The RETSINA Communicator®

Onn ShehoryT
IBM Research Lab in Haifa
The Tel Aviv Site
2 Weizmann St., Tel Aviv, 61336 Israel

onn@il.ibm.com

1. INTRODUCTION

We are developing the RETSINA' Multi- Agent System (MAS)

[4] in which multiple agents receive goals from users and
other agents. Since RETSINA implementations are deployed
in real-world, distributed, open environments, it is necessary
that agents be able to communicate both among themselves
and with other entities, to enhance coordination and coop-
eration and increase system performance. Yet, communica-
tion based on client /server architecture is insufficient for the
needs of agents, as agents may be both service providers and
service consumers, sometime simultaneously. In addition,
to support some aspects of interoperability, agents must be
able to communicate using standard Agent Communication
Languages (ACLs). Thus, there is a need for a more expres-
sive means of communication. As part of our agent archi-
tecture, we have developed a communication component -
the RETSINA communicator, that provides these require-
ments, and more. It supports concurrent connections to
other agents in client, server, and peer-to-peer fashions; it
supports the KQML [2] ACL and can easily be adjusted
to FIPA [1] and other ACLs; it is designed to be easily
re-used in a plug-in manner; it is implemented in several
programming languages and was tested on several different
platforms. The RETSINA communicator is loosely tied to
agents, and can be used in any application where similar
communication needs arise.

RETSINA is an open MAS that provides infrastructure for
different types of agents. Each RETSINA agent [4] is com-
posed of four autonomous functional modules: a commu-
nicator, a planner [3], a scheduler and an execution moni-

'REusable Task Structure based Intelligent Network
Agents.

*This work was supported in part by ARPA/Rome
Labs contract F30602-93-C-0241 & ARL contract
DAAL0197K0135. We thank Dirk Kalp for his in-
valuable contribution.

t At the time of conducting this research, Onn Shehory was
affiliated with Carnegie Mellon University.

Katia Sycara
The Robotics Institute
Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213 USA

katia@ri.cmu.edu

tor. The communicator module receives requests from users
or other agents in KQML format and transforms these re-
quests into goals. It also sends out requests and replies.
The planner module transforms goals into plans that solve
the goals. Executable actions in the plans are scheduled for
execution by the scheduler module. Execution and moni-
toring of the actions is performed by the execution monitor
module. Some actions may need, and can invoke, communi-
cation. This is performed by the action directly approaching
the communicator and using its public methods.

2. THECOMMUNICATION MODULE

The RETSINA communicator provides an abstraction that
supports peer to peer communication between agents based
on the names of the agents. The communication is in the
form of ASCII messages transmitted on TCP/IP sockets.
The communicator provides an API specification for estab-
lishing connections to external agents and for several forms
of asynchronous communication for the sending and receiv-
ing of messages with options for blocking or non-blocking
communication. There is also a synchronous interface. Con-
nection setup and management is handled transparently within
the communicator. The mapping of agent names to their
host and port addresses is done by the communicator through
the RETSINA Agent Name Server (ANS). The ANS sup-
ports distributed agent name registration and lookup.

The communicator does not support complex message pro-
tocols or specific message formats. It simply transmits mes-
sages, leaving message protocols to the higher level modules
in the agent. With respect to message formats, the com-
municator sets forth minimal requirements by defining an
interface that provides the abstraction it needs to handle
messages that come in from external agents and a separate
interface for the messages that the agent, in which the com-
municator is incorporated, wishes to send out. These inter-
faces, ExternalMsg and InternalMsg respectively, define a
small number of basic message fields deemed essential for
inter-agent communication along with accessor methods for
extracting and setting message fields. We define two differ-
ent interfaces since the communicator has slightly different
needs at each end of the communication management and
for greater flexibility and portability of agents into differ-
ent agent communities. For example an agent developed
in a community that uses KQML-based communication can
be easily ported to a FIPA-based community by supply-
ing a new module that implements the ExternalMsg inter-
face to support FIPA formats. The communicator deals



with messages using the abstractions of InternalMsg and
ExternalMsg and thus is divorced from particular formats.

3. IMPLEMENTATIONDETAILSINBRIEF

We have separated out the CommunicationInterface that
defines the abstract methods for inter-agent communica-
tion. The Communicator implements the methods of this
interface to provide the API through which an agent can es-
tablish and carry out communication with external agents.
The term agent is used loosely here, referring to any agent,
client/server program, or other application program that in-
corporates the Communicator. A quick reference to the main
public methods of the Communicator API is provided below.

At initiation, an agent’s Communicator registers the agent’s
name, host and port with an ANS. To establish communica-
tion with another agent, the Communicator queries the ANS
with that other agent’s name in order to obtain its host and
port. The Communicator then uses the host and port to es-
tablish a connection to the external agent. The endpoints
of a connection are sockets, one in the agent and one in the
external agent. Creation and management of the agent’s
connections is handled transparently by the Communicator.
The agent does not deal directly with the sockets or connec-
tions. Instead, through the Communicator API, the agent
can obtain a ConnectionDescriptor object that is a refer-
ence to a connection with another agent.

To obtain a ConnectionDescriptor, the agent uses either
openConnection() or openExclusiveConnection(). The
only argument required is the name of the agent to which
a connection is desired. Given the name, the Communicator
will lookup the host and port of the external agent at an
ANS, create a socket and connect it to the socket at the ad-
vertised host and port of the external agent. It is possible for
the agent to have multiple connections to the same external
agent. For this, the agent uses openExclusiveConnection()
to get a descriptor to a new connection. Non-exclusive con-
nections are obtained via openConnection(). This still as-
signs a new descriptor but it may point to an existing con-
nection to the particular external agent. The Communicator
keeps a reference count on connections that have multiple
descriptors to assure that a connection is not destroyed until
each of its descriptors is disposed of (via closeConnection()).

To send messages, the agent uses sendMsg() or queueMsg().
The former is used for urgent and priority messages, with
little error handling, whereas the latter uses retry/recovery
strategies to handle queued messages until they are suc-
cessfully sent to the intended party. The sendMsg() and
queueMsg() methods provide an asynchronous interface for
the message sending part of the agent communication. Al-
though asynchronous communication is more useful in open
MAS, the API also provides a method, sendMsgAndGetReply (),
for synchronous communication, which sends a message to
the external agent and then blocks the calling thread waiting
for the reply message from that agent.

The client and server roles are duals of each other. A peer-
to-peer communication model is one in which the agent per-
forms both of these roles and in accordance with the agents
needs. An agent will usually be willing to provide some ser-
vice and take on the server role in listening for and accepting

new connections initiated by the external clients. An agent
will also usually need to make requests itself for the ser-
vices of other agents, taking on the client role of initiating
a connection to a server or other external agent. In the
client role, initiating a connection is done by calling one of
the two Communicator methods for opening a connection. In
the server role, the agent needs to discover when an external
agent operating in the client role initiates a connection. The
Communicator handles this connection creation passively in
response to the external agent’s connection initiation.

The control of connections is determined by connection own-
ership. An agent’s owned connections are those explicitly
created by the agent in the client role. The agent’s un-owned
connections are those that are passively created by the agent
in the server role. A closeConnection() operation can be
performed only by the connection owner. It is likely that an
agent be multi-threaded, some threads handling the owned
connections, the client role, while other threads handling the
un-owned connections, the server role.

At termination, the agent calls refuseNewConnections()

to prevent any new client connections from being accepted
by the agent. It then should call flushMsgsAndStop() in
the API to flush any output messages queued and stop all
Communicator threads. Following this, unRegisterWithANS()
should be called in the Communicator to remove the regis-
tration of the agent with the ANS.

4., CONCLUSION

The RETSINA communicator was implemented in Java,
Python, C++, and Lisp. Besides our RETSINA agents,
we have incorporated it into two other agent interface appli-
cations and a server. The Communicator supports multiple
open connections between two agents. It also provides an
interface for performing logging of message traffic. In future
research, we intend to extend this logging facility and de-
velop an abstraction of the use of the ANS so that some other
agent name service facility could be substituted if desired. In
summary, the RETSINA communicator is a reusable com-
ponent for agent communication. It can easily be plugged
into new agent and applications, as well as being adjusted
to different ACLs. Most importantly, it supports commu-
nication in client, server and peer-to-peer fashions, possibly
all at the same time. These attributes made the RETSINA
communicator a useful, widely used, generic component for
agents and application in open dynamic MAS.

5. REFERENCES
[1] FIPA —Foundation for Intelligent Physical Agents.
http://www.fipa.org

[2] T. Finin, R. Fritzon, D. McKay and R. McEntire.
KQML — A Language for Knowledge and Information
Exchange. In Proc. 18th Intl. DAI Wshp, Seattle, 199/.

[3] M. Paolucci, D. Kalp, A. Pannu, O. Shehory and
K. Sycara. A planning component for RETSINA
agents. ATAL-99, 1999, Orlando, Florida.

[4] K. Sycara, K. Decker, A. Pannu, M. Williamson, and
D. Zeng. Distributed intelligent agents. IEEE Ezpert —
Intelligent Systems and Their Applications,
11(6):36-45, 1996.



