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ABSTRACT

Motivated by multi-agent systems applications, we study a
task allocation problem in a competitive environment with
multiple self-interested autonomous agents. Tasks dynami-
cally arrive to a contractor that oversees the process of task
allocation. Tasks are auctioned to contractees, who submit
prices they require to accept tasks. The agent with the low-
est bid wins but is rewarded with the second-lowest price.
Each agent, based on his own state, will decide whether to
participate in the auction or not, and will decide the bidding
price if he chooses to participate. If a busy agent wins a new
task, he has to decommit from his current task and pay a
decommitment fee.

We formulate the problem and derive structural properties
of equilibrium strategies. We also provide heuristics that
are practical for multiagent system designers. Issues related
to system design are discussed in the context of numerical
simulations. The contribution is that (a) we provide formal
analysis of contractees’ optimal strategies in a given dynamic
task allocation system with commitment flexibility; (b) we
study the value of commitment flexibility in the presence of
different system parameters.
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1. INTRODUCTION

Task allocation, especially in competitive environments,
is one of the most important issues in the field of multi-
agent systems. In contrast to a cooperative environment
in which agents work toward a common objective, a com-
petitive environment is characterized by agents who seek
to maximize their individual social utilities. In a dynamic
task-allocation problem, agents not only compete directly
with each other, but also compete indirectly with agents
over time through the opportunity cost of potentially losing
more lucrative tasks to others. A successful mechanism de-
sign, therefore, should induce the agents to contribute to the
achievement of their common goals while maximizing their
individual utilities.

Our work is motivated by the fast-developing multiagent
resource/task allocation applications, including large-scale
disaster relief (e.g., [10]), automated resource allocation of
multiple distributed UAVs (e.g., [15]), and task allocation
among multirobot coordination (e.g., [5]). These problems
share the following characteristics: 1) significantly dynamic
environments full of uncertainties, which makes it difficult
to adopt centralized, static control schemes because tasks
with different priorities/values/durations might arrive un-
predictably. In a disaster relief system, for instance, agents
face uncertain, and time stressed environments that require
timely, flexible response. 2) The state of the agent network
evolves over time such that it is possible that not the same
set of agents are active in the agent society at each time.
These features make full commitment contracts (i.e., a con-
tract is binding once it is made), as assumed in most of the
existing task allocation literature, less lucrative in terms of
both system performance and agent utilities.

Prior research (e.g., [12], [2], [13]) has shown that it is
indeed beneficial to the system to provide agents with a cer-
tain degree of commitment flexibility, i.e., an agent is allowed
to walk away from its contract by paying a decommitment
penalty. Such flexibility is especially favorable in cases with
multiple job types, wherein agents’ incentive to drop low-
value and/or time-consuming tasks can enhance the system’s
capability of handling tasks. Nevertheless, aligning individ-
ual utilities and system-wide objectives cannot happen by
magic. The agents need to be well coordinated by setting



appropriate decommitment penalties: too great decommit-
ment penalties will force agents to become timid and con-
tinue on less lucrative jobs; too small decommitment penal-
ties would allow agents to decommit from their jobs too
frequently and sacrifice system-wide performance.

Our study is based on the contract net (CNET) protocol
([16]). A CNET counsists of four parts: (a) Problem recogni-
tion, (b) task announcement, (c) bidding, and (d) awarding
the contract. While the formats of (a), (b), and (d) are usu-
ally given in a multi-agent system, an efficient and effective
auction mechanism is crucial in (c¢). A second-price-sealed-
bid auction scheme is widely adopted in various systems due
to its ability to induce bidders to bid their true valuations.
In a second-price auction, the bidder who places the highest
bid is granted the contract, but will pay the second-highest
bid. We adopt an “inverse” second-price auction, i.e., the
agent who asks for the lowest reward is the winner and is
paid the second lowest reward in the auction.

Our goal is to design an auction-based mechanism that
effectively takes advantage of commitment flexibility so as
to enhance the system’s task handling capability. The first
step, however, is to examine individual agents’ equilibrium
strategies given various environment settings, e.g., decom-
mitment penalty, arrival pattern of incoming tasks, and re-
ward mechanism. The paper is organized as follows: In Sec-
tion 2, we present relevant research. Then in Sections 3 and
4, we describe the problem, formulate each agent’s problem
and validate structural properties of equilibrium strategies.
In Section 5, we apply heuristics to compare system perfor-
mance under different environmental variables and mecha-
nism settings. Issues related to system design are discussed
in light of the numerical simulations. Finally, we conclude
and discuss future research possibilities.

2. RELEVANT LITERATURE

Several research papers in the area of task allocation are
relevant to our research. Sandholm and Lesser [12] study a
leveled-commitment game between a contractor and a con-
tractee, each of which is reluctant to walk away from the
contract first. The study focuses on contract design and
does not consider dynamic arrivals of incoming tasks. Ab-
dallah and Lesser [1] build a model that integrates differ-
ent aspects of mediator decision-making into a Semi-MDP
model. The model is essentially a centralized model wherein
the mediator rather than the agents has the option of decom-
mitting from an unfinished task in pursuit of a more lucra-
tive one. Sarne et al. [14] study the problem where multiple
self-interested, autonomous agents compete for dynamically
arriving tasks through a Vickrey-type auction mechanism.
Each agent exits from the system after he gets a task assign-
ment. They introduce the model and formulate equations
by which the agents determine their equilibrium strategies.
An efficient algorithm is proposed to calculate the equilib-
ria. However, their model does not allow for the possibility
of decommitment because it assumes one-shot task assign-
ment for each agent. Brandt et al. [4] explore an automated
task allocation mechanism combining auctioning protocols
and contracts with commitment flexibility. They do not
provide a mathematically rigorous model, but instead use
simulation experiments to show the benefits of commitment
flexibility. In addition, they do not take the equilibrium be-
havior of each agent into consideration. Finally, their model
does not capture the various trade-offs the agents face in a
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dynamic task allocation environment and thus provides only
limited insights.

Our research enriches the literature in that it brings to-
gether dynamic task allocation and commitment flexibility,
with mathematical formulations, structural results of equi-
librium behaviors, and computational analysis. This has
not been done in the existing literature. This study helps
system designers achieve a better understanding of the way
commitment flexibility helps enhance a decentralized sys-
tem’s performance through auction mechanisms among self-
interested, autonomous agents.

3. PROBLEM DESCRIPTION

3.1 Assumptions

e There is one contractor and a number of homogeneous
contractees denoted by n = 1,2,--- ,N. N can be
a random number with known probabilistic distribu-
tion. The contractees are homogeneous in the sense
that they have the same capabilities in performing the
incoming tasks.

e Each contractee’s activity is confidential to other agents.
This implies N > 3.

e We assume an infinite planning horizon with intervals
of equal length denoted by t =1,2,3,....

e Each task has a constant maximum reward M.

e The duration of each task, denoted by L, follows a dis-
crete probabilistic distribution with minimum length
Lmin and maximum length Lyax.

e There is an entry fee for participating in an auction,
denoted by C.

e The probabilistic distribution of the duration of incom-
ing tasks, the costs and rewards, are public to all the
agents. However, each agent’s task allocation informa-
tion is confidential to other agents.

e A contractee who wins a task will receive his due re-
ward in full immediately?!.

e The cost for each agent to perform a task is ¢ per
period, and will be incurred period by period.

e A contractee’s total cost of each incoming task does
not exceed the contractor’s budget, i.e.,

C'Lmax S M

3.2 Sequence of Events

Each round of auction follows the subsequent procedure:

e A task arrives at the beginning of each period.

e The contractor observes the incoming task and makes
an announcement about the task duration to all the
contractees.

"We make this assumption primarily for conciseness of the
subsequent POMDP formulation. This assumption is also
made in [14]. Assuming this would not necessarily encourage
contractees to walk away, since the decommitment penalty
might be larger than total reward of a task. We will extend
this assumption in Section 4.3



e Each contractee decides whether to participate in the
subsequent auction or not. A bidding contractee sub-
mits his own bid in a sealed envelope to the contractor.

An agent who has an incomplete task on hand is al-
lowed to participate in the auction. However, if he
wins an auction, he has to decommit from his current
task and pay a decommitment penalty, denoted by d.

e The contractor compares contractees’s bids and an-
nounces the outcome of the auction. The winner is
the contractee whose bid is lowest; he is awarded with
a reward given by the second-lowest bid. Both the
submissions of bids and announcements of results are
conducted in a confidential manner such that each con-
tractee is only aware of his own bids/results.

4. MODELING AND STRUCTURAL ANAL-
YSIS

Our goal is to design a decentralized system that effec-
tively makes use of agents’ commitment flexibility to en-
hance the overall system’s ability to complete as many tasks
as possible. As the initial step, we analyze each contractee’s
behavior in the face of the environment we described in the
preceding section.

4.1 Formulation

A contractee’s objective is to decide whether to participate
in the auction or not, and, if yes, how much to bid, so as
to maximize his total discounted reward over the infinite
planning horizon. We formulate contractee i’s problem as
a POMDP (Partially observed Markov decision process, see
[7]) characterized by a tuple < S, A;, 7, R, 2:,0; >, the
elements of which denote state space, action space, state-
transition functions, the reward functions, observation space
and observation functions, respectively. Here S and 7 are
defined across all the contractees.

1) S = Z% x Z4 contains all the contractees’ state (since
one contractee’s outcome is affected by other contractees’
state) and the duration of the incoming task. Contractee ’s
state at the beginning of period ¢ is defined as x;: such that
zie = 1,2,... denotes time-to-go until the completion of the
currently active job and x;; = 0 means that the contractee
is idle. The duration of the task arriving to the system at
time ¢ is denoted by y;.

2) A; = {0,1} x R involves a two-fold decision: whether
to bid or not, and if yes, how much to offer.

3) T : § x A — II(S) defines state-transition function.
Define h;; = 0 or 1 as a contractee i’s bidding result at time
t. We see that

1 fzip1 =2 —1,hit =0
0 ifa?it+175$iz—17hit:0
Pr(zi,o1|za # 0] = ’
r[zi e41|zie # 0] 1 ifziggr =y —Lhay=1
0 ifaiepr #ye —Lhie =1
and
1 if Tit+1 = 0, hit =0
0 ifx 0,hit =0
Pr[xi,t+1|$it = 0] = 1 Tt # '
1 if Tit+1 = Yt — 17 hit =1
0 ifxity1 #Fye—Lhi=1

4) R; = R specifies contractee i’s reward given an action.
Our definition follows that if contractee i places a bid, then
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his one-stage reward would be the second lowest bid minus
decommitment penalty (if he has an unfinished task) if his
wins, and 0 if he does not.

5) £, = {0, 1} contains h,t = 0,1,..., which is the
only signal that contractee ¢ uses to reason about other con-
tractees’ state.

6) O; : S x A — II(§2;) is the observation function w(a, s)
specifing the transition probabilities of making each possi-
ble observation o € €); given that contractee’s bidding deci-
sion and state in the next period. Solving the above-defined
POMDP is by no means an easy task due to the existence
of a great number of agents and requirement of large state
space. However, given that the initial system state is known,
our POMDP can be converted to the following MDP formu-
lation. We study the contractee’s decision at the beginning
of period t. Vti(:cm y¢) is defined as the maximum total dis-
counted reward discounted by § from time ¢t until infinity,
given x;; and y;.

We see that the transition probability of hi; is exactly
contractee ¢’s probability of winning if he bids at time t.
Instead of using h;: as part of contractee i’s state, we include
it to estimate the probabilities of winning and thus expected
total rewards in the future.

A contractee’s bidding strategy sit = (At (Tit, Yt ), bit (Tit, Yt ))

for an auction consists of two parts: A;i(zit,y:) = 1 indi-

cates contractee ¢ will participate in the auction, and A;¢(wit, yt) =

0 otherwise. b;; is contractee i’s bidding price if he chooses
to participate in the auction.

Let s—;¢+ denote the symmetric bidding strategy of all the
contractees other than contractee i at period t. Given s_;,
and assuming the system state follows its stationary distri-
bution, contractee ¢ would be able to determine the prob-
abilistic distribution of the number of participants in the
auction, and his probability of winning for a given bid. His
estimated expected maximum total discounted reward func-
tion can be written as

Vi (@it ye; S—it) (4.1)
—c+ maxs,, {51@%11(@,5 — 1, ye4158-3t) ,
—C + w(bie, s—12) []E[zt Ibit, $—it] — d-+
SEVi 1 (ye — 1, 90415 5—i,t+1)}
+[1 = w(bit, s—a0)IOEV 1 (wie — 1, 9041 Sfi,t+1)} ;
if 2 =1,2,3,...
maxp,;, {&Ewﬂ(owtﬂ;s—u) ,
—C + w(bis, 5_i2) [—c + Elze|bie, 5—it]
+OEVE 1 (ye — L, yesn; S—i,t+1)}
+ [1 = w(bie, s—it)]SEV1 (0, yeg15 S—i,t+1)} ,

if Tit = 0

where w(bit,s—s+) is the estimated probability of winning
the auction given s—;; and b;¢, when x, > 1 and z, = 0,
respectively. E[z¢|bit, s—it] denotes the estimated expected
second-lowest bid in the tth round auction given b;; and s_;;.

Since we are dealing with a discounted infinite-horizon
problem, each contractee’s decision is not time sensitive. Let
L be the random variable denoting the length of an incoming
task, the above equation could be rewritten as



Vi (@i, g5 5-1) (4.2)
—c + maxqy, {5IEVi(ﬂci —1,L;s-;),
—C+w(bi,s—i) [E[z\bu s —d
+5I~EVi(y — 1,L;s,i)}
1 = w(bs, s_)|0EV (2 — 1, L; s,i)} ,
if 2 =1,2,3,...
maxp, {5@Vi(O,L;s_i) ,
—C + w(bi, s—4) [—c+I~E[z|bi,s,i]+
5IEVi(y - l,L;sﬂ')}
T — w(bs, s—)]SEV(0, L; s_i)} ,
ifx; =0

We have the following propositions that help determine
the form of optimal equilibrium strategies:

PROPOSITION 1. When > 1, Vi(x,y;s_;) is decreasing
m .

PROOF. Intuitively, it is easy to see that V(x,y;s—;) is
decreasing in x since the agent is always better off with a
shorter task duration. We can show this by induction. To
begin with, we look at the finite-horizon problem defined in
(4.2). Assume that there are N periods in total. Define the
terminal equation as

VA1 (6, N 415 YN 413 S—i,N41) = —CTi, N41-
The above equation suggests that in the final periods, each
contractee, if busy, will continue to work unless the task is
finished. .
Clearly Vi y1(@i,N+1,yN+1; 5—i,n+1) decreases in x; n+1.

Now suppose that Vi (zi,k, Yr; S—i k) decreases in x; i, we see

Vki_1(50i,k—1ayk—l; S—ik—1)

=-—c+ bmgxl {51@‘/1:(:1"7;671 — L ykss—ik-1),

— C 4 wbik-1,5-1k-1) - [E[z|bik—1,5-ik-1] — d

+ OEVR (yk—1 — 1, yri S—i k)]

1 — w(bsk—1]5—ik-1)OBVE (@i k-1 — 1, yx; S—i,k)}

is decreasing ; x—1 because, for any given yx—1,S—i k—1, bi,k—1,
both of the following two functions are increasing in x; k—1:

fi(@iw—1;Yr—1, S—ik—1,bi, k — 1)
= OBV; (w1 — L, yns 5—ik—1)
fo(@ik—15Yr—1,8—ik—1,bi,k — 1)
= —C+wbip—1,5-i,s-1) - {E[2|bi -1, 5 5—1]
—d+ OBV (Y1 — 1, yr; 5_ik) }
+ 1 —wbig1ls—in 1) 0EVE(Zig—1 — 1, Y5 5_i)
‘We have shown that Vki(xi,k, Yk; S—i,k) decreases in x; k, k =

1,..., N +1in the above finite-horizon MDP. Now let N —
0o, we see that V*(x,y; s—;) is decreasing in . [

PROPOSITION 2. V(x,y;s_;) is decreasing in y.
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PROOF. An intuitive explanation to this proposition is
that a larger task duration increases a contractee’s cost, i.e.,
total costs throughout the duration of the task, and possible
decommitment fees incurred in order to switch to a shorter
task. Strict proof can be done by induction and is similar
to that of Proposition 1. []

4.2 Structural Forms of Equilibrium Strate-
gies

In this section, we establish the contractees’ optimal bid-
ding strategies (to bid or not to bid, and the optimal bidding
price). We also apply our analytical framework to study the
special case in which commitment flexibility is not allowed.

Before we derive our optimal bidding strategy, we make
the assumption that a contractee with a shorter remaining
time to finish the current task would like to place a higher
bid. This makes sense because the contractee, when fac-
ing a shorter xz;, has less incentive to switch to other tasks.
Similarly, we assume that a contractee would like to place
a higher bid for a task with longer duration. This makes
sense since tasks with longer duration have higher opportu-
nity cost for the contractees.

To find out a symmetric bidding strategy, each contractee
assumes that the policy function of other contractees is sta-
tionary, and makes its decisions conditioned on the station-
ary distributions formed when all the contractees choose
symmetric strategies. This assumption is usually referred
to as “fixed-strategy assumption” and made primarily for
simplicity of modeling. Athey and Segal [3] give a review
of dynamic mechanism design literature, and find out it is a
common practice to assume that information is independent
across periods and each agent has little access to informa-
tion over time about other agent’s type. Hu and Wellman
[6] show that it is reasonable to make such an assumption
when studying contractee’s learning behaviors in that it is
easy to model and implement, and, in some cases, such a
model outperforms more sophisticated models.

THEOREM 1. (Optimal Bidding Strategy)

(i) A participant (denoted by i) with time-to-go x in the
auction for a task of duration y, given the equilibrium
strategies of other contractees, will place a bid in the
amount b* (x,y; s—i) such that

b (i, y; 5-1)
OE [Vi(zi —1,L) = Vi(y — 1,L)] +d
c : _
t o mwe ey F T =12
SE [V*(0,L) = V'(y — 1,L)]
C .
+ w(bF(0,y55_4),5—4) toifai=0

(4.3)

(i) If x; > 1, contractee i’s willingness to bid is increasing
mn T;.

(#i) A contractee’s willingness to bid is decreasing in y.

() A busy contractee will choose to participate in the auc-
tion if and if only y < £(x), where £(x) is increasing in
x; An idle contractee will choose to participate in the
auction if and only if y < Lo, where oy is a constant.

PROOF. (i) Our model can be viewed as a correlated
private-value second-price auction in which each con-
tractee’s remaining duration is a private signal. Fac-
ing the same set of environmental variables (e.g., y, C,



¢, d), the only factor that separates one contractee’s
decision from another contractee’s is only their own
remaining duration. Applying existing auction theo-
retic results (see, for example, [8] and [9]), contractee
i’s optimal bidding price makes him indifferent as to
whether to participate in the auction or not. In addi-
tion, contractee ¢ bids his own true valuation, i.e., we
might replace E[second|b;, s—;] with bj.

When z; = 1,2,3... The optimal bidding price b
must satisfy:

SEV (x; — 1, Ly s—3)

= —C+w(bi, s ) [b;‘ —d+8EVi(y—1,L; s,i)]

+ 1 —wbf,s-)]0EV (z; — 1,y;5-4) (4.4)
which gives
b (21, 5_i) = OF [Vi(o:i LD - Vi — 1,L)] +d

C
w(b:($“ Y; S—i)7 S—i) '

(4.5)

Similarly, we see that
b1 (0,y;5-:) = OE [V'(0,L) = Vi(y — 1, 1)

C
w(b: (07 Y; 5—1’)7 S_i)

+ +c.

(ii) We have previously assumed that b} (x;,y; s—;) decreases
in ;. What we need to do now is to verify that this
actually holds.

Examine the right-hand side of (4.5), given s_; when
x; increases, it follows from Proposition 1 that

E|Vizi—1,L)—Vi(y—1,L)

decreases. Since b (x;,y; s—; ) decreases in x;, w(b;, s—;)
will increase (a larger bid implies a lower chance of win-
ning), which yields a decreasing W We
then see that both the right-hand and left-hand sides
of (4.5) are decreasing in z;.

We have assumed that the highest reward that a con-
tractee could receive from accomplishing a task is fixed,
which means a large b; (z;,y;s—;) would put a con-
tractee in a disadvantaged position. Hence contractee
i’s willingness to bid is decreasing in x;.

(iii) Similar to the proof of (ii).

(iv) Combining (ii) and (iii), we see that contractee i’s will-
ingness to bid is increasing in x; but decreasing in y;,
which is exactly what we need to prove. Since all the
contractees are homogeneous, all the contractees must
follow the same strategies, which completes the proof.

(i)—(iv) give the stationary, symmetric optimal equilib-
rium strategies for the repeated second-price auction game. []

A Special Case: No Commitment Flexibility

We have provided analysis for the general case. Now we
study the special case in which commitment flexibility is
disabled. We will see that its MDP formulation as well as
optimal bidding strategies are in simplified forms.
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THEOREM 2. If decommitment is forbidden, at the begin-
ning of period t, an idle agent’s strategy is to not to bid
unless y < ¢, where £ is a constant.

ProOF. When full commitment is assumed, each con-
tractee’s problem can be formulated as the following MDP
(we inherit most of the notation in (4.1) except that we have
to define a state variable for each contractee, since a con-
tractee must be idle to be eligible for participating in the
auction):

Vily;s-i) = max {5EVi(L; s5—i), —C + w(bi, s—;)-
{I~E[z|5i, b_i] —yc+ YEV'(L; s,i)}
1 = w(bi, - )JOBV (Lis-) }

where w(b;, s—;) denotes the contractee’s probability of win-
ning the auction given b;, s_;.

We can then use similar argument as in the proof of Part
(i) of Theorem 1 to show that it is optimal for the contractee
not to bid unless y is below a certain threshold. []

Theorems 1 and 2 establish the basis for our simulation-
based study in the following section. Theorem 2 implies
that, when only full commitments are assumed, the equilib-
rium strategy for each idle agent is to bid when the duration
of the incoming task is equal to or lower than a fixed thresh-
old, and reject all the tasks with durations longer than the
threshold. In the contrast, Theorem 1 says that in an en-
vironment where commitment flexibility is enabled, agents
have different thresholds of task durations as to whether to
participate in the auction or not, depending on each agent’s
state. Such commitment flexibility can make the system
more “friendly” to tasks with longer durations and thus can
accommodate more tasks in a given period.

4.3 Extension: Different Reward Mechanisms

The model we presented above does not consider compar-
ison of different reward mechanisms. Consider, for instance,
that a contractee is not given his full reward immediately af-
ter he wins an auction. Instead, he has to finish his task to
get the corresponding reward. Another possible mechanism
is that the contractee might receive partial rewards period
by period according to his progress.

Our POMDP model can be revised to accommodate such
differences by adding a new variable r; denoting the remain-
ing reward from the currently active task (if any) to a con-
tractee’s state. Threshold policy in terms of x;, y and r; can
be shown in similar fashion and is omitted here.

5. NUMERICAL STUDY
5.1 Experiment Design

We have previously established the structure of optimal
equilibrium strategies. To have a concrete understanding of
the benefits of commitment flexibility under different set-
tings, we design a set of comparative experiments.

We resort to heuristics in our numeric study, recognizing
that it is difficult to calculate the exact optimal solutions
implied by our MDP model due to the following two diffi-
culties:

e The number of bidders in each auction is uncertain. In
a traditional task-allocation problem with an auction



protocol, only idle agents would bid for the incoming
task. Our framework, in contrast, allows every con-
tractee, busy or idle, to participate in the auction as
long as it is profitable for him to do so. What makes
our problem even more challenging is the existence of
entry fee.

e Each contractee’s valuation of the same new task de-
pends on his current state. We do not have a straight-
forward expression of the probability distribution of
agents’ valuation of an incoming task, as opposed to
well-studied auction problems in the Economics litera-
ture (e.g., [11]). Furthermore, the distribution of each
agent’s progress is closely related to the equilibrium
strategies of the agent. This further separates our pa-
per from [14], in which an agent’s valuation of the in-
coming task solely depends on his own capabilities and
the state of the world.

Without commitment flexibility, we assume that each con-
tractee will bid at the beginning of period ¢ if and only if

Yt S P (Lmax - Lmin) + Lmin

where 0 < p < 1is a parameter that determines each agent’s
bidding strategy. A bidding agent’s bid, depending on the
duration of the incoming task, will be

C
b(y:) = (6 — 6yt)Eyt+1V(yt+1) + yic + o’

0 =~ 1 further simplifies the bid as

C
b(yt) = ytc+ 57

where w’ is only partial known but can be estimated as fol-
lows: each contractee uses his own prior probability of win-
ning to determine his bidding prices, and then use the bid-
ding history over a period of time to update &’ iteratively.

With commitment flexibility, we assume that contractee 7
will use the following strategy: to bid if and only if

Yt S pP1 - (Lmax - Lmin) + Lmin
when the agent is idle; to bid if and only if
Yt < p2 - Tit

when the agent is busy. An idle contractee will place a bid
in the amount of

C
b(ozyi) =yic+ )
wo

while a busy contractee will place a bid in the amount of

C
b(wit, ye) = (xat — d+ ——.
(@it, ) = (wae —ye)c+d + (o)
Both the values of wo and w(z¢) can be obtained through

an iterative update approach (similar to the way we learn
/
w').

5.2 Simulation Experiments

Our model fits into the situation marked by dynamically
incoming tasks and relatively limited number of agents. Our
default experimental parameters reflect such a feature with
N =7, C =10, M =100, ¢c = 5 and d = 45. We further
assume that L, the duration of each incoming task, is uni-
formly distributed between Lyin = 2 and Lmax = 20. We
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observe 1000 periods and assume that the discount factor
0 ~ 1. In each set of experiment, we change one parameter
and keep all the other parameters unchanged.

Define THC (Task handling capability) as

THC — Number of completed tasks

The maximum possible number of completed tasks

T HC measures a system’s ability to handle tasks.

5.2.1 Different Decommitment Penalties

We want to find out the behavior of the system over dif-
ferent values of decommitment penalties. The results are
shown in Figures 1 and 3. From our experimental design,
we see that 0 < p; < 1 measures an idle contractee’s willing-
ness to bid: the larger p7 is, the contractee is more willing
to bid for an incoming task. Similarly, 0 < p5 < 1 measures
a busy contractee’s willingness to participate in the auction
for the incoming task, which makes it possible for him to
switch to a more attractive task.

We observe from Figure 1 that when the decommitment
penalty is set too low, contractees have the incentive to bid
for most of the incoming tasks and always to decommit from
the current task, which leads to low productivity (see Figure
3). When the decommitment penalty is set too high, con-
tractees are discouraged to decommit from long tasks, which
make the system’s ability of handling tasks relatively low.

The results also enable us to look at the benefits of com-
mitment flexibility. When commitment flexibility is not al-
lowed, each contractee would choose p* = 0.7, resulting
in THC = 73.72% and a total discounted reward of 972.
In contrast, when commitment flexibility is enabled, con-
tractees would choose pi = 0.95, p5 = 0.65, which leads to
THC = 85.13% and a total discounted reward of 1194, or a
15% improvement in THC.

[—&—rho_I* --®-- rho 2% —& - THC

ceLLeLeee e
RO o D1 o N O —
T T4

Decommitment Penalty

Figure 1: p7, p5 and THC for different decommitment
penalties (C' =10,¢=5,M =100,L ~ [2,20], N =7)
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Figure 2: Numbers of attempted, completed and de-
committed tasks for different commitment penalties
(C=10,¢c=5,M =100,L ~ [2,20], N =T7)
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Figure 3: Contractee’s average reward for different
decommitment penalties (C = 10,¢ =5,M = 100, L ~
[2,20],N =7)

5.2.2 Different Entry Fees

Choosing appropriate entry fee is also important in de-
signing the auction mechanism. Our simulation results, as
shown in Figures 4 and 5, reveal that a low entry fee will lead
to low system productivity (as indicated by THC') because it
encourages busy contractees to participate in auctions more
frequently. When the entry fee is set to be too high, the sys-
tem’s task handling ability is inhibited due to contractees’
limited participation.

[ rho L% --#-- rho 2% —&—THC

1
0.8 b
0.6 .
.

0.4 X

. .
0.2 =

0 .
0 5 10 15 20 25

Entry fee

Figure 4: pi, p5 and THC for different entry fees (d =
50,¢ =5, M = 100, L ~ [2,20], N = 7)

—-#--No. of Completed Tasks --#--No. of Decommitted Tasks
—&—No. of Attempted Tasks
1200
1000
800 -
e L —
- - -
600 EEFEEE - AR
400 N
N
200 e - - N
0 I L
0 5 10 15 20 25

Figure 5: Numbers of attempted, completed and de-
committed tasks for different entry fees (d = 50,c =
5,M =100, L ~ [2,20], N = 7)

5.2.3 Different Maximum Rewards Per Task

We observe from the experiment results (Figure 6) that
a larger M in general leads to high system productivity. If,
however, the contractor’s objective is not just to improve
task handling ability, but also to reduce the total payments
to contractees, the choice will be between cost and perfor-
mance.

5.2.4  Different Task Duration Distributions

We fix Lmin = 2 and observe the changes brought by
different Lmax’s. Our results (Figure 7) indicate that the
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Figure 6: pi,p5 and THC for different M (d = 50,C =
10,c = 5,L ~ [2,20], N = 7)

system’s ability of handling tasks decreases when Lpax in-
creases.
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Figure 7: pi,p5 and THC for different Lya.x(d =
50,C = 10,¢ =5, M = 100, L ~ [2, Lmax], N = 7)

5.3 Discussions

Our experiments reveal the power of commitment flexibil-
ity. We might view p or p1 (as used in Section 5.1) as the
threshold of an idle contractee when deciding whether to bid
for the incoming task or not: a lower p or p; means that the
contractee is more “picky” about the duration of tasks, while
a higher p or p1 makes it possible for relatively longer tasks
to be put on the auction. When there is no commitment flex-
ibility, the contractee would choose a relatively low p, after
accounting for the opportunity cost brought by a long task.
When a contractee is allowed to decommit from his current
task, however, he would take a more relaxed manner when
making an initial bid for a task, i.e., he can tolerate long
tasks, because he still has a “second chance” made possible
by commitment flexibility.

6. DISCUSSION AND FUTURE RESEARCH

In this paper, we study a dynamic task-allocation problem
using repeated second-price auctions. We provide mathe-
matical formulations and analysis, which lead to structural
results of the equilibrium strategies. Our model is helpful
for multi-agent system designers in revealing the benefits of
commitment flexibility. In addition to the existing literature
and our current work, more sophisticated models are needed.
Below are several potential extensions of the current model
that we plan to pursue:

1. Different values. Our model assumes a constant max-
imum reward for any incoming task. What would con-
tractees’ behavior vary if the incoming tasks possess different
value? Such an extension can give us a more comprehensive
understanding of the benefits of commitment flexibility.

2. Bid on decommitted tasks. Under our current prob-
lem settings, a decommitted task is discarded and cannot



be completed. Allowing contractees to bid on decommitted
tasks would further improve the flexibility of the system.
This is aligned with the notion of resale in the auction liter-
ature.

3. Team work. It would be interesting to consider the
case when contractees can form teams to handle an incom-
ing task. More interestingly, how does the team dynamics
among contractees affect the contractor’s decision of optimal
bidding mechanism that induces contractees to complete as
many tasks as possible? We leave this extension for future
research.
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