
Subjective Approximate Solutions for Decentralized
POMDPs

Anton Chechetka
Carnegie Mellon University
antonc@cs.cmu.edu

Katia Sycara
Carnegie Mellon University

katia+@cs.cmu.edu

ABSTRACT
A problem of planning for cooperative teams under uncer-
tainty is a crucial one in multiagent systems. Decentral-
ized partially observable Markov decision processes (DEC-
POMDPs) provide a convenient, but intractable model for
specifying planning problems in cooperative teams. Com-
pared to the single-agent case, an additional challenge is
posed by the lack of free communication between the team-
mates. We argue, that acting close to optimally in a team
involves a tradeoff between opportunistically taking advan-
tage of agent’s local observations and being predictable for
the teammates. We present a more opportunistic version of
an existing approximate algorithm for DEC-POMDPs and
investigate the tradeoff. Preliminary evaluation shows that
in certain settings oportunistic modification provides signif-
icantly better performance.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Coherence and Coordination

General Terms
Algorithms

Keywords
Multiagent planning; Coordination, cooperation, and team-
work; Perception and action

1. INTRODUCTION
The problem of planning for cooperative teams is ubiqui-

tous in multiagent systems, such as urban search and rescue
robotics [7] and sensor networks [8]. The problem is hard,
especially when uncertainty affects agents’ actions and ob-
servations and the computational and communicational re-
sources are limited. Compared to single-agent case, plan-
ning for multiple agents introduces an additional challenge:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07 May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

an agent in general does not know its teammates’ observa-
tions and actions. It has to reason about them. A pop-
ular formalism for this problem is decentralized partially
observable Markov decision processes (DEC-POMDPs). In
DEC-POMDP, there are multiple players, each with its own
observation model. The state of the system and team’s re-
ward (same for all agents) depend on the joint actions of the
team. Solving DEC-POMDPs exactly is intractable (NEXP-
complete [3]), so the bulk of research has focused on heuris-
tics and methods for solving DEC-POMDPs with additional
assumptions about the problem structure [9, 1, 11].

A fundamental problem of reasoning in DEC-POMDP
framework is one of using the observations. We argue that
there is a tradeoff between acting in accordance to team-
mates’ expectations while not taking into full considera-
tion the observations, and acting relying mostly on current
agent observations while possibly ignoring teammates ex-
pectations. The former is useful because it is more likely to
preserve coherent behavior of the team, while the latter may
lead to better performance given the circumstances. In this
paper, we examine this tradeoff. Work in [4] has produced
an algorithm, called BAGA, that maintains team coherence
at the expense of ignoring some information from the ob-
servations. We present its modification that relies more on
the local observations at possible expense of team coher-
ence. Preliminary experimental evaluation shows that our
approach can be advantageous.

2. THE MODEL AND PRIOR WORK

2.1 DEC-POMDP
The Decentralized POMDP model is a tuple

{I, S, A, O, P (s′|s, a), P (o|s, a), R(s, a), b0
, γ, m},

where I = {1, . . . , n} is a set of agents, S is a finite set of
states, O = ×n

i=1Oi is a finite set of joint observations (Oi

is the set of observations for agent i), A = ×n

i=1Ai is a finite
set of joint actions, P (s′|s, a) is transition model (probabil-
ity of transitioning to state s′ from s given joint action a),
P (o|s, a) is observation model (probability of joint observa-
tion o after taking action a in state s), R(s, a) : S × A → R

is reward function (immediate reward for the team for tak-
ing action a in state s), b0 is the initial state distribution,
γ ∈ [0, 1) is discount factor, and m is planning horizon. The
model is common knowledge of all agents.

A policy for player i,

πi : ×t−1(Ai × Oi) → Ai

862

978-81-904262-7-5 (RPS) c©2007 IFAAMAS

Algorithm 1 BAGA-S main function for player i

Require: b0, N

1: PDF (c)← b0, P (c)← 1
2: beliefsi ← c

3: for step = 0 to n do

4: Πi ← computeStrategies(beliefsi)
5: choose any c ∈ beliefs, execute action Πi(c)
6: oi ← receive observation
7: beliefsi ← propagateBeliefs(beliefsi, Π, oi)
8: beliefsi ← compress(beliefsi, N)
9: end for

is a mapping of individual observation and action history to
individual action. The goal of solving a DEC-POMDP is
to find a joint policy π = {π1, . . . , πn} that would maximize
the future expected discounted reward V π = Eπ[

Pm

t=0 γtR].
This problem is NEXP-complete [3], so in most cases one
would need to settle for an approximate solution.

2.2 Prior work
An exact algorithm for solving finite-horizon DEC-POMDPs

is presented in [12]. It uses pruning of very weakly domi-
nated policies to improve performance. Approaches exists to
solve problems with extra assumption about structure [1],
or with restricted policy space [2]. Local search in policy
space was also explored [9]. A significant amount of work
has focused on finding good communication policies [10, 9].

Few of the above approaches scale beyond small problems.
Algorithm BAGA [4, 5] is a scalable approximate approach.
Unlike the dynamic programming in [6], it constructs poli-
cies from the first steps forward instead of from the last steps
backward. As soon as the first step policy is computed, the
agents can take the corresponding action, before the rest of
the policy length is computed. In our algorithm, we take an
approach similar to that of BAGA, but modify the way the
observations affect the handling of beliefs by the agents.

3. THE ALGORITHM
The main function of our algorithm (called BAGA-S, or

BAGA-subjective) is presented in Alg. 1. It is executed inde-
pendently by all the agents of the team. The main function
of BAGA-S is the same as one of BAGA, up to few imple-
mentational details, - all the meaningful differences are in
the subfunctions. Execution (line 5:) and planning (4:) are
interleaved.

3.1 Beliefs representation and tracking
Each player i maintains a set beliefsi of particles. Each

particle corresponds to a set of possible joint histories. A
particle c consists of two fields: PDF (c) is the probability
distribution over S and P (c) is the probability of the particle
itself. The cumulative PDF over S represented by beliefi is

P (S) =
X

c∈beliefi

P (c)× PDF (c)

The beliefs for the next step are constructed from current
beliefs using Bayesian updates. Assume that Πi provides us
with a mapping from particles of beliefsi to joint actions
(computeStrategies computes Πi). Player i also assumes
that whenever the joint observation history corresponds to
particle c, the rest of the team performs joint action Πi(c).

Algorithm 2 propagateBeliefs function for player i

Require: beliefsi, Πi, oi

1: result← ∅
2: for all c ∈ beliefsi do

3: a← Πi(c)
4: for all o ∈ O such that o is consistent with oi do

5: create particle d

6: P (d)← P (o|S, a)PDF (c)

7: ∀s ∈ S : PDF (d, s)← P (o|s,a)P (s|S,a)T PDF (c)
P

s∈S
P (o|s,a)P (s|S,a)T PDF (c)

8: result← result ∪ d

9: end for

10: end for

11: {normalize the probabilities of particles}
12: Po ←

P
d∈result

P (d)

13: ∀d ∈ result P (d)← P (d)
Po

14: return result

It does not hold in general, but can be thought of as a first-
order approximation of the infinite recursion of agents’ mu-
tual beliefs. Using Bayesian updates with this assumption,
we arrive at propagateBeliefs function in Alg. 2.

Obviously, because different agents get different observa-
tions, the results of executing propagateBeliefs will not
be the same across the team. This is a major difference of
BAGA-S from BAGA: BAGA-S players only consider joint
observations o ∈ O consistent with local observation, while in
BAGA each player considers all possible observations o ∈ O,
even those inconsistent with local history.

3.2 Beliefs approximation
At each step, the procedure propagateBeliefs creates

|O|
|Oi|

new particles for each particle from beliefsi. This leads

to memory requirements exponential in planning horizon.
To keep the memory requirements of the algorithm down,
we use weighted K-means clustering of particles in the space
of probability distributions over |S| with fixed maximum
number N of clusters. This part of the algorithm is denoted
as compressBeliefs. It is similar to the minimal-distance
clustering used in [5], but uses different distance metric.

3.3 Policy computation
Given its beliefs, the player needs to be able to compute

a policy Πi that would assign an (approximately) optimal
joint action to each particle so as to maximize the expected
utility. We assume existence of a heuristic EV (a, pdf) for ap-
proximately computing expected discounted reward of tak-
ing action a in a distribution pdf(S) over the states and act-
ing optimally afterwars. Denote a−i the action of all players
except i. Then, using this heuristic and beliefsi, player i

chooses action

a
∗
i = arg max

ai∈Ai

X
c∈beliefsi

P (c)EV ((ai, a
∗
−i(c)), PDF (c)) (1)

where

a
∗
−i(c) = arg max

a−i∈A−i

„
max

ai

EV ((ai, a−i), PDF (c))

«
. (2)

The action a∗
i is the same for all particles, because player

i’s observation history is consistent with all joint histories
of all particles, so i cannot distinguish between the parti-
cles. Optimal actions a∗ can be computed by enumerat-

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 863

0 5 10 15 20 25 30 35 40 45 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time step

R
ew

ar
d

Smoothed averaged reward

BAGA−S
BAGA

Figure 1: Smoothed average rewards versus time.

ing all possible joint actions, calculating the expectations
EV (a, PDF (c)), and taking the maxima in (1, 2).

There are several heuristics available to be used as EV .
One example is a POMDP heuristic (assuming that agents
communicate at every step and reducing the problem to a
POMDP). Another is k-step lookahead.

3.4 Discussion and complexity
BAGA always tries to minimize approximation error of

the a priori distribution over joint histories, regardless of
where in the joint history space the players are likely to be
in a given run of the algorithm. BAGA-S aims to approx-
imate a posteriori distribution. The algorithms trade off
consistency of beliefs across the team for relevance of beliefs

to the actual outcomes of actions differently.
There are 3 major elements to consider when determining

the complexity of BAGA-S: propagation of beliefs, compres-
sion of beliefs, and computation of strategies. It is straight-
forward to sum up their respective impacts to obtain

T ime = O

„
mN

„
|O|

|Oi|
(|S|2 + NKMN) + |A|TEV

««

Space = O

„
N

„
|O|

|Oi|
|S| + TEV

««

where m is the planning (and execution) horizon, NKM is
the limit on the number of K-means iterations, N is the
upper limit on the number of clusters.

4. EVALUATION
We evaluate BAGA-S and compare it with BAGA using

combination of a well-known “multiagent lady and tiger” [9]
problem and its single-agent version. Each player had to
select an action for the multiagent game as well as for its
own instance of a single-agent game. The reward was a sum
of individual rewards of the three games.

4.1 Results
As a performance metric for the algorithms, we inves-

tigated the evolution of the average reward per step over
time. Our hypothesis was that BAGA-S is more robust in
the long term, while BAGA has advantage in shorter hori-
zon planning. The maximum number of particles for both
algorithms was fixed to 10, the number of random restarts
in the local search for Bayes-Nash equilibria in BAGA was
50. As a heuristic for computing expected optimal reward
EV , we used 2-step lookahead for both algorithms.

The results for the average reward per step for 50 steps,
averaged over 500 runs, are presented in Fig. 1. BAGA-S
has better performance even in the initial stages. We at-
tribute this to the fact that the algorithms need to perform
clustering as early as on the second time step and in this
memory-limited setting BAGA-S has an advantage of con-
centrating on the relevant parts of the joint history space.

5. CONCLUSION
We have presented an algorithm, BAGA-S, for solving

DEC-POMDPs, an important formalism for problems of co-
operative multiagent planning under uncertainty. The al-
gorithm is a modification of an existing BAGA algorithm,
the main difference being the way of handling local obser-
vations by individual agents. BAGA-S sacrifices cross-team
coherence of agents’ beliefs in attempt to make better use
of the observations. Although it does not provide unifom
improvement over BAGA, in certain settings, for large-scale
problems with long planning horizons, it may be the right
choice. Preliminary empirical evaluation is encouraging and
shows that making the most use of the local observations by
individual agents is important to the team performance.

6. ACKNOWLEDGEMENTS
This research has been sponsored by AFOSR grants FA9550-

07-1-0039 and FA9620-01-1-0542 and NSF ITR grant IIS-
0205526.

7. REFERENCES
[1] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman.

Solving transition independent decentralized Markov
decision processes. JAIR, 22:423–455, 2004.

[2] D. S. Bernstein, E. A. Hansen, and S. Zilberstein. Bounded
policy iteration for decentralized POMDPs. In IJCAI, 2005.

[3] D. S. Bernstein, R. Givan, N. Immerman, and
S. Zilberstein. The complexity of decentralized control of
Markov decision processes. Mathematics of Operations
Research, 27(4):819–840, 2002.

[4] R. Emery-Montemerlo, G. Gordon, J. Schneider, and
S. Thrun. Approximate solutions for partially observable
stochastic games with common payoffs. In Proc. AAMAS,
2004.

[5] R. Emery-Montemerlo, G. Gordon, J. Schneider, and
S. Thrun. Game theoretic control for robot teams. In Proc.
ICRA, 2005.

[6] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic
programming for partially observable stochastic games. In
Proc. AAAI, 2004.

[7] M. Koes, I. Nourbakhsh, and K. Sycara. Constraint
optimization coordination architecture for search and rescue
robotics. In Proc. ICRA, pages 3977–3982, May 2006.

[8] V. Lesser, C. Ortiz, and M. Tambe, editors. Distributed
Sensor Networks: A Multiagent Perspective, 2003.

[9] R. Nair, M. Tambe, M. Yokoo, D. V. Pynadath, and
S. Marsella. Taming decentralized POMDPs: towards
efficient policy computation for multiagent settings. In
Proc. IJCAI, 2004.

[10] M. Roth, R. Simmons, and M. Veloso. Decentralized
communication strategies for coordinated multi-agent
policies. Multi-Robot Systems: From Swarms to Intelligent
Automat, III, 2005.

[11] M. T. J. Spaan, G. J. Gordon, and N. A. Vlassis.
Decentralized planning under uncertainty for teams of
communicating agents. In Proc. AAMAS, 2006.

[12] D. Szer, F. Charpillet, and S. Zilberstein. MAA*: a
heuristic search algorithm for solving decentralized
POMDPs. In Proc. UAI, 2005.

864 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

