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Abstract

Negotiation has been extensively discussed in game-
theoretic, economic, and management science litera-
tures for decades. Recent growing interest in elec-
tronic commerce has given increased importance to
automated negotiation. Evidence both from theoret-
ical analysis and from observations of human inter-
actions suggests that if decision makers can somehow
take into consideration what other agents are thinking
and furthermore learn during their interactions how
other agents behave, their payoff might increase. In
this paper, we propose a sequential decision making
model of negotiation, called Bazaar. Within the pro-
posed negotiation framework, we model learning as a
Bayesian belief update process. In this paper, we ex-
plore the hypothesis that learning is beneficial in se-
quential negotiation and present initial experimental
results.

Introduction
Recent growing interest in autonomous interacting
software agents and their potential application in areas
such as electronic commerce (e.g., (Sandholm & Lesser
1995)) has given increased importance to automated
negotiation. Much DAI and game theoretic research
(Rosenschein & Zlotkin 1994; Osborne & Rubinstein
1994; Kraus & Subrahmanian 1995) deals with coordi-
nation and negotiation issues by giving pre-computed
solutions to specific problems. There has been much
research reported on developing theoretical models in
which learning plays an eminent role, especially in
the area of adaptive dynamics of games (e.g., (Jordan
1992; Kalai & Lehrer 1993)). However, to build au-
tonomous agents that improve their negotiation com-
petence based on learning from their interactions with
other agents is still an emerging area.

Learning in negotiation is closely coupled with the
issue of how to model the overall negotiation process,
i.e., what negotiation protocols are adopted. Stan-
dard game-theoretic models (Osborne & Rubinstein
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1994) tend to focus on outcomes of negotiation in con-
trast to the negotiation process itself. DAI research
(Rosenschein & Zlotkin 1994) emphasizes special pro-
tocols articulating compromises while trying to mini-
mize the potential interactions or communications of
the involved agents. Since we are motivated by a dif-
ferent set of research issues, such as including effec-
tive learning mechanisms in the negotiation process,
we adopt a different modeling framework, i.e., a se-
quential decision making paradigm (Bertsekas 1995;
Cyert & DeGroot 1987).

The basic characteristic of a sequential decision pro-
cess is that there is a sequence of decision making
points (different stages) which are dependent on each
other. In a sequential making process, the decision
maker has a chance to update his knowledge after im-
plementing the decision made at a certain stage and
receiving feedback. In most negotiation models, how-
ever, there is no feedback, therefore no chance of be-
lief updating. In this paper, we propose a sequential
decision making model, called Bazaar, which is able
to learn. We address multi-agent learning issues in
Bazaar by explicitly modeling beliefs about the negoti-
ation environment and the participating agents under a
probabilistic framework using a Bayesian learning rep-
resentation and updating mechanism. We also report
our initial experimental results in a simple bargain-
ing scenario. Our ultimate research goal is to develop
an adaptive negotiation model capable of exhibiting a
rich set of negotiation behaviors with modest compu-
tational effort.

Sequential Decision Making with
Rational Learning

Our overall research goal is to develop a computa-
tional model of negotiation that can handle multi-agent
learning and other complicated issues (e.g., multi-issue
multi-criteria negotiation) that don’t have straightfor-
ward and computationally efficient analytic models.
We believe that a useful computational model of ne-
gotiation should exhibit the following characteristics:
(1) The model should support a concise yet effective
way to represent negotiation context. (2) The model



should be prescriptive in nature. (3) The computa-
tional resources required for finding reasonable sugges-
tions/solutions should be moderate, sometimes at the
cost of compromising the rigor of the model and the
optimality of solutions. (4) The model should provide
means to model the dynamics of negotiation. (5) The
model should also support the learning capability of
participating agents. Motivated by these desirable fea-
tures, we have developed Bazaar, a sequential decision
making negotiation model that is capable of learning.

Bazaar: a formal description
I In Bazaar, a negotiation process can be modeled by

a 10-tuple
< N,M,∆, A,H,Q,Ω, P, C,E >, where,

A-1 A set N (the set of players).
A-2 A set M (the set of issues/dimensions covered

in negotiation. For instance, in the supply
chain management domain, this set could include
product price, product quality, payment method,
transportation method, etc.)

A-3 A set of vectors ∆ ≡ {(Dj)j∈M} (a set of vectors
whose elements describe each and every dimension
of an agreement under negotiation).
A set A composed of all the possible actions that
can be taken by every member of the players set.

B A ≡ ∆ ∪ {Accept,Quit}
A-4 For each player i ∈ N a set of possible agreements

Ai.
B For each i ∈ N , Ai ⊂ A.

A-5 A set H of sequences (finite or infinite) that sat-
isfies the following properties:

B The elements of each sequence are defined over
A.

B The empty sequence Φ is a member of H.
B If (ak)k=1,...,K ∈ H and L < K then

(ak)k=1,...,L ∈ H.
B If (ak)k=1,...,K ∈ H and aK ∈ {Accept,Quit}

then ak∈{Accept,Quit} when k = 1, . . . ,K − 1.
Each member of H is a history; each component
of a history is an action taken by a player. A
history (ak)k=1,...,K is terminal if there is no aK+1

such that (ak)k=1,...,K+1 ∈ H. The set of terminal
histories is denoted by Z.

A-6 A function Q that associates each nonterminal his-
tory (h ∈ H \ Z) to a member of N . (Q is called
the player function which determines the order-
ings of agent responses.)

A-7 A set of Ω of relevant information entities. Ω is in-
troduced to represent the players’ knowledge and
belief about the following aspects of negotiation:

B The parameters of the environment, which can
change over time. For example, in supply chain
management, global economic or industry-wide
indices such as overall product supply and de-
mand and interest rate, belong to Ω.

B Beliefs about other players. These beliefs can be
approximately decomposed into three categories:

(a) Beliefs about the factual aspects of other agents,
such as how their payoff functions are struc-
tured, how many resources they have, etc.

(b) Beliefs about the decision making process of
other agents. For example, what would be other
players’ reservation prices.

(c) Beliefs about meta-level issues such as the over-
all negotiation style of other players. Are they
tough or compliant? How would they perceive
a certain action? What about their risk-taking
attitudes? etc.

A-8 For each nonterminal history h and each player
i ∈ N , a subjective probability distribution Ph,i
defined over Ω. This distribution is a concise rep-
resentation of the knowledge held by each player
in each stage of negotiation.

A-9 For each player i ∈ N , each nonterminal history
H \ Z, and each action ai ∈ Ai, there is an im-
plementation cost Ci,h,ai . C can be interpreted
as communication costs or costs associated with
time caused by delaying terminal action (Accept
or Quit).

A-10 For each player i ∈ N a preference relation �i on
Z and Ph,i for each h ∈ Z. �i in turn results in
an evaluation function Ei(Z,PZ,i).

We will present the solution strategy in Bazaar before
we discuss the characteristics of the model.

Solution Strategy in Bazaar

Although the role that the players play (e.g., selling or
buying) with respect to initiating the negotiation pro-
cess can have an impact1 , the decision making pro-
cess in a negotiation scenario, namely, determining the
particular contents of an offer/counter-offer (quit and
accept can be viewed as a special offer), is symmetrical
for all the players. So the following solution framework
is not limited by roles of the players:

I For each player i, a negotiation strategy is a sequence
of actions (aki , k = 1, . . . ,K), where

– k denotes that aki is the kth action (k ≤ K) taken
by i,

– aki ∈ Ai,
– aKi ∈ {Accept,Quit},
– aki∈{Accept,Quit} when k = 1, . . . ,K − 1

I Before negotiation starts, each player has a certain
amount of knowledge about Ω, which may include
the knowledge about the environment where the ne-
gotiation takes place, and may also include the prior
knowledge about other players (from previous expe-
rience or from second-hand knowledge, or rumors,
1For example, in a 2-player supply chain situation, the

supplier often is the first one to initiate a negotiation.
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etc.) This prior knowledge is denoted (see A-8) as
PΦ,i.

I Suppose player i has been interacting with another
player j for k times. In other words, i has sent ex-
actly k offers or counter-offers to j (presumably re-
ceived k or k + 1 offers or counter-offers from j de-
pending on who initiated the negotiation process).
Let’s assume that neither Accept nor Quit has ap-
peared in these offers and counter-offers. In Bazaar,
the following information is available when i tries to
figure out what to do next (the content of its k+1th
offer):

1. All the actions taken by all the agents up to the
current time point when i makes decision about
the k+1th offer. Formally, each and every history
h that is a sequence of k actions is known to i.
Let’s denote this set of histories by Hi,k.

2. The set of subjective probability distributions over
Ω, PHi,k−1,i ≡ {Ph,i|h ∈ Hi,k−1} is known to i.

A player takes the following steps to decide how to
reply to the most recent action taken by other par-
ticipant(s):

Step 1 Update his subjective evaluation about the envi-
ronment and other players using Bayesian rules:
Given prior distribution PHi,k−1,i and newly in-
coming information Hi,k, calculate the posterior
distribution PHi,k,i.

Step 2 Select the best action âk+1,i out of Ai according
to the following recursive evaluation criteria:
Vi,k,Hi,k = Ei(Hi,k, PHi,k,i) when Hi,k ∈ Z
Vi,k,Hi,k = maxai∈Ai(−Ci,Hi,k,ai +∫

Ω
(Vi,k+1,Hi,k |ai × PHi,k,i)dΩ)

The first equation represents the termination cri-
terion. The second equation can be summarized
as “always choose the action that maximizes the
expected payoff given the information available
at this stage”. The implementation cost C at
this stage has been deducted from the future (ex-
pected) payoff.

Learning in Negotiation

The importance of learning in negotiation has been re-
cently recognized in the game research community as
fundamental for understanding human behavior as well
as for developing new solution concepts (Osborne &
Rubinstein 1994; Harsanyi & Selten 1972). In (Jordan
1992) the author studied the impact of Bayesian learn-
ing processes for finite-strategy normal form games.
Kalai and Lehrer (Kalai & Lehrer 1993) analyzed in-
finitely repeated games in which players as subjec-
tive utility maximizers learn to predict opponents’ fu-
ture strategies. These theoretical results, however, are
available only for the simplest game settings and valid
only under very restrictive assumptions such as only
a subset of possible negotiation strategies are allowed.

Multi-agent learning has also increasingly drawn re-
search efforts from Distributed AI community. Mor et.
al. (Mor, Goldman, & Rosenschein 1995) discussed
multi-agent learning as a means to reach equilibrium.
They modeled agents as finite automata and ana-
lyzed the computational complexity of certain classes
of learning strategies based on this automaton model.
In (Sen & Sekaran 1995) the authors demonstrated
that some simple agent adaptive behaviors based on
reciprocity allow agents to produce satisfactory global
performance. In the context of Bazaar, we are using
the Bayesian framework to update the knowledge and
belief that each agent has about the environment and
other agents.

In this section, we use a buyer-supplier example
used before to demonstrate how the Bayesian frame-
work can be utilized in a negotiation setting. For il-
lustrative purposes, we consider the negotiation pro-
cess only from the viewpoint of the buyer and assume
that the relevant information set Ω is comprised of only
one item: belief about the supplier’s reservation price
RPsupplier . An agent’s reservation price is the agent’s
threshold of offer acceptability. Typically a reserva-
tion price is private to each agent, and is different for
each agent for each negotiation issue. For example, a
supplier’s reservation price is the price such that the
supplier agent will not accept an offer below this price;
a buyer’s reservation price is the price such that the
buyer will not accept an offer above this price. As
shown in Figure 1, when the supplier’s reservation price
RPsupplier is lower than the buyer’s reservation price
RPbuyer, any point within the “zone of agreement” is
a candidate solution; while, if RPbuyer is lower than
RPsupplier , as shown in Figure 2, the zone of agree-
ment doesn’t exist and no deal can be reached via ne-
gotiation. If a zone of agreement exists, typically both
the buyer and the supplier will make concessions from
their initial proposal. The buyer will increase his initial
proposal, while the supplier will decrease his. Eventu-
ally, a proposal within the zone of agreement will be
acceptable to both.

Buyer’s initial offer Seller’s initial offer

Zone of Agreement Buyer’s

Reservation Price

Seller’s

Reservation Price

RP RP buyersupplier

Figure 1: An example of reservation prices and “zone
of agreement”

It is obvious that although the buyer knows his own
reservation price, the precise value of RPsupplier is un-
known to him. Therefore, the zone of agreement is
not known by either of the agents. Nevertheless, the
buyer could update his belief (learn) about RPsupplier
based on his interactions with the supplier and on his
domain knowledge. As a result of learning, the buyer
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Reservation Price

RP

Buyer’s

Reservation Price

RP

Seller’s

supplierbuyer

Figure 2: An example in which no “zone of agreement”
exists

is expected to gain more accurate expectation of the
supplier’s payoff structure and therefore make more ad-
vantageous offers. In this example, we show how the
buyer’s belief about RPsupplier can be updated during
negotiation.

The buyer’s partial belief about RPsupplier can be
represented by a set of hypotheses Hi, i = 1, 2, . . . , n.
For instance, H1 can be “RPsupplier = $100.00”; H2

“RPsupplier = $130.00”. A priori knowledge held by
the buyer can be summarized as probabilistic evalua-
tion over the set of hypotheses {Hi} (e.g., P (H1) = 0.2,
P (H2) = 0.35, . . . ). The Bayesian updating occurs
when the buyer receives new signals from the out-
side environment or from the supplier. Along with
domain-specific knowledge, these new signals enable
the buyer to acquire new insights about RPsupplier in
the form of posterior subjective evaluation over Hi. In
our case, the offers and counter-offers (Offersupplier)
from the supplier comprise the incoming signal; while
the domain knowledge can be an observation such
as: “Usually in our business people will offer a price
which is above their reservation price by 17%”, which
can be represented by a set of conditional statements
of similar form, one of which is shown as follows:
P (e2 | H2) = 0.95, where e2 represents “Offersupplier =
$152.1”, and H2 “RPsupplier = $130.00”.

Given the encoded domain knowledge in the form of
conditional statements and the signal (e) in the form
of offers made by the supplier, the buyer can use the
standard Bayesian updating rule to revise his belief
about RPsupplier : P (Hi | e) = P (Hi)P (e|Hi)P

n
k=1 P (e|Hk)P (Hk)

We use a numerical example to show how this updat-
ing works. For simplicity, we suppose that the buyer
knows that the supplier’s reservation price is either
$100.00 or $130.00. In other words, the buyer has only
two hypotheses: H1: “RPsupplier = $100.00” and H2:
“RPsupplier = $130.00”.

At the beginning of the negotiation, the buyer
doesn’t have any other additional information. His
a priori knowledge can be summarized as: P (H1) =
0.5, P (H2) = 0.5.

In addition, we suppose that the buyer is aware of
“Suppliers will typically offer a price which is above
their reservation price by 17%”, part of which is en-
coded as: P (e1 | H1) = 0.95 and P (e1 | H2) = 0.75,
where e1 denotes the event that the supplier asks
$117.00 for the goods under negotiation.

Now suppose that the supplier offers $117.00 for the
product the buyer wants to purchase. Given this signal
and the domain knowledge, the buyer can calculate the
posterior estimation of RPsupplier as follows: P (H1 |
e1) = P (H1)P (e1|H1)

P (H1)P (e1|H1)+P (H2)P (e1|H2) = 55.9%; P (H2 |
e1) = P (H2)P (e1|H2)

P (H2)P (e1|H1)+P (H2)P (e1|H2) = 44.1%
Suppose that the buyer adopts a simple negotiation

strategy: “Propose a price which is 10% below the es-
timated RPsupplier”. Prior to receiving the supplier’s
offer ($117.00), the buyer would propose $115.00 (the
mean of the RPsupplier subjective distribution). After
receiving the offer from the supplier and updating his
belief about RPsupplier , the buyer will propose $113.23
instead. Since the new offer is calculated based on a
more accurate estimation of the supplier’s utility struc-
ture, it might result in a potentially more beneficial
final outcome for the buyer and may also help both
sides reach the agreement more efficiently.

Experimental Study: Learning in
Bargaining

In our initial experiments, we consider a simple bar-
gaining scenario with the following characteristics:

• The set of players N is comprised of one buyer and
one supplier

• The set of dimensions M contains only one issue,
price

• For simplicity, the range of possible prices is from 0
to 100 units

• The set of possible actions (proposed prices by
either the buyer or the supplier) A equals to
{0, 1, 2, . . . , 100}

• The player function Q is defined in such a way that
the buyer and the supplier make alternate proposals.
Who will be proposing first is decided by coin-tossing

• For simplicity, the relevant information set Ω con-
tains only the supplier’s reservation price RPs and
the buyer’s reservation price RPb

• Reservation prices are private information. In other
words, each player only knows his own reservation
price

• The range of possible prices is public information
• Each player’s utility is linear to the final price ( a

number between 0 and 100) accepted by both players
• Each agent is allowed to propose only strictly mono-

tonically. For example, the supplier’s subsequent of-
fers will increase monotonically, while the buyer’s
offers will decrease monotonically. They are not al-
lowed to propose the same value more than once

Since the negotiation process is symmetrical for
the buyer and the supplier, the following discussions
about the strategies with or without learning apply to
both agents. In our experiments, by the non-learning
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agents, we mean the agent that makes his decision
based solely on his own reservation price. For in-
stance, the supplier may start proposing 100 initially.
The buyer deems it unacceptable and proposes another
value. Since the non-learning supplier does not have
a model of the buyer (in terms of the buyer’s reserva-
tion price), the supplier just compares the buyer’s offer
with his own reservation price RPs. If the buyer’s of-
fer exceeds RPs, the supplier will accept the offer and
the negotiation process ends. If not, the supplier will
propose a value which is below his previous offer by
a fixed percentage 2 but above RPs (the actual value
will be rounded up to an integer value). The learning
agent’s negotiation strategy is fundamentally different.
Decisions will be made based on both the agent’s own
and the opponent’s reservation price. Note that reser-
vation prices are private information and there is no
way that the agent can know the exact value of his op-
ponent’s reservation price, even after an agreement has
been reached. However, each learning agent can have
some a priori estimation about his opponent’s reserva-
tion price and update his estimation during the negoti-
ation process using the Bayesian updating mechanism.
In our implementation, an agent represents his subjec-
tive beliefs about his opponent’s reservation price us-
ing a piecewise probability distribution function. This
function is implemented as a vector with 101 elements
~Π = [P0, P1, . . . , P100]. In this vector, Pi represents
the agent’s current estimation of the probability that
his opponent’s reservation price is i. The current esti-
mation of his opponent’s reservation price itself is cal-
culated as the mean

∑100
i=0 i ∗ Pi/101. In general, the

buyer and the supplier will have different initial set of
subjective belief vectors ~Π0

s and ~Π0
b .

The buyer and the supplier have a different set
of conditional probability functions. Let’s take the
buyer’s standpoint. One of the conditional distribution
function DKb

i represents the distribution of the possi-
ble proposals made by the supplier given that RPs = i.
Figure 3 shows the shape ofDKb

i . In essence, this func-
tion says that with a very high probability the supplier
will propose some percent3 above his true reservation
price b. Higher or lower than that is less probable.
Similar functions are defined for the supplier as well.

Experimental Results
We conducted experiments in three different settings:

1. non-learning buyer vs. non-learning supplier
2. learning buyer vs. learning supplier
3. learning buyer vs. non-learning supplier

For each configuration, we ran 500 random exper-
iments. Each experiment instance corresponds to a
complete bargaining scenario which involves multiple

2In our experiments, the percentage was arbitrarily set
to 1.5%.

3In our experiments, we arbitrarily set this percent 30%.

0 1.17*i 100i

Figure 3: An example of conditional probability func-
tion DKb

i

Configuration Joint Utility # of Proposals
exchanged

both learn 0.22 24
neither learn 0.18 34

only buyer learns 0.15 28

Table 1: Average Performance of Three Experimental
Configurations

rounds of exchanging proposals and counter-proposals.
We generated these 500 random experimental instances
by creating 500 pairs of random numbers. Out of each
pair, the lower end, representing the supplier’s reserva-
tion price, was a realization of a random number that
is uniformly distributed in the interval [0..49]. The
upper end, representing the buyer’s reservation price,
was a realization of a random number that is uniformly
distributed in the interval [50..100]. In this way, we en-
sured that the zone of agreement always exists. Note
that learning takes place within each run of the exper-
iment rather than between runs.

We measured the quality of a particular bargain-
ing process using the normalized joint utility fash-
ioned after the Nash solution(Luce & Raiffa 1957).
Suppose the buyer and the supplier agree on a par-
ticular price P∗, the joint utility is then defined as:
(P∗−RPs)×(RPb−P∗)

(RPb−RPs)2 It can be easily shown that the joint
utility reaches the maximum 0.25 when P∗ is the arith-
metic average of RPb and RPs. Note that in our ex-
perimental setting this theoretic maximum might not
be reached, for RPb and RPs are not known to both
agents.

The cost of a bargaining process is measured by
the number of proposals exchanged before reaching an
agreement. We report in Table 1 the average perfor-
mance of all three configurations. Our observations
about these experimental results are as follows.

• We noticed that in terms of overall bargaining qual-
ity and number of proposals exchanged to reach a
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compromise, the “both learn” configuration outper-
formed the other two. This confirmed our intuition
that building learning capability into agents’ deci-
sion making helps agents form more accurate model
of the opponent and results in better performance
and less expensive process.
• Judged from the viewpoint of the joint utility, the

“only buyer learns” configuration does less well com-
pared with “both learn”. In effect, it is even worse
than “neither learn”. A careful examination of data
reveals that although the joint utility suffers, the
buyer (the only learning agent) actually did con-
sistently better for himself (in terms of maximizing
his own individual utility) than he did in the “both
learn” configuration. We suspect the reason is that
the buyer has formed better estimation of his non-
learning opponent’s reservation price and therefore
takes advantage of the “dummy” supplier. Since the
optimal Nash solution requires an even split in the
zone of the agreement, the buyer-dominant solution
leads to lower joint utility. The “neither learn” con-
figuration doesn’t show any consistent bias either in
favor of the buyer or the supplier.

We examined the data of “neither learn and “both
learn” in more detail by further dividing all the 500 ex-
periment instances (1000 instances altogether for both
configurations) into different categories according to
the size of the zone of agreement. Then, we calcu-
lated the differences of the corresponding joint utilities
between “neither learn” and “both learn” and plot-
ted the percentage difference in joint utility improve-
ment against the size of the zone of agreement. The
result is shown in Figure 4. We observed that there
seems to be a positive correlation between these two
variables. An intuitive explanation could be that the
greater the room for agreement flexibility (greater the
zone of agreement), the better the learning agents seize
the opportunity.

% of Improvement

Size of Zone of Agreement
40 80

70%

Figure 4: Relations between the Size of the Zone of
Agreement & Percent Improvement of Joint Utility

Concluding Remarks and Future work
In this paper, we presented Bazaar, a sequential de-
cision making model of negotiation in which multi-
agent learning is an integral construct of the model.
This model is motivated by providing a computational
framework for negotiation which satisfies the follow-
ing features: (1) the model provides a solution strat-

egy to guide offers instead of only prescribing the final
outcome, and (2) learning can be easily incorporated
into the model. Initial experiments show that learn-
ing is beneficial in this sequential negotiation model.
Current work focuses on conducting more extensive
experiments and theoretical analysis of the impact of
learning under various conditions. Future work will in-
vestigate the application of the Bazaar framework on
nontrivial negotiation scenarios such as supply chain
management.
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