
Adding OWL-S to UDDI, implementation and
throughput

Naveen Srinivasan, Massimo Paolucci , Katia Sycara

Robotics Institute, Carnegie Mellon University, USA
{naveen,paolucci,katia}@cs.cmu.edu

Abstract. The increasing availability of web services demands for a discovery
mechanism to find services that satisfy our requirement. UDDI provides a web
wide registry of web services, but its lack of an explicit capability representation
and its syntax based search provided produces results that are coarse in nature.
We propose to base the discovery mechanism on OWL-S. OWL-S allows us to
semantically describe web services in terms of capabilities offered and to per-
form logic inference to match the capabilities requested with the capabilities of-
fered. We propose OWL-S/UDDI matchmaker that combines the better of two
technologies. We also implemented and analyzed its performance.

1 Introduction

Web Services have promised to change the Web from a database of static documents to
an e-business marketplace. Web Service technology are being adapted by Business-to-
Business applications and even in some Business-to-Consumer applications. The wide-
spread adoption of web services is due to its simplicity and the data interoperability
provided by its components namely XML [7], SOAP [10] and WSDL [11].

With the proliferation of Web Services, it is becoming increasingly difficult to find
a web service that will satisfy our requirements. Universal Description, Discovery and
Integration [8] (here after UDDI) is an industry standard developed to solve the web
service discovery problem. UDDI is a registry that allows businesses to describe and
register their web services. It also allows businesses to discover services that fit their
requirement and to integrate them with their business component.

While UDDI has many features that make it an appealing registry for Web services,
its discovery mechanism has two crucial limitations. First limitation is its search
mechanism. In UDDI a web service can describe its functionality using a classification
schemes like NAISC, UNSPSC etc. For example, a Domestic Air Cargo Transport
Service can use the UNSPSC code 78.10.15.01.00 to describe it functionality. Al-
though we can discover web services using the classification mechanism, the search
would yield coarse results with high precision and recall errors. The second shortcom-
ing of UDDI is the usage of XML to describe its data model. UDDI guarantees syntac-
tic interoperability, but it fails to provide a semantic description of its content. There-
fore, two identical XML descriptions may have very different meaning, and vice versa.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

Hence, XML data is not machine understandable. XML’s lack of explicit semantics
proves to be an additional barrier to the UDDI’s discovery mechanism.

The semantic web initiative [5] addresses the problem of XML’s lack of semantics
by creating a set of XML based languages, such as RDF and OWL, which rely on on-
tologies that explicitly specify the content of the tags. In this paper, we adopt OWL-S
[3], an OWL [15] based ontology, that can be used to describe the capabilities of web
services. Like UDDI, OWL-S allows a web service to describe using the classification
schemes. In addition, OWL-S provides a capability-based description mechanism [6] to
describe the web service. Using capability-based description we can express the func-
tionality of the web service in terms of inputs and precondition they require and out-
puts and effects they produce. Capability-based search will overcome the limitations of
UDDI and would yield better search results.

In this paper we propose an OWL-S/UDDI Matchmaker which takes advantage of
UDDI’s proliferation in the web service technology infrastructure and OWL-S’s ex-
plicit capability representation. In order to achieve this symbiosis we need to store the
OWL-S profile descriptions inside an UDDI registry, hence we provide a mapping
between the OWL-S profile and the UDDI data model based on [1]. We also enhance
the UDDI registry with an OWL-S matchmaker module which can process the OWL-S
description, which is present in the UDDI advertisements. The matchmaking compo-
nent is completely embedded in the UDDI registry. We believe that such an architecture
brings both these two technologies, working toward similar goals, together and realize
their co-dependency among them. We also added a capability port to the UDDI regis-
try, which can used to search for web services based on their capabilities.

The contributions of this paper are an efficient implementation of the matching al-
gorithm proposed in [2], an architecture that is tightly integrated with UDDI, an exten-
sion of the UDDI registry and the API to add capability search functionality, prelimi-
nary experiments showing scalability of our implementation and an update of the
mapping described in [1] to address the latest developments in OWL-S and UDDI.

The rest of the paper is organized as follows; we first describe UDDI and OWL-S
followed by the UDDI search mechanism. In Section 3 we describe the architecture of
the OWL-S/UDDI matchmaker and an updated mapping between OWL-S profile and
UDDI. In Section 4 we present our efficient implementation of the matching algorithm,
followed by experimental results comparing the performances of our OWL-S/UDDI
Matchmaker implementation with a standard UDDI registry and finally we conclude.

2 UDDI & OWL-S

UDDI [8] is an industrial initiative aimed to create an Internet-wide network of reg-
istries of web services for enabling businesses to quickly, easily, and dynamically dis-
cover web services and interact with one another. OWL-S is an ontology, based on
OWL, to semantically describe web services. OWL-S is characterized by three mod-
ules: Service Profile, Process Model and Grounding . Service Profile describes the
capabilities of web services, hence crucial in the web service discovery process. For the
sake of brevity of this paper, we are not going into the details of OWL-S and UDDI we
assume that the readers are familiar with it, for more information see [3] and [8].

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

2.1 UDDI Search Mechanism

UDDI allows a wide range of searches: services can be searched by name, by loca-
tion, by business, by bindings or by TModels. For example it is possible to look for all
services that have a WSDL representation, or for services that adhere to Rosetta Net
specification. Unfortunately, the search mechanism supported by UDDI is limited to
keyword matches and does not support any inference based on the taxonomies referred
to by the TModels. For example a car selling service may describe itself as “New Car
Dealers” which is an entry in NAICS, but a search for “Automobile Dealers” services
will not identify the car selling service despite the fact that “New Car Dealers” is a
subtype of “Automobile Dealers”. Such semantic matching problem can be solved if
we use OWL, RDF etc instead of XML.

 The second problem with UDDI is the lack of a power full search mechanism.
Search by Category information is the only way to search for services, however, the
search may produce lot of results with may be of no interest. For example when search-
ing for “Automobile Dealer”, you may not be interested in dealers who don’t accept a
pre-authorized loan or credit cards as method of payments. In order to produce more
precise search results, the search mechanism should not only take the taxonomy infor-
mation into account but also the inputs and outputs of web services. The search
mechanism resulted in combining the semantic base matching and the capability search
is far more effective than the current search mechanism. OWL-S provides both seman-
tic matching capability and capability base searching, hence a perfect candidate.

Fig. 1. Architecture of OWL-S / UDDI Matchmaker

3 OWL-S / UDDI Matchmaker Architecture

In order to combine OWL-S and UDDI, we need embed an OWL-S profile description
in a UDDI data structure (we discuss this embedding in Section 3.1), and we need to
augment the UDDI registry with an OWL-S Matchmaking component, for processing
OWL-S profile information. The architecture of the combined OWL-S/UDDI registry

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

is shown in Fig 1. The matchmaker component in this architecture, unlike the previous
version discussed in [2], is tightly coupled with the UDDI registry. By tightly coupled
we mean the matchmaker component relies on the UDDI registry’s ports (publish and
inquiry) for its operations.

On receiving an advertisement through the publish port the UDDI component, in the
OWL-S/UDDI matchmaker, processes it like any other UDDI advertisement. If the
advertisement contains OWL-S Profile information, it forwards the advertisement to
the matchmaking component. The matchmaker component classifies the advertisement
based on the semantic information present in the advertisement.

A client can use the UDDI’s inquiry port to access the searching functionality pro-

vided by the UDDI registry, however these searches neither use the semantic informa-
tion present in the advertisement nor the capability description provided by the OWL-S
Profile information. Hence we extended the UDDI registry by adding a capability port
(see Fig 1) to solve the above problem. As a consequence, we also extended the UDDI
API to access the capability search functionality of the OWL-S/UDDI matchmaker.
Using the capability port, we can search for services based on the capability descrip-
tions, i.e. inputs, outputs, pre-conditions and effects (IOPEs) of a service. The queries
received through the capability port are processed by the matchmaker component,
hence the queries are semantically matched based on the OWL-S Profile information.
The query response contains list of Business Service keys of the advertisements that
match the client’s query. Apart from the service keys, it also contains useful informa-
tion, like matching level and mapping, about each matched advertisement. The match-
ing level signifies the level of match between the client’s request and the matched ad-
vertisement. The mapping contains information about the semantic mapping between
the request’s IOPEs and the advertisement’s IOPEs. Both these information can be
used for selecting and invoking of an appropriate service from the results.

Fig. 2. TModel for Stock Quote Service

3.1 Embedding OWL-S in UDDI

The OWL-S/UDDI registry requires the embedding of OWL-S profile information
inside UDDI advertisements. We adopt the OWL-S/UDDI mapping mechanism de-
scribed in [1]. The mechanism uses a one-to-one mapping if an OWL-S profile element
has a corresponding UDDI element, such as, for example, the contact information in
the OWL-S Profile. For OWL-S profile elements with no corresponding UDDI ele-
ments, it uses a T-Model based mapping. The T-Model mapping is loosely based on the
WSDL-to-UDDI mapping proposed by the OASIS committee [13]. It defines special-

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

ized UDDI TModels for each unmapped elements in the OWL-S Profile like OWL-S
Input, Output, Service Parameter and so on. These specialized TModels are used just
like the way NAICS TModel is used to describe the category of a web service. Fig 2
illustrates an OWL-S/UDDI mapping of a Stock Quoting service whose input is a
company ticker symbol and its output is the company’s latest quotes.

In our work we extended the OWL-S/UDDI mapping to reflect the latest develop-
ments in both UDDI and OWL-S. Fig 3 shows the resulting OWL-S/UDDI mapping.
Furthermore we enhanced the UDDI API with the OWL-S/UDDI mapping functional-
ity, so that OWL-S Profiles can be converted into UDDI advertisements and published
using the same API.

Fig. 3. Mapping between OWL-S Profile and UDDI

4 Achieving Matching Performance

A naive implementation of the matching algorithm described in [2] would match the
inputs and the outputs of the request against the inputs and the outputs of all the adver-
tisements in the matchmaker. Clearly, as the number of advertisements in the match-
maker increases the time taken to process each query will also increase. To overcome
this limitation, when an advertisement is published, we annotate all the ontology con-
cepts in the matchmaker with the degree of match that they have with the concepts in
each published advertisement. As a consequence the effort need to answer a query is
reduced to little more than just a lookup. The rational behind our approach is that since

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

the publishing of an advertisement is a one-time event, it makes sense to spend time to
process the advertisement and store the partial results and speed up the query process-
ing time, which may occur many times and also the query response time is critical.
First we will briefly discuss the matching algorithm, then our enhancements in the
publish and the query phase.

4.1 Matching Algorithm

The matching algorithm we used in our matchmaker is based on the algorithm pre-
sented in [2]. The algorithm defines a more flexible matching mechanism based on the
OWL’s subsumption mechanism. When a request is submitted, the algorithm finds a
appropriate service by first matching the outputs of the request against the outputs of
the published advertisements, and then, if any advertisement is matched after the output
phase, the inputs of the request are matched against the inputs of the advertisements
matched during the output phase.

In the matching algorithm, the degree of match between two outputs or two inputs
depends on the match between the concepts that represents by them. The matching
between the concepts is not syntactic, but it is based on the relation between these con-
cepts in their OWL ontologies. For example consider an advertisement, of a vehicle
selling service, whose output is specified as Vehicle and a request whose output is
specified as Car. Although there is no exact match between the output of the request
and the advertisement, given an ontology fragment as show in Fig 4, the matching
algorithm recognizes a match because Vehicle subsumes Car.

 The matching algorithm recognizes four degrees of match between two concepts.
Let us assume OutR represents the concepts of an output of a request, and OutA that of
an advertisement. The degree of match between OutR and OutA is as follows.

exact: If OutR and OutA are same or if OutR is an immediate subclass of OutA. For
example given the ontology fragment like Fig 4, the degree of match between a request
whose output is Sedan and an advertisement whose output is Car is exact.

Fig. 4. Vehicle Ontology Fig. 5. Advertisement Propagation

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

plug in: If OutA subsumes OutR, then OutA is assumed to encompass OutR or in
other words OutA can be plugged instead of OutR. For example we can assume a ser-
vice selling Vehicle would also sell SUVs. However this match is inferior than the
exact match because there is no guarantee that a Vehicle seller will sell every type of
Vehicle.

subsume: If OutR subsumes OutA, then the provider may or may not completely
satisfy the requester. Hence this match is inferior than the plug in match.

fail: A match is a fail if there is no subsumption relation between OutA and OutR.

4.2 Publishing Phase

Publishing of a Web service is not a time critical task; therefore we attempt to exploit
this time to pre-compute the degree of match between the advertisement and possible
requests. To perform this pre-computation, the matchmaker maintains a taxonomy that
represents the subsumption relationships between all the concepts in the ontologies
that it loaded. Each concept in this taxonomy is annotated with a two lists out-
put_node_ information and input_node_information that specify to what degree any
request pointing to that concept would match the advertisement. For example, out-
put_node_information is represented as the following vector [<Adv1,exact>,
<Adv2,subsume> , …], where AdvX points to the advertisement and “subsume” spec-
ify the degree of match. The advantage of the pre-computation is that at query time the
matchmaker can extract the correct value with just a lookup with no need of inference.

More in details, at publishing time, the matchmaker loads the ontologies that are
used by the advertisement’s inputs and outputs and updates its taxonomy. Then, for
each output in the advertisement, the matchmaker performs the following steps.
 the matchmaker locates the node corresponding to the concept, which represents the

output, in the hierarchical structure let us call this node curr_node. The degree of
match between the curr_node’s concept and the output of the advertisement is exact,
so the matchmaker updates the output_node_ information . Let us assume Fig 5
represents the hierarchical structure maintained by the matchmaker and let an output
of an advertisement Adv1 be ‘Car’. The matchmaker updates the out-
put_node_information of the ‘Car’ node that it matches Adv1 exactly.

 The matchmaker updates the output_node_ information of all the nodes that are
immediate child of the curr_node that the published advertisement matches them
exactly. Because the algorithm states that the degree of match between output and
the concepts immediate subclass are also exact. Following our example the match-
maker will updates the output_node_ information of the ‘Coupe’ node and the ‘Se-
dan’ node that it matches the advertisement Adv1 exactly.

 The matchmaker updates the output_node_ information of all the parents of the
curr_node that the degree of match between the nodes and the published advertise-
ment is subsume. Following our example, we can see that the degree of match be-
tween the Adv1’s output concept ‘Car’ and the parent nodes of the curr_node
‘Thing’ and ‘Vehicle’ are subsume.

 Similarly the matchmaker updates the output_node_ information of all the child
nodes of curr_node that the degree of match between the node and the published
advertisement is plug-in. Following our example, we can see that the degree of

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

match the advertisement’s output and the child nodes of curr_node ‘Luxury’ and
‘Mid-Size’ is plug-in.

Similar steps are followed, for each input of the published advertisement the match-
maker updates the input_node_information of the appropriate nodes.

As we can observe, we are performing most of the work required by the matching
algorithm during the publishing phase itself, thereby spending a considerable amount
of time in this phase. Nevertheless, we can show that the time spend during this phase,
does not depend linearly on the number of concepts present in the data structure but in
the order of log (number of concepts) in present in the tree structure, and hence show-
ing that our implementation is scalable.

Since we use hierarchical data structure, the time required to insert a node will be in
the order of logd N, where d is the degree of tree. Similarly time required to traverse
between any two node in a particular branch will also be in the order of logd N. The
time required for publishing an advertisement will be equal to the time required for
classification of the ontologies used by inputs and outputs of the advertisement, plus
the time required to update the hierarchical structure with the newly added concepts,
plus the time required to propagate information about the newly added advertisement
to the hierarchical structure. And in a best case scenario, when no ontology needs to be
loaded, the publishing time will be time required for updating and propagating.

Time publish = Time Classification + Time Update + Time propagate (1)

The time required by Racer for classifying neither directly depended on the number
of concepts nor the number of advertisements present in the matchmaker. The time
required by the other two operations, update and propagate, will be in the order of
(logdN). Hence the publishing time does not linearly depend on the number of concepts
or the advertisements present in the matchmaker.

4.3 Querying Phase

Since most of the matching information is pre-computed at the publishing phase, the
matchmaker’s query phase is reduced to simple lookups in the hierarchical data struc-
ture. We also save time by not allowing a query to load ontologies. Although loading
ontologies required by the query appears to be a good idea, we do not allow it for the
following three reasons: first, the loading of an ontology is an expensive process, fur-
thermore the number of ontologies to load is in principle unbounded. Second, if the
request requires the loading of a new ontology, it is very likely that the new concepts
will have no relation with the concepts that are already present in the matchmaker,
therefore the matching process would fail anyway. Third, the ontologies loaded by the
query may be used only one time, and over time we may result is storing information
about lot of unused concepts. Note that the decision of not loading ontologies at query
time introduces incompleteness in the matching process: it is possible that the re-
quested ontology bares some relations with the loaded ontologies, therefore the match-
ing process may succeed. Still, the likelihood of this event is small, and the cost of
loading ontologies so big that we opted for not loading them.

When the matchmaker receives a query it retrieves all output_node_informations,
the sets of advertisements and its degree of match with the concept, of all the nodes

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

corresponding to the outputs of the request. For example, if the outputs of the request
are ‘Car’ and ‘Price’, the matchmaker fetches the output_node_informations of car
ONI1 and of price ONI2. The matchmaker then finds the advertisements that are com-
mon between the sets of advertisements retrieved,i.e. ONI1 ∩ ONI2. If no intersection is
found then the query fails. If common advertisements are found say ADVSo, they are
selected for further processing.

The matchmaker performs a lookup operation and fetches all the in-
put_node_informations, the sets of advertisements and degree of match with the con-
cept, of all the nodes corresponding to the inputs of the request. The matchmaker keeps
only the input_node_information of the advertisements that were selected during the
output processing phase, other advertisements are discarded. For example let IN1,
IN2,IN3 be the input_node_information, then only input_node_information of adver-
tisements ADVSo ∩ IN1 ∩ IN2 ∩ IN3 are kept. This input_node_information and match
level of each output is used to score the advertisements that were selected during the
output processing phase, i.e. ADVSo.

We can see that the time required for processing a query does not depend on the
number of advertisements published in the matchmaker. As we also see the querying
phase involves lookups and intersections between the selected advertisements. In our
implementation lookups can performed in constant time. Hence time to process a query
depends on the time to perform intersections between the selected advertisements.

Time query = (Numout+Numin)*(Time Lookup + Time Intersection) (2)

where the Numout and Numin is the number of inputs and outputs of an advertise-
ment, Time Lookup is the time required to extract information about an input or an out-
put, and Time Intersection is the time to compute intersection between the lists extracted
during the lookup time. We can see that the computation required for the querying
process does not depend on the number of advertisements, and therefore it is scalable.

 5 Preliminary Experimental Results

We conducted some preliminary evaluation comparing the performances of our
OWL-S/UDDI registry and a UDDI registry, to show that adding an OWL-S match-

Table 1. Publishing Time without loading
ontologies

Fig. 6. Time distribution during publishing an
advertisement

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

maker component does not hinder the performance and scalability of a UDDI registry.
We extended jUDDI [14] an open source UDDI registry with the OWL-S matchmaking
component. We used RACER [4] as to perform OWL inferences. In our experiments,
we measured the processing time of an advertisement by calculating the difference
between the time the UDDI registry receives an advertisement and the time the result is
delivered, to eliminate the network latency time.

5.1 Performance – Publishing Time

In our first experiment we compared the time take to publish an advertisement in an
OWL-S/UDDI registry and in a UDDI registry. We assumed that the ontologies re-
quired by the inputs and outputs of the advertisements are already present in the OWL-
S/UDDI registry. The advertisements may have different inputs and outputs but they are
present in one ontology file, hence the ontology has to be loaded only once, however
our registry still have to load 50 advertisements. Table 1 shows the average time taken
to publish 50 advertisements in a UDDI registry and an OWL-S/UDDI registry. We
can see that the OWL-S/UDDI registry spends around 6-7 times more time, since pub-
lishing it a one-time event we are not concerned about the time taken.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 4 7 10 13 16 1 9 22 25 28 31 3 4 37 40 43 46 4 9

N o. of Adv e r tise me nts

T
im

e
 in

 m
ill

is
ec

o
n

d
s

Valid ation

Loading O nto

New C onc epts

Updatin g Tree

P rop agating

Total T im e

Fig. 7. Publishing time for advertisements that requires to load new ontologies

However, we took a closer look at the time taken to publish an advertisement by the
OWL-S/UDDI registry. Fig 6 shows the time spent in different phases of the publishing
an advertisement. Following are the 5 phases in the publishing process:
 UDDI - time required by the UDDI component to process an advertisement.
 Validation - time required by Racer to validate the advertisement.
 Loading - time required by Racer to load the advertisement
 Updating - time required to extract the ontology tree from Racer.
 Propagating - time required to propagate the input/output information.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

As we can see, most of the time is spent in loading and validating ontology (around
70%) when compared to the matchmaking operations.

 5.2 Performance – Ontology Loading

In the second experiment, we analyzed the performance of our registry when we load
advertisements that required loading new ontology and hence significantly updating the
taxonomy maintained by the matchmaking component. We published 50 advertise-
ments that uses different ontologies to describe their inputs and outputs, in our OWL-
S/UDDI registry and measured the time taken to publish each advertisement. Each of
these advertisements has three inputs and one output and requires loading an ontology
containing 30 concepts.

In Fig.7, we can see that the time take to publish an advertisement increases linearly
with the number of advertisements, and we can also see that this linear increase is con-
tributed by ‘new-concept’. This linear increase of ‘new-concept’ is attributed to a limi-
tation of the Racer system. Whenever we load a new ontology into Racer we have
determine if we need to update the taxonomy maintained by the matchmaker, if so,
what concepts should be updated. The Racer system does not provide any direct means
to give this information. Hence we need to find out this information through a series of
interactions. The new-concept in Fig 7 represents the time required to perform this
operation. We can substantially reduce the time required for publishing if either Racer
can provide the information directly or if we could have direct access to Racer and we
maintain the taxonomy inside Racer itself. We can see that if ignore the time taken by
‘new-concept’, the resulting graph would not have such drastic increase in the publish-
ing time, concurring to our discussion in Section 4.2.

 Time in ms Standard Deviation

OWL-S/UDDI 1.306 .54
Table 2. Query processing time

5.3 Performance – Querying Time

In our final experiment, we calculated the time required to process a query. The queries
we used do not load new ontologies into the matchmaker, they use the ontologies that
are already present in the matchmaker. We used 50 queries each with three inputs and
one output. Table 2 shows the average time required to process these queries. The
small standard deviation shows that the time required to process the queries is almost
constant, consistent with our discussions in Section 4.3

6 Conclusion

In this paper we have described the importance of web service discovery and the
shortcomings of the UDDI’s discovery mechanism. We adapted a solution to use

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

OWL-S in combination with UDDI, to take advantage of both these technologies. We
believe such an architecture is very important in bring the effort of both Web Service
and Semantic Web community together. We presented our OWL-S/UDDI matchmaker
architecture and its extensions to perform capability search. We also conducted some
preliminary experiments to show the scalability of our implementation.

References

1. Paolucci et al: Importing the Semantic Web in UDDI. In Proceedings of Web Services, E-
business and Semantic Web Workshop, 2002

2. Paolucci et al; Semantic Matching of Web Services Capabilities. In Proceedings of the 1st
International Semantic Web Conference (ISWC2002)

3. Anupriya et al: DAML-S: Web Service Description for the Semantic Web. In Proceedings of
The First International Semantic Web Conference (ISWC), 2002.

4. Volker Haarslev, Ralf Möller: RACER System Description. In Proceedings of International
Joint Conference on Automated Reasoning, IJCAR'2001, June 18-23, 2001, Siena, Italy.

5. Tim Berners-Lee and James Hendler and Ora Lassila: The Semantic Web. Scientific American
,volume 284, Number 5, pages 34-43, 2001

6. Katia Sycara et al, “Larks, Dynamic matchmaking among Heterogeneous Software Agents in
Cyberspace”, AAMAS, 5, 173-203, 2002.

7. W3C: Extensible Markup Language (XML) 1.0 (Second Edition). http://www.w3.org/ http://www.w3.org/
TR/2000/REC-xml-20001006,2000,

8. UDDI : The UDDI Technical White Paper, http://www.uddi.orghttp://www.uddi.org, 2000
9. Rosetta Net, http://www.rosettanet.org, 2000 http://www.rosettanet.org, 2000
10. W3C, “SOAP Version 1.2, W3C Working Draft 17 December 2000”, http://www.w3.orghttp://www.w3.org/

TR/2001/WD-soap12-part0-20011217/ , 2001
11. Erik Christensen et al , “Web Services Description Language (WSDL) 1.1”,

http://www.w3.org/ TR/2001/NOTEhttp://www.w3.org/ TR/2001/NOTE-wsdl-20010315, 2001
12. ISO/IEC 11578:1996 : Information technology -- Open Systems Interconnection -- Remote

Procedure Call. http://www.iso.ch/http://www.iso.ch/ , 2001.
13. Colgrave et al : Using WSDL in a UDDI Registry, Version 2.0., UDDI TC Note, 2003.
14. jUDDI : http://ws.apache.org/juddi/http://ws.apache.org/juddi/
15. W3C : Web Ontology Language. http://www.w3.org/2001/sw/WebOnt/http://www.w3.org/2001/sw/WebOnt/

http://www.w3.org/
http://www.uddi.org
http://www.rosettanet.org
http://www.w3.org
http://www.w3.org/
http://www.iso.ch/
http://ws.apache.org/juddi/
http://www.w3.org/2001/sw/WebOnt/
http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

