implements algorithms described in Karaesmen et
al. [16] via a components off-the-shelf (COTS) schedul-
ing system (http://www.ilog.com/products/cplex), and a
Naive Scheduler Agent. The STA first checks if the OSA is
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available. If the OSA is available, then other agents are in-
voked to prepare the input data for them before they are in-
voked. If the OSA is unavailable, then the Naive Scheduler
Agent is tasked to schedule the air strike. The Scheduler
sends a completed schedule to the Controller Agent. The
schedule consists of a prioritized list of targets for each
asset to attack.

(11) The Controller Agent then tasks the OTB assets
according to the schedule it receives, one target at a time,
through the RETSINA-OTB Bridge. If, while the Con-
troller Agent is executing a schedule with OTB assets,
a time-critical target (TCT) is identified by the Informa-
tion Fuser Agent, the scheduler will send a new schedule
with the TCT in the position of the highest priority. The
Controller Agent will then discard its current schedule and
substitute it with the new schedule. The schedules that the
ControllerAgent will receive will always contain all known
targets that have not been killed, with the highest prior-
ity targets in the first positions of the schedules. (12) The
RETSINA-OTB Bridge checks the received task for syn-
tactic and semantic correctness and, if valid, forwards the
request to OTB. It also receives entity status updates from
OTB and routes those messages to the requesting agents.
(13) The Controller Agent subscribes to the Information
Fuser Agent to receive battle damage assessment (BDA)
reports for the entities being targeted. As targets are killed,
the Controller Agent removes those targets from the target
lists for the OTB assets and reassigns the asset tasked with
killing that target to the next live target in the asset’s sched-
ule. (14) Both the Flight Matrix Agent and the Controller
Agent receive health assessments from the RETSINA-OTB
Bridge for the assets that they are managing. If a plane is
shot down, the Controller Agent will cease issuing task or-
ders for that plane. All targets that were assigned to the
plane will remain untargeted until a new schedule is is-
sued or unless they are opportunistically targeted by other
assets that are in the vicinity. (15) Since our C2 loop is
designed for rudimentary human-in-the-loop control, the
whole process can be repeated only if the human comman-
der reissues an order to attack the remaining targets that
were identified by the Information Fuser Agent.

The RETSINA-OTB Bridge reports observational data
from the perspective of OTB entities by exposing three
OTB-internal data structures: theVSpotter,VTargetAssess,
and VKillAssess lists. If any OTB entity can visually sense
the presence of another entity, such as a pilot or gunner
would see its target, detection events are triggered that
register that entity in the VSpotter list. Since there may
be terrain, smoke, dust, darkness, or atmospheric condi-
tions that affect the visual sighting of one OTB entity by
another, the data that are represented in the VSpotter list
do not represent ground truth but a perceived reality. VKil-
lAssess simulates the reliability with which battle damage
assessment would be affected by a real-world entity in a
combat situation. It reports the amount of damage—such as
a firepower kill, mobility kill, or catastrophic kill—that an-
other simulated entity within visible range of the observer

has suffered. VKillAssess is not provided for aircraft such
as A-10s, F-16s, and UAVs but by ground-based vehicles.
VTargetAssess is reported by all OTB entities and is re-
ported whenever the observing entity is within sight of the
observed entity. All three libraries are used by higher level
OTB libraries to determine what the simulated OTB en-
tity can shoot at, as well as its precision and accuracy for
striking its target.

The Information Fuser Agent subscribes to the
RETSINA-OTB Bridge to receive all visual reports that
are generated by a friendly entity of type UAV. Since this
is a report of visual information taken from close range and
low altitude, it has a much higher confidence rating than
any of the individual sensors, so VSpotter reports from
the UAVs will be displayed before the much lower con-
fidence SARSim, EOSim, or GMTISim reports, although
the lower confidence reports will still be accessible. How-
ever, since OTB UAVs do not report VKillAssess informa-
tion, the RETSINA-OTB Bridge adds that information to
the messages that the UAV reports to its subscribers.

8. Conclusions and Future Work

This article has demonstrated the need and ability to extend
the OneSAF Testbed Baseline modeling and simulation
system into a C4ISR testbed for the research and develop-
ment of algorithms for higher levels of information fusion
and for the automatic command and control of military as-
sets. We do this via a variety of interfaces and extensions to
the native OTB platform, both through the OTB interfaces
that were intended for system expansion and by making
small but very effective modifications and additions to the
system. Some of these small but effective modifications
were the addition of libraries to enable OTB to communi-
cate with agent-based systems. This permits the expansion
of OTB into a system that is highly interoperable with a
heterogeneous array of other C4ISR components and test
platforms. While the scope of this claim is limited by our
ignorance of the full range of military operations, this no-
tion has been bolstered informally by favorable reviews of
the work by military personnel and by transitions of this
technology to the military. Indeed, a branch of the military
has already applied some of the technology described in
this article to a specific logistics planning problem, and
certain classified research labs have used these extensions
for range tests that integrate versions of our algorithms,
control and behavior of the actual hardware, and multiple
simulated entities. Future work will continue to refine and
enhance these interoperability components as we continue
to research and develop high-level information fusion and
C2 algorithms and test scenarios.
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