
Intelligent Adaptive Information Agents

Keith Decker, Katia Sycara, and Mike Williamson
The Robotics Institute, Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
(decker,sycara,mikew)@cs.cmu.edu

Abstract

Adaptation in open, multi-agent information gathering sys-
tems is important for several reasons. These reasons include
the inability to accurately predict future problem-solving work-
loads, future changes in existing information requests, future
failures and additions of agents and data supply resources, and
other future task environment characteristic changes that re-
quire system reorganization. We are developing a multi-agent
financial portfolio management system that must deal with all
of these problems. This paper will briefly describe our ap-
proaches and solutions at several different levels within the
agents: adaptation at the organizational, planning, scheduling,
and execution levels. We discuss our solution for execution-
level adaptation in detail, and present empirical evidence back-
ing up the theory behind the solution.

Introduction
Adaptation is behavior of an agent in response to unexpected
(i.e., low probability) events or dynamic environments. Ex-
amples of unexpected events include the unscheduled failure
of an agent, an agent’s computational platform, or underlying
information sources. Examples of dynamic environments in-
clude the occurrence of events that are expected but it is not
known when (e.g., an information agent may reasonably ex-
pect to become at some point overloaded with information re-
quests), events whose importance fluctuates widely (e.g., price
information on a stock is much more important while a trans-
action is in progress, and even more so if certain types of news
become available), the appearance of new information sources
and agents, and finally underlying environmental uncertainty
(e.g., not knowing beforehand precisely how long it will take
to answer a particular query).

We have been involved in designing, building, and analyz-
ing multi-agent systems that exist in these types of dynamic
and partially unpredictable environments. These agents han-
dle adaptation at several different levels, from the high-level
multi-agent organization down to the monitoring of individ-
ual method executions. In the next section we will discuss the
individual architecture of these agents. Then, in the section
entitled “Agent Adaptation” we will discuss the problems and
solutions to agent adaptation at the organizational, planning,

scheduling, and execution monitoring levels. In particular, we
will discuss how our architecture supports organizational and
planning-level adaptation currently and what areas are still un-
der active investigation. We will discuss schedule adaptation
only in passing and refer the interested reader to work else-
where. Finally, we will present a detailed model and some
experiments with one particular behavior, agent self-cloning,
for execution-level adaptation.

Agent Architecture
Most of our work in the information gathering domain to
date has been centered on the most basic type of intelligent
agent: the information agent, which is tied closely to a sin-
gle data source. The dominant domain level behaviors of
an information agent are: retrieving information from exter-
nal information sources in response to one shot queries (e.g.
“retrieve the current price of IBM stock”); requests for pe-
riodic information (e.g. “give me the price of IBM every
30 minutes”); monitoring external information sources for
the occurrence of given information patterns, called change-
monitoring requests, (e.g. “notify me when IBM’s price in-
creases by 10% over $80”). Information originates from ex-
ternal sources. Because an information agent does not have
control over these external information sources, it must ex-
tract, possibly integrate, and store relevant pieces of informa-
tion in a database local to the agent. The agent’s information
processing mechanisms then process the information in the
local database to service information requests received from
other agents or human users. Other simple behaviors that
are used by all information agents include advertising their
capabilities, managing and rebuilding the local database when
necessary, and polling for KQML messages from other agents.

An information agent’s reusable behaviors are facilitated by
its reusable agent architecture, i.e. the domain-independent
abstraction of the local database schema, and a set of generic
software components for knowledge representation, agent
control, and interaction with other agents. The generic soft-
ware components are common to all agents, from the simple
information agents to more complex multi-source informa-
tion agents, task agents, and interface agents. The design of

useful basic agent behaviors for all types of agents rests on
a deeper specification of agents themselves, and is embodied
in an agent architecture. Our current agent architecture is
an instantiation of the DECAF (Distributed, Environment-
Centered Agent Framework) architecture (Decker et al.
1995).

Control: Planning, Scheduling, and Action Execution

The control process for information agents includes steps for
planning to achieve local or non-local objectives, scheduling
the actions within these plans, and actually carrying out these
actions. In addition, the agent has a shutdown and an initial-
ization process. The agent executes the initialization process
upon startup; it bootstraps the agent by giving it initial objec-
tives to poll for messages from other agents and to advertise its
capabilities. The shutdown process is executed when the agent
either chooses to terminate or receives an uncontinueable er-
ror signal. The shutdown process assures that messages are
sent from the terminating agent asserting goal dissolution to
client agents and requesting goal dissolution to server agents
(see the section on planning adaptation).

The agent planning process (see Figure 1) takes as input the
agent’s current set of goals G (including any new, unplanned-
for goals Gn), and the set of current task structures (plan in-
stances) T . It produces a new set of current task structures
(Williamson, Decker, & Sycara 1996).

� Each individual task T represents an instantiated approach
to achieving one or more of the agent’s goals G—it is a
unit of goal-directed behavior. Every task has an (optional)
deadline.

� Each task consists of a partially ordered set of subtasks
and/or basic actions A. Currently, tasks and actions are
related by how information flows from the outcomes of one
task or action to the provisions of anther task or action. Sub-
tasks may inherit provisions from their parents and provide
outcomes to their parents. Each action also has an optional
deadline and an optional period. If an action has both a pe-
riod and a deadline, the deadline is interpreted as the one
for the next periodic execution of the basic action.

The most important constraint that the planning/plan re-
trieval algorithm needs to meet (as part of the agent’s overall
properties) is to guarantee at least one task for every goal until
the goal is accomplished, removed, or believed to be unachiev-
able (Cohen & Levesque 1990). For information agents, a
common reason that a goal in unachievable is that its speci-
fication is malformed, in which case a task to respond with
the appropriate KQML error message is instantiated. An in-
formation agent receives in messages from other agents three
important types of goals:

1. Answering a one-shot query about the associated database.

2. Setting up a periodic query on the database, that will be
run repeatedly, and the results sent to the requester each
time (e.g., “tell me the price of IBM every 30 minutes”).

3. Monitoring a database for a change in a record, or the ad-
dition of a new record (e.g., “tell me if the price of IBM
drops below $80 within 15 minutes of its occurrence”).

The agent scheduling process in general takes as input the
agent’s current set of task structures T , in particular, the set
of all basic actions, and decides which basic action, if any, is
to be executed next. This action is then identified as a fixed
intention until it is actually carried out (by the execution com-
ponent). Constraints on the scheduler include:

� No action can be intended unless it is enabled.

� Periodic actions must be executed at least once during their
period (as measured from the previous execution instance)
(technically, this is a max invocation separation constraint,
not a “period”).

� Actions must begin execution before their deadline.

� Actions that miss either their period or deadline are con-
sidered to have failed; the scheduler must report all failed
actions. Sophisticated schedulers will report such failures
(or probable failures) before they occur by reasoning about
action durations (and possibly commitments from other
agents) (Garvey & Lesser 1995).

� The scheduler attempts to maximize some predefined util-
ity function defined on the set of task structures. For the
information agents, we use a very simple notion of utility—
every action needs to be executed in order to achieve a task,
and every task has an equal utility value.

In our initial implementation, we use a simple earliest-
deadline-first scheduling heuristic. A list of all actions is con-
structed (the schedule), and the earliest deadline action that
is enabled is chosen. Enabled actions that have missed their
deadlines are still executed but the missed deadline is recorded
and the start of the next period for the task is adjusted to help
it meet the next period deadline. When a periodic task is
chosen for execution, it is reinserted into the schedule with a
deadline equal to the current time plus the action’s period.

The execution monitoring process takes the agent’s next in-
tended action and prepares, monitors, and completes its exe-
cution. The execution monitor prepares an action for execu-
tion by setting up a context (including the results of previous
actions, etc.) for the action. It monitors the action by option-
ally providing the associated computation-limited resources—
for example, the action may be allowed only a certain amount
of time and if the action does not complete before that time is
up, the computation is interrupted and the action is marked
as having failed. Upon completion of an action, results are
recorded, downstream actions are passed provisions if so indi-
cated, and runtime statistics are collected.

Planner Scheduler Execution
Monitor

Task Structures

Local DB

Plan Library

query
task

montr
task

montr
task

run-query

run-query

send-results

register-trigger

register-trigger

Schedule

I.G.
task poll-for-msgs

Current
Action
run-query

Control Flow
Data Flow

(ask-all ...)

(DB-monitor ...)

(DB-monitor ...)

site specific
external

interface code

Mirror of External DB
+ extra attributes

Registered triggers

Goals/Requests

Current Activity Information

Figure 1: Overall view of data and control flow in an information agent.

Agent Adaptation
In this section we briefly consider several types of adaptation
supported by this individual agent architecture in our cur-
rent and previous work. These types include organizational,
planning, scheduling, and execution-time adaptation. We
are currently actively involved in expanding an agent’s adap-
tation choices at the organizational and planning levels—in
this short paper we will only describe how our architecture
supports organizational and planning-level adaptation, what
we have currently implemented, and what directions we are
currently pursuing. We have not, in our current work, done
much with schedule adaptation; instead we indicate future
potential by pointing to earlier work within this general ar-
chitecture that addresses precisely schedule adaptation. Fi-
nally, we present a fairly comprehensive account of one type
of execution-time adaptation (“self-cloning”).

Organizational Adaptation

It has been clear to organizational theorists since at least the
60’s that there is no one good organizational structure for hu-
man organizations (Lawrence & Lorsch 1967). Organizations
must instead be chosen and adapted to the task environment
at hand. Most important are the different types and qualities
of uncertainty present in the environment (e.g., uncertainty
associated with inputs and output measurements, uncertainty
associated with causal relationships in the environment, the
time span of definitive feedback after making a decision (Scott
1987)). Recently, researchers have proposed that organiza-
tions grow toward, and structure themselves around, sources
of information that are important to them because they are
sources of news about how the future is (evidently) turning
out (Stinchcombe 1990).

In multi-agent information systems, one of the most im-
portant sources of uncertainty revolves around what informa-
tion is available from whom (and at what cost). We have
developed a standard basic advertising behavior that allows
agents to encapsulate a model of their capabilities and send
it to a “matchmaker” information agent (Kuokka & Harada
1995). Such a matchmaker agent can then be used by a multi-
agent system to form several different organizational struc-
tures(Decker, Williamson, & Sycara 1996):

Uncoordinated Team: agents use a basic shared behavior for
asking questions that first queries the matchmaker as to
who might answer the query, and then chooses an agent
randomly for the target query. Very low overhead, but po-
tentially unbalanced loads, reliability limited by individual
data sources, and problems linking queries across multiple
ontologies. Our initial implementation used this organiza-
tion exclusively.

Federations: (e.g., (Wiederhold, Wegner, & Cefi 1992;
Genesereth & Katchpel 1994; Finin et al. 1994)) agents
give up individual autonomy over choosing who they will

do business with to a locally centralized “facilitator” (an
extension of the matchmaker concept) that “brokers” re-
quests. Centralization of message traffic potentially allows
greater load balancing and the provision of automatic trans-
lation and mediation services. We have constructed general
purpose brokering agents, and are currently conducting an
empirical study of matchmaking vs. brokering behavior.
Of course, a hybrid organization is both possible and com-
pelling in many situations.

Economic Markets: (e.g., (Wellman 1993)) agents use price,
reliability, and other utility characteristics with which to
choose another agent. The matchmaker can supply to each
agent the appropriate updated pricing information as new
agents enter and exit the system, or alter their advertise-
ments. Agents can dynamically adjust their organization
as often as necessary, limited by transaction costs. Poten-
tially such organizations provide efficient load balancing
and the ability to provide truly expensive services (expen-
sive in terms of the resources required). Both brokers and
matchmakers can be used in market-based systems (corre-
sponding to centralized and decentralized markets, respec-
tively).

Bureaucratic Functional Units: Traditional
manager/employee groups of a single multi-source infor-
mation agent (manager) and several simple information
agent (employees). By organizing into functional units, i.e.,
related information sources, such organizations concentrate
on providing higher reliability (by using multiple underly-
ing sources), simple information integration (from partially
overlapping information), and load balancing. “Manag-
ing” can be viewed as brokering with special constraints
on worker behavior brought about by the manager-worker
authority relationship.

This is not an exhaustive list. Our architecture has sup-
ported other explorations into understanding the effects of
organizational structures (Decker 1996).

Planning Adaptation

The “planner” portion of our agent architecture consists of
a new hierarchical task network based planner using a plan
formalism that admits sophisticated control structures such
as looping and periodic tasks (Williamson, Decker, & Sycara
1996). It has features derived from earlier classical plan-
ning work, as well as task structure representations such as
TCA/TCX (Simmons 1994) and TÆMS (Decker & Lesser
1995). The focus of planning in our system is on explicating
the basic information flow relationships between tasks, and
other relationships that affect control-flow decisions. Most
control relationships are derivative of these more basic rela-
tionships. Final action selection, sequencing, and timing are
left up to the agent’s local scheduler (see the next subsection).

Some types of adaptation expressed by our agents at this level
in our current implementation include:

Adapting to failures: At any time, any agent in the system
might be unavailable or might go off-line (even if you are
in the middle of a long term monitoring situation with that
agent). Our planner’s task reductions handle these situa-
tions so that such failures are dealt with smoothly. If al-
ternate agents are available, they will be contacted and the
subproblem restarted (note that unless there are some sort
of partial solutions, this could still be expensive). If no al-
ternate agent is available, the task will have to wait. In the
future, such failures will signal the planner for an opportu-
nity to replan.

Multiple reductions: Each task can potentially be reduced in
several different ways, depending on the current situation.
Thus even simple tasks such as answering a query may be
result in very different sequences of actions (looking up an
agent at the matchmaker; using a already known agent, us-
ing a cached previous answer).

Interleaved planning and execution: The reduction of some
tasks can be delayed until other, “information gathering”
tasks, are completed.

Previous work has focussed on coordination mechanisms
alone. In particular, the Generalized Partial Global Planning
family of coordination mechanisms is a domain-independent
approach to multi-agent scheduling- and planning-level coor-
dination that works in conjunction with an agent’s existing
local scheduler to adapt a plan by adding certain constraints
(Decker & Lesser 1995). These include commitments to do a
task with a minimum level of quality, or commitments to do
a task by a certain deadline. If the resulting plan can be suc-
cessfully scheduled, these local commitments can be commu-
nicated to other agents where they become non-local commit-
ments to those agent’s local schedulers. Not all mechanisms
are needed in all environments. Nagendra-Prasad has begun
work on learning which mechanisms are needed in an envi-
ronment automatically (Prasad & Lesser 1996).

Scheduling Adaptation
In our current work, we have been using a fairly simple earli-
est deadline first scheduler that does little adaptation besides
adjusting the deadlines of periodic (technically “max invoca-
tion separation constrained”) actions that miss or are about
to miss their initial deadlines. Also, agents can dynamically
change their information request periods which affect only
the scheduling of the related actions.

Earlier work within this architecture has used a more so-
phisticated “Design-to-Time” scheduling algorithm, which
adapts the local schedule in an attempt to maximize schedule
quality while minimizing missed deadlines (Garvey & Lesser
1995; Decker & Lesser 1995). In doing so, the scheduler

may choose from both “multiple methods” (different algo-
rithms that represent difference action duration/result qual-
ity tradeoffs) and anytime algorithms (summarized by du-
ration/quality probability distribution tables (Zilberstein &
Russell 1992)).

Execution Adaptation
Within this architecture, previous execution-time adap-
tation has focussed on monitoring actions (Garvey &
Lesser 1995). Recently, we have begun looking at load-
balancing/rebalancing behaviors such as agent cloning.

Cloning Cloning is one of an information agent’s possible
responses to overloaded conditions. When an information
agent recognizes via self-reflection that it is becoming over-
loaded, it can remove itself from actively pursuing new queries
(“unadvertising” its services in KQML) and create a new in-
formation agent that is a clone of itself. To do this, it uses
a simple model of how it’s ability to meet new deadlines is
related to the characteristics of it’s current queries and other
tasks. It compares this model to a hypothetical situation that
describes the effect of adding a new agent. In this way, the
information agent can make a rational meta-control decision
about whether or not it should undertake a cloning behavior.

This self-reflection phase is a part of the agent’s execution
monitoring process. The start and finish time of each action is
recorded as well as a running average duration for that action
class. A periodic task is created to carry out the calculations
required by the model described below.

The key to modeling the agent’s load behavior is its cur-
rent task structures. Since one-shot queries are transient, and
simple repeated queries are just a subcase of database moni-
toring queries, we focus on database monitoring queries only.
Each monitoring goal is met by a task that consists of three
activities; run-query, check-triggers, and send-results. Run-
query’s duration is mostly that of the external query interface
function. Check-triggers, which is executed whenever the lo-
cal DB is updated and which thus is an activity shared by
all database monitoring tasks, takes time proportional to the
number of queries. Send-results takes time proportional to
the number of returned results. Predicting performance of an
information agent with n database monitoring queries would
thus involve a quadratic function, but we can make a simplifi-
cation by observing that the external query interface functions
in all of the information agents we have implemented so far
using the Internet (e.g., stock tickers, news, airfares) take an
order of magnitude more time than any other part of the sys-
tem (including measured planning and scheduling overhead).
If we let E be the average time to process an external query,
then with n queries of average period p, we can predict an idle
percentage of:

I% =
p�En

p
(1)

We validate this model in the next section.

When an information agent gets cloned, the clone could be
set up to use the resources of another processor (via an ‘agent
server’, or a migratable Java or Telescript program). However,
in the case of information agents that already spend the ma-
jority of their processing time in network I/O wait states, an
overhead proportion O < 1 of the En time units each pe-
riod are available for processing.1 Thus, as a single agent be-
comes overloaded as it reaches p=E queries, a new agent can
be cloned on the same system to handle another m = On
queries. When the second agent runs on a separate processor,
O = 1. This can continue, with the ith agent on the same
processor handling mi = Oimi�1 queries (note the dimin-
ishing returns). We also demonstrate this experimentally in
the next section. For two agents, the idle percentage should
then follow the model

I1+2% =
(p�En) + (OEn �Em)

p+OEn
(2)

It is important to note how our architecture supports this
type of introspection and on-the-fly agent creation. The ex-
ecution monitoring component of the architecture computes
and stores timing information about each agent action, so that
the agent learns a good estimate for the value ofE. The sched-
uler, even the simple earliest-deadline-first scheduler, knows
the actions and their periods, and so can compute the idle
percentage I%. In the systems we have been building, new
queries arrive slowly and periods are fairly long, in compari-
son to E, so the cloning rule waits until there are (p=E � 1)
queries before cloning. In a faster environment, with new
queries arriving at a rate r and with cloning taking duration
C, the cloning behavior should be begun when the number
of queries reaches

p

E
� drce

Execution Adaptation: Experimental Results
We undertook an empirical study to measure the baseline per-
formance of our information agents, and to empirically verify
the load models presented in the previous section for both a
single information agent without the cloning behavior, and
an information agent that can clone onto the same processor.
We also wanted to verify our work in the context of a real
application (monitoring stock prices).

Our first set of experiments were oriented toward the
measurement of the baseline performance of an information
agent. Figure 2 shows the average idle percentage, and the av-
erage percentage of actions that had deadlines and that missed

1Another way to recoup this time is to run the blocking exter-
nal query in a separate process, breaking run-query into two parts.
We are currently comparing the overhead of these two different uni-
processor solutions—in any case we stress that both behaviors are
reusable and can be used by any existing information agent without
reprogramming. Cloning to another processor still has the desired
effect.

them, for various task loads. The query period was fixed at 60
seconds, and the external query time fixed at 10 seconds (but
nothing else within the agent was fixed). Each experiment was
run for 10 minutes and repeated 5 times. As expected, the idle
time decreases and the number of missed deadlines increases,
especially after the predicted saturation point (n = 6). The
graph also shows the average amount of time by which an ac-
tion misses its deadline.

The next step was to verify our model of single information
agent loading behavior (Equation 1). We first used a partially
simulated information agent to minimize variation factors ex-
ternal to the information agent architecture. Later, we used a
completely real agent with a real external query interface (the
Security APL stock ticker agent).

On the left of Figure 3 is a graph of the actual and predicted
idle times for an information agent that monitors a simulated
external information source that takes a constant 10 seconds.2

The information agent being examined was given tasks by a
second experiment-driver agent. Each experiment consisted
of a sequence of 0 through 10 tasks (n) given to the informa-
tion agent at the start. Each task had a period of 60 seconds,
and each complete experiment was repeated 5 times. Each
experiment lasted 10 minutes. The figure clearly shows how
the agent reaches saturation after the 6th task as predicted by
the model (p=E = 6). The idle time never quite drops below
10% because the first minute is spent idling between startup
activities (e.g., making the initial connection and sending the
batch of tasks). After adding in this extra base idle time, our
model predicts the actual utilization quite well (R2 = 0:97;
R2 is a measure of the total variance explained by the model).

We also ran this set of experiments using a real external in-
terface, that of the Security APL stock ticker. The results are
shown graphically on the right in Figure 3. 5 experiments
were again run with a period of 60 seconds (much faster than
normal operation) and 1 through 10 tasks. Our utilization
model also correctly predicted the performance of this real sys-
tem, with R2 = 0:96 and the differences between the model
and the experimental results were not significant by either t-
tests or non-parametric signed-rank tests. The odd utilization
results that occurred while testing n = 7; 8; 9 were caused
by network delays that significantly changed the average value
of E (the duration of the external query). However, since the
agent’s execution monitor measures this value during problem
solving, the agent can still react appropriately (the model still
fits fine).

Finally, we extended our model to predict the utilization for
a system of agents with the cloning behavior, as indicated in
the previous section. Figure 4 shows the predicted and actual
results over loads of 1 to 10 tasks with periods of 60 seconds,
E = 10, and 5 repetitions. Agent 1 clones itself onto the same
processor when n > 5. In this case, model R2 = 0:89, and

2All the experiments described here were done on a standard
timesharing Unix workstation while connected to the network.

•
• •

•
• •

•

• • • •

∇

∇

∇
∇

∇
∇

∇

∇

∇

∇

∇

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

5

10

15

20

25

30

35

40

45

50

Idle %

• MD %
∇ MD Amount

Number of Periodic Queries

P
er

ce
nt

ag
es

A
verage M

issed D
eadline A

m
ount (seconds)

Figure 2: A graph of the average percentage idle time and average percentage of actions with deadlines that missed them for various
loads (left Y axis). Superimposed on the graph, and keyed to the right axis, are the average number of seconds by which a missed
deadline is missed.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10

Number of Periodic Queries

P
er

ce
nt

ag
e

Id
le

 T
im

e

Predicted

Actual

Security APL
Information Agent

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

Id
le

 T
im

e

Number of Periodic Queries

Predicted

Actual

Information Agent
with 10s simulated
External Interface

Figure 3: On the left, graph of predicted and actual utilization for a real information agent with a simulated external query
interface. On the right, the same graph for the Security APL stock ticker agent.

the differences between the model and the measured values
are not significant by t-test or signed-ranks. The same graph
shows the predicted curve for one agent (from the left side of
Figure 3) as a comparison.3

Number of Periodic Queries

P
er

ce
nt

ag
e

Id
le

Predicted, 1 agent

Predicted, with cloning (2 agents)

Actual, with cloning

0.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

0.1

Figure 4: Predicted idle percentages for a single non cloning
agent, and an agent with the cloning behavior across various
task loads. Plotted points are the measured idle percentages
from experimental data including cloning agents.

Current & Future Work
This paper has discussed adaptation in a system of intelli-
gent agents at four different levels: organizational, planning,
scheduling, and execution. Work at the organizational and
planning levels is a current, active pursuit; we expect to return
to schedule adaptation as time and resources permit. Cur-
rently, we are conducting an empirical study into matchmak-
ers, brokers, and related hybrid organizations.

This paper also discussed a fairly detailed model of, and
experimentation with, a simple cloning behavior we have im-
plemented. Several extensions to this cloning model are being
considered. In particular, there are several more intelligent
ways with which to divide up the tasks when cloning occurs
in order to use resources more efficiently (and to keep queries
balanced after a cloning event occurs). These include:

� Partitioning existing tasks by time/periodicity, so that the
resulting agents have a balanced, schedulable set of tasks.

� Partitioning tasks by client: all tasks from agent 1 end up
at the same clone.
3Since the potential second agent would, if it existed, be totally

idle from 1 < n < 6, the idle curve differs there in the cloning case.

� Partitioning tasks by class/type/content: all tasks about one
subject (e.g., the stock price of IBM) end up at the same
clone.

� For multi-source information agents, partitioning tasks by
data source: all tasks requiring the use of source A end up
at the same clone.

Acknowledgements
The authors would like to thank the reviewers for their help-
ful comments. This work has been supported in part by
ARPA contract F33615–93–1–1330, in part by ONR con-
tract N00014–95–1–1092, and in part by NSF contract IRI–
9508191.

References
Cohen, P. R., and Levesque, H. J. 1990. Intention is choice
with commitment. Artificial Intelligence 42(3):213–261.

Decker, K. S., and Lesser, V. R. 1995. Designing a family
of coordination algorithms. In Proceedings of the First In-
ternational Conference on Multi-Agent Systems, 73–80. San
Francisco: AAAI Press. Longer version available as UMass
CS-TR 94–14.

Decker, K.; Lesser, V.; Prasad, M. N.; and Wagner, T. 1995.
MACRON: an architecture for multi-agent cooperative in-
formation gathering. In Proccedings of the CIKM-95 Work-
shop on Intelligent Information Agents.

Decker, K.; Williamson, M.; and Sycara, K. 1996. Modeling
information agents: Advertisements, organizational roles,
and dynamic behavior. In Proceedings of the AAAI-96 Work-
shop on Agent Modeling.

Decker, K. S. 1996. Task environment centered simulation.
In Prietula, M.; Carley, K.; and Gasser, L., eds., Simulat-
ing Organizations: Computational Models of Institutions and
Groups. AAAI Press/MIT Press. Forthcoming.

Finin, T.; Fritzson, R.; McKay, D.; and McEntire, R. 1994.
KQML as an agent communication language. In Proceed-
ings of the Third International Conference on Information and
Knowledge Management CIKM’94. ACM Press.

Garvey, A., and Lesser, V. 1995. Representing and schedul-
ing satisficing tasks. In Natarajan, S., ed., Imprecise and
Approximate Computation. Norwell, MA: Kluwer Academic
Publishers. 23–34.

Genesereth, M., and Katchpel, S. 1994. Software agents.
Communications of the ACM 37(7):48–53,147.

Kuokka, D., and Harada, L. 1995. On using KQML
for matchmaking. In Proceedings of the First International
Conference on Multi-Agent Systems, 239–245. San Francisco:
AAAI Press.

Lawrence, P., and Lorsch, J. 1967. Organization and Envi-
ronment. Cambridge, MA: Harvard University Press.

Prasad, M. N., and Lesser, V. 1996. Learning situation-
specific coordination in generalized partial global planning.
In AAAI Spring Symposium on Adaptation, Co-evolution and
Learning in Multiagent Systems.

Scott, W. R. 1987. Organizations: Rational, Natural, and
Open Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc.

Simmons, R. 1994. Structured control for autonomous
robots. IEEE Trans. on Robotics and Automation 10(1).

Stinchcombe, A. L. 1990. Information and Organizations.
Berkeley, CA: University of California Press.

Wellman, M. 1993. A market-oriented programming envi-
ronment and its application to distributed multicommodity
flow problems. Journal of Artificial Intelligence Research 1:1–
23.

Wiederhold, G.; Wegner, P.; and Cefi, S. 1992. To-
ward megaprogramming. Communications of the ACM
33(11):89–99.

Williamson, M.; Decker, K.; and Sycara, K. 1996. Unified
information and control flow in hierarchical task networks.
In Proceedings of the AAAI-96 workshop on Theories of Plan-
ning, Action, and Control.

Zilberstein, S., and Russell, S. J. 1992. Constructing utility-
driven real-time systems using anytime algorithms. In Pro-
ceedings of the IEEE Workshop on Imprecise and Approximate
Computation, 6–10.

