
Uncertain Information Fusion for Force Aggregation and Classification in
Airborne Sensor Networks

Bin Yu, Katia Sycara, Joseph Giampapa, Sean Owens
School of Computer Science, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213, USA
{byu, katia, garof, owens }@cs.cmu.edu

Abstract

The paper describes airborne sensor networks for tar-
get tracking and identification in military applications.
The raw information about targets from airborne sen-
sors is uncertain and often noisy. One challenge in air-
borne sensor networks is how to effectively fuse enor-
mous amounts of uncertain and noisy information for
better battlefield situation assessment. In this paper
we present a novel approach to military force aggre-
gation and classification using Dempster-Shafer theory
and doctrinal templates. Our approach helps comman-
ders understand operational pictures of the battlefield,
e.g., enemy force levels and deployment, and make bet-
ter decisions than adversaries in the battlefield. A sam-
ple application of our approach is illustrated in the sim-
ulated testbed OTBSAF and RETSINA system.

Introduction
Sensor networks are emerging as a new trend in informa-
tion technology for monitoring and collecting information
in both military and non-military applications. In a mili-
tary context, various airborne sensors, e.g., SAR (Synthetic
Aperture Radar), EO (Electro-Optical radar), and GMTI
(Ground Moving Target Indicator), are deployed in the bat-
tlefield for target tracking and identification. These sensors
are mounted on a number of platforms such as a C-130, F-
16, or UAV. For example, a SAR sensor can recognize the
location and identity of a stationary target within the bounds
of the scanned area; a GMTI sensor can detect a moving tar-
get and follow the movement of the target. The raw informa-
tion about targets from these airborne sensors isuncertain(a
sensor will give a list of candidate target types with different
confidence levels) and oftennoisy(a sensor may confuse a
T80 tank with aT72M tank).

One challenge in airborne sensor networks is how to pro-
cess and aggregate data from many sources to generate an
accurate and timely picture of the battlefield (Hall & Lli-
nas 1997; Sycara & Lewis 2002). The commanders need
to develop a good understanding of the battlefield from the
low-level intelligence information. The understanding of
the battlefield situation, including location, movement, and
deployment of enemy forces, is essential for commanders
to make better decisions than adversaries in the battlefield.
Current attempts to bring more information to commanders
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are doomed to failure due to cognitive overload. With enor-
mous amounts of information available for command de-
cisions, it is impossible for commanders to fully analyze
raw information for corresponding situation assessment. A
mechanism is required to allow commanders to easily model
and assess the dynamic situations based on the flow and fu-
sion of collected information from various sensors.

In this paper we present a novel approach to uncer-
tain information fusion for force aggregation and classifica-
tion using Dempster-Shafer theory and doctrinal templates.
We consider two frameworks for uncertain information fu-
sion: Bayesian inference method and Dempster-Shafer the-
ory (Russell & Norvig 2002). We choose Dempster-Shafer
theory, since it relaxes the Bayesian’s restriction on mutu-
ally exclusive hypotheses so that it is able to assign evidence
to the union of hypotheses. Dempster-Shafer theory leads to
the intuitive process of narrowing a hypothesis, where initial
uncertainty is replaced with belief or disbelief as evidence
is accumulated. The notion of conflict in Dempster-Shafer
theory naturally captures the template matching process be-
tween a cluster of subechelons and doctrinal templates.

The idea of using Dempster-Shafer theory for uncertain
information fusion is not new, e .g., multisensor target iden-
tification (Bogler 1987; Lowrance, Garvey, & Strat 1986)
and force aggregation and classification (Schubert 2001).
However, these approaches do not properly deal with noisy
and conflicting sensor information and simply fuse sensor
reports together for each target. We propose a different ap-
proach to sensor information fusion, in which we avoid fus-
ing conflicting sensor information if we find two given sen-
sor reports do not support the same type of target. The focus
of this paper will be on information fusion for force aggre-
gation and classification, e.g., how to analyze and aggregate
the uncertain sensor information for each target and how to
recognize different types of echelons. We will not consider
sensor information association and correlation.1 We assume
the problem of transforming sensor information into a con-
sistent set of entities has been solved in low-level fusion
(Klein 1999; Steinberg, Bowman, & White 1999).

The rest of this paper is organized as follows. Section
2 describes the approach for force aggregation and classifi-
cation. Section 3 illustrates a sample application using the
simulated testbed OTBSAF and RETSINA system. Section
4 summarizes the relevant literature. Section 5 concludes
this paper and presents some directions for future research.

1For example, if tankA found by a SAR sensor is the same as
tankB found by a GMTI sensor.



Force Aggregation and Classification
Commonly used algorithms for information fusion are
Bayesian inference method and Dempster-Shafer theory of
evidence. SupposeH is the hypothesis,E1 andE2 are two
pieces of evidence from sensorsS1 andS2, respectively. The
Bayes Rule for information fusion is (Hinman 2002),

P (H|E1, E2) =
P (E1, E2|H)P (H)

P (E2, E1)
(1)

Assuming thatE1 andE2 are independent, then we have

P (E1, E2) = P (E1)P (E2) (2)

P (E2|H,E1) = P (E2|H) (3)

P (E1, E2|H) = P (E1|H)P (E2|H, E1) (4)

The formulaP (H|E1, E2) can be rewritten as

P (H|E1, E2) =
P (E1|H)P (E2|H)P (H)

P (E1)P (E2)
(5)

whereP (H|E1, E2) is the posterior probability after con-
sidering two prices of evidenceE1 andE2, P (H), P (E1),
andP (E2) are prior probabilities,P (E1|H) andP (E2|H)
are conditional probabilities of the belief inE1 andE2 when
H is considered, andP (E2)P (E1) is a normalization factor.

Bayesian inference needs some strong assumptions and
some of them are not easy to be satisfied in information fu-
sion for the dynamic battlefield (Klein 1999). Since the bat-
tlefield is typically not repeatable in nature, the prior prob-
ability informationP (H) is usually not available, e.g., the
probability of any vehicle as aT80 tank. Also, when multi-
ple sensors are tasked to some specific areas, the conditional
probabilitiesP (E1|H) andP (E2|H) are not available, ei-
ther. These conditional probabilities are affected by the res-
olutions of sensors as well as other factors of the areas being
scanned, e.g., weather, smoke, fog, and vegetation.

Dempster-Shafer theory
Both Bayesian inference and Dempster-Shafer theory can
update a priori probability estimation with new observa-
tions, but we choose Dempster-Shafer theory, since it re-
laxes the Bayesian’s restriction on mutually exclusive hy-
potheses so that it is able to assign evidence to propositions
(i.e. union of hypotheses) (Lowrance, Garvey, & Strat 1986;
Shafer 1976).2

We now introduce the key concepts of the Dempster-
Shafer theory. LetV = {V1, V2, . . . , Vn} be the set of pos-
sible vehicle types, andVi mean that the type of the given
vehicle isVi. A frame of discernmentΘ = {Vi,¬Vi} is the
set of propositions or hypotheses under consideration.

Definition 1 Let Θ be a frame of discernment. Abasic
probability assignment (bpa)is a functionm : 2Θ 7→ [0, 1]
where (1)m(φ) = 0, and (2)

∑
Â⊂Θ m(Â) = 1.

2In other words, Dempster-Shafer theory and Bayesian method
produce identical results only when all the hypotheses are single-
tons and mutually exclusive.

For example, given aT80 tank, we havem({T80}) +
m({¬T80}) + m({T80,¬T80}) = 1, where{T80,¬T80}
is the ignorance set. A bpa is similar to a probability as-
signment except that its domain is the subsets and not the
members ofΘ. The sum of the bpa’s of the singleton subsets
of Θ may be less than1. For example, givenm({T80}) =
0.8, m({¬T80}) = 0, m({T80,¬T80}) = 0.2, we have
m({T80}) + m({¬T80}) = 0.8, which is less than1.

For a subset̂A of Θ, thebelief functionBel(Â) is defined
as the sum of the beliefs committed to the possibilities inÂ.
For example,

Bel({T80,¬T80}) =
m({T80}) + m({¬T80}) + m({T80,¬T80}) = 1

For individual members ofΘ (in this case,T80 and
¬T80), Bel andm are equal. Thus

Bel({T80}) = m({T80}) = 0.8
Bel({¬T80}) = m({¬T80}) = 0

A subsetÂ of a frameΘ is called afocal elementof a
belief functionBel overΘ if m(Â) > 0. Given two belief
functions over the same frame of discernment but based on
distinct bodies of evidence,Dempster’s rule of combination
enables us to compute a new belief function based on the
combined evidence. For every subsetÂ of Θ, Dempster’s
rule definesm1⊕m2(Â) to be the sum of all products of the
form m1(X)m2(Y ), whereX andY run over all subsets
whose intersection iŝA.

Definition 2 Let Bel1 andBel2 be belief functions overΘ,
with basic probability assignmentsm1 andm2, and focal el-
ementsÂ1, . . . , Âk, andB̂1, . . . , B̂l, respectively. Suppose

∑
i,j,Âi∩B̂j=φ m1(Âi)m2(B̂j) < 1

Then the functionm : 2Θ 7→ [0, 1] that is defined by
m(φ) = 0, and

m(Â) =

∑
i,j,Âi∩B̂j=Â m1(Âi)m2(B̂j)

1−∑
i,j,Âi∩B̂j=φ m1(Âi)m2(B̂j)

(6)

for all non-emptyÂ ⊂ Θ is a basic probability assignment
(Shafer 1976).

Bel, the belief function given bym, is called theorthogonal
sumof Bel1 and Bel2. It is written Bel = Bel1 ⊕ Bel2.
Note that Dempster’s rule of combination is associative and
commutative. This means that the processes of combining
evidence from multiple sensors are independent of the order
in which the sensor outputs are combined.

Confusion Sets
In the battlefield, a UAV scans an area of terrain and at-
tempts to recognize any stationary or moving targets within
the bounds of that scanned area. The output from the sen-
sor on the UAV is a list of candidate target types (e.g., M1
tank, T80 Tank, etc.) with different confidence levels. One
challenge is how to interpret and reason about the uncertain
information. In this section we first introduce the notion of
confusion sets, and then we describe how to convert the un-
certain information, e.g., confidence levels from the sensor
outputs, to belief functions in Dempster-Shafer’s theory.



 USSR T80  0.4 
 USSR T72M  0.3 
 US M1  0.05 
 US M1A1  0.05 
 US M1A2  0.05 
 USSR 2S6  0.02 
 USSR ZSU23 4M  0.03 
 US M977  0.001 
 US M35  0.001 
 US AVENGER  0.001 
 US HMMWV  0.001 
 USSR SA9  0.001 
 CLUTTER  0.095 
 
               (a)                                                               (b) 

 USSR T80  0.7 
 USSR T72M  0.1 
 US M1  0.02 
 US M1A1  0.02 
 US M1A2  0.02 
 USSR 2S6  0.01 
 USSR ZSU23 4M  0.02 
 US M977  0.001 
 US M35  0.001 
 US AVENGER  0.001 
 US HMMWV  0.001 
 USSR SA9  0.001 
 CLUTTER  0.105 
 

Figure 1: A list of candidate target types with different con-
fidence levels from a low resolution sensorS1 (a) and a high
resolution sensorS2 (b).

Let’s consider the following scenario: an F-16 first locates
targets in the battlefield using low resolution sensors, and
then a UAV revisits some areas with groups of targets using
high resolution sensors. A confusion set is a set of vehicles,
where the sensorSi may confuse one with another when we
use the same sensor to scan the area. For example, a low
resolution sensorSi may confuse aT80 tank with aT72M
tank, but usually it will not confuse aT80 tank with a M35
truck; a high resolution sensor may distinguish aT80 tank
from aT72M tank.

Figure 1 describes the outputs from two sensors for aT80
tank on the ground. Suppose,V = {V1, V2, . . . , Vn} is the
set of possible vehicle types; for any vehicle typeVi, c(Vi)
is its confidence level. A confusion set from the output of a
sensor can be formally defined as follows.

Definition 3 Let C = {V1, V2, . . . , Vm}(m < n) be a sub-
set of V and C is sorted by the confidence levels, e.g.,
c(V1) ≥ c(V2) . . . ≥ c(Vm), C is a confusion set if and
only if (1) for any vehicle typeVi ∈ C, Vj ∈ V andVj /∈ C,
c(Vi) ≥ σ > c(Vj), whereσ is the identification thresh-
old; (2) for any vehicle typeVi ∈ C, 1 ≤ i ≤ m − 1,
|c(Vi)−c(Vi+1)| ≤ ρ, whereρ is minimum distance of con-
fidence levels.

A confusion set is sensor specific and is dynamically cho-
sen based on confidence levels and relative distances be-
tween confidence levels. Algorithm 1 illustrates the pro-
cess of determining a confusion set from the output of a
sensorSi. Given the algorithm, the confusion sets for the
outputs of sensors (a) and (b) in Figure 1 can be determined
asC1 = {T80, T72M} andC2 = {T80}, respectively.

Now we discuss how to convert the raw uncertain infor-
mation of the sensor output to belief functions. If there
is only one element in the confusion set, it is easy to de-
fine the frame of discernment and the corresponding be-
lief functions. For example, assume the confusion set for
sensorS2 is C2 = {T80}, we can get the frame of dis-
cernmentΘ21 = {T80,¬T80} (Θ21 can be simplified
as Θ2 if there is only one element in the confusion set.).
For the basic probability assignment, we restrict the sum
of m2({T80}) andm2({T80,¬T80}) to equal the sum of
confidence levels of the elements in the confusion set, and
m2({T80}) is the confidence level forT80. In the case of
C2 = {T80}, there is only one elementT80 in the confu-

Algorithm 1 Determining a confusion set

1: SupposeV = {V1, V2, . . . , Vn} is the set of possible
vehicle types; for any vehicle typeVi, c(Vi) is its con-
fidence level;V is sorted by the confidence levels, e.g.,
c(V1) ≥ c(V2) . . . ≥ c(Vn); ρ andσ are two thresholds,
e.g.,ρ = 0.1, σ = 0.15. Initially confusion setC = {}.

2: if (c(V1) < σ) then
3: returnC (the vehicle cannot be identified)
4: else
5: C = {V1}; V = V − {V1}
6: end if
7: if |c(V1)− c(V2)| ≥ ρ then
8: returnC (V2 is the only vehicle type inC)
9: else

10: C = C ∪ {V2}; V = V − {V2}
11: for anyVk ∈ V do
12: Vj has the minimum confidence level inC
13: if |c(Vk)− c(Vj)| ≤ |c(V1)− c(V2)| then
14: C = C ∪ {Vk}; V = V − {Vk}
15: end if
16: end for
17: returnC (C has multiple vehicle types)
18: end if

sion set, wherec(T80) = 0.7. Thus, we have the frame of
discernmentΘ2 = {T80,¬T80}, andm2({T80}) = 0.7,
m2({¬T80}) = 0.3, m2({T80,¬T80}) = 0.0.

There could be multiple frames of discernment if there
are more than one element in a confusion set. For example,
givenC1 = {T80, T72M}, there are two frames of discern-
mentΘ11 = {T80,¬T80} andΘ12 = {T72M,¬T72M}.
In this case, we choose one of them as theactive frame of
discernment. For example, given the confusion setC1 =
{T80, T72M}, we chooseΘ11 = {T80,¬T80} as the ac-
tive frame of discernment sincec(T80) ≥ c(T72M).

Definition 4 Let C = {V1, V2, . . . , Vm} (m < n) is a
confusion set,c(Vi) is the confidence level of vehicleVi

(1 ≤ i ≤ m), a frame of discernmentΘk = {Vi,¬Vi} is
thedefaultframe of discernment forC if and only if for any
vehicle typeVj ∈ C, c(Vi) ≥ c(Vj).

A confusion set may have multiple frames of discernment
but only one of them can be active. The default frame of dis-
cernment with the maximal confidence level is initially the
active one, but any other one could become active if the de-
fault frame of discernment is different from other sensors’.

Definition 5 Let C = {V1, V2, . . . , Vm} (m < n) is a
confusion set,c(Vi) is the confidence level of vehicleVi

(1 ≤ i ≤ m), for any frame of discernmentΘk = {Vi,¬Vi},
m({Vi}) = c(Vi)

m({Vi,¬Vi}) =
∑

Vj∈C,j 6=i c(Vj)
m({¬Vi}) = 1−m({Vi})−m({Vi,¬Vi})

For example, given the output of sensor (a) in Figure 1,
Θ11 = {T80,¬T80} is the default frame of discernment for
the confusion setC1 = {T80, T72M} and basic probability
assignments arem11({T80}) = 0.4, m11({¬T80}) = 0.3,
m11({T80,¬T80}) = 0.3. Similarly, for another frame of
discernmentΘ12 = {T72M,¬T72M}, basic probability
assignments arem12({T72M}) = 0.3, m12({¬T72M}) =
0.3, m12({T72M,¬T72M}) = 0.4.



Conflict Sensor Information
Note that, even for the same target, the default frames
of discernment could be different for different sensor re-
ports. For example, in Figure 2, the default frame of dis-
cernment for the confusion setC1 = {T80, T72M} is
Θ11 = {T72M,¬T72M}, which is different from the
frame of discernmentΘ2 = {T80,¬T80} for the confu-
sion setC2 = {T80}. In other words, the outputs from two
sensors could be conflict: one supports the hypothesis the
target is aT72M tank, and another supports the hypothe-
sis the same target is aT80 tank. In this section we discuss
how to fuse this kind of conflicting sensor information using
Dempster’s rule of combination (Definition 2).
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Figure 2: A list of candidate target types with different con-
fidence levels from a low resolution sensor (a) and a high
resolution sensor (b), where the low resolution sensor con-
fuses aT80 tank with aT72M tank.

Dempster-Shafer theory has been used for multisensor
target identification and force aggregation and classification
(Bogler 1987; Lowrance, Garvey, & Strat 1986; Schubert
2001). However, these approaches do not consider the noisy
sensor information and simply fuse all sensor reports to-
gether for each target. They choose one frame of discern-
ment for the whole set of propositions being considered. We
propose a different approach for noisy sensor information
fusion, in which we choose the common frame of discern-
ment between the two sensor reports if it exists. We avoid
fusing conflicting sensor information if we find two sensor
reports do not support the same type of target, e.g., no com-
mon frame of discernment for two given sensor reports.

SupposeC1 and C2 are the confusion sets for the out-
puts from sensorsS1 andS2, Θ1i = {V1,¬V1} andΘ2j =
{V2,¬V2} are active frames of discernment forC1 andC2,
respectively. Next we consider different situations when fus-
ing the outputs from sensorsS1 andS2.

1. C1 andC2 have the same active frame of discernment,
e.g.,Θ1i = Θ2j . We can combine the belief functions
directly using Dempster’s rule of combination.

2. C1 and C2 have different active frames of discernment
and C1 ∩ C2 6= φ. We choose the maximum be-
tween m1i({V1}) and m2j({V2}), e.g., m2j({V2}) >
m1i({V1}), then (a) if V2 ∈ C1, then selectΘ1k =
{V2,¬V2} as the active frame of discernment forC1. We
combine the belief function for the reselected frame of
discernmentΘ1k = {V2,¬V2} with the belief function

for Θ2j ; (b) Otherwise, we say the outputs cannot be
fused and use the belief function forΘ2j as the fused re-
sult for sensorsS1 andS2.

3. C1 and C2 have different active frames of discernment
andC1 ∩ C2 = φ. In this case, we avoid combining the
conflicting information and use the belief function forΘ2j

as the fused result for sensorsS1 andS2.

In the example of Figure 2,C1 = {T80, T72M} and
C2 = {T80}. The active frame of discernment forC1 and
C2 areΘ11 = {T72M,¬T72M} andΘ2 = {T80,¬T80}.
We find Θ11 6= Θ2, and then we select another frame of
discernmentΘ12 = {T80,¬T80} as theactive frame of
discernment forC1.

Doctrinal Template Matching
In this section we discuss how to recognize an echelon from
the uncertain sensor information about vehicles using doctri-
nal templates. A doctrinal template depicts the composition
and deployment of various types of echelons. For example,
a template for aT80 tank platoon consists fourT80 tanks.
A template may also have different kinds of vehicles. For
example, an anti-tank platoon consists of three tanks and six
missile launchers. In general, a templateTi for an echelon
can be represented as

Ti = {{V1, N1}, {V2, N2}, . . . , {Tp, Np}}
whereVi ∈ V (1 ≤ i ≤ p) is the possible type of vehi-

cles,Ni is the number of the typeVi vehicles in the template.
For each vehicleVi in a template, we assume the frame of
discernment is{Vi,¬Vi} and the corresponding basic prob-
ability assignments arem({Vi}) = 1.0, m({¬Vi}) = 0.0,
m({Vi,¬Vi}) = 0.0.

The first step in doctrinal template matching or recogniz-
ing an echelon is to identify candidate sets of vehicles to be
considered as platoons or companies using an agglomerative
clustering algorithm. The clustering of vehicles is based on
the relative distance between any two vehicles and the num-
ber of vehicles in the template. For example, we know from
the doctrine that a platoon usually has 4 to 9 vehicles and
these vehicles are deployed in a100m X 100m area.

The next question is, given a cluster of vehicles and a list
of doctrinal templates, how to recognize the type of eche-
lon. In other words, suppose we have a cluster ofT80 tanks
and each of them is associated with basic probability assign-
ments, how do we know this is aT80 tank platoon, and
not aT72M tank platoon. In order to solve this problem,
we introduce the notion of conflict between two beliefs in
Dempster-Shafer theory.

Definition 6 Let Bel1 andBel2 be belief functions overΘ,
with basic probability assignmentsm1 andm2, and focal el-
ementsÂ1, . . . , Âk, andB̂1, . . . , B̂l, respectively. The con-
flict betweenBel1 andBel2 is defined as

∑

i,j,Âi∩B̂j=φ

m1(Âi)m2(B̂j) (7)

Obviously, the conflict is small if we match the same type
of vehicles. Otherwise, the conflict will be one. Algorithm 2
describes the process of matching a cluster of vehicles with
a platoon template. The algorithm can also be used to match
high-level forces, e.g., a company or a battalion, where each
slot in the template or the cluster is a subechelon.



Algorithm 2 Doctrinal Template Matching

1: Given a templateTi = {{V1, N1}, . . . , {Tp, Np}} and
a cluster of vehiclesCL = {{V ′

1 ,m1}, . . . , {V ′
q ,mq}},

for any vehicle typeVi, Ni is the number of the typeNi

in the template;mi is the belief function forV ′
i in the

clusterCL. Initially conflict = 0.
2: for V ′

i ∈ CL do
3: Select a matched type of vehicleVj in the template
4: if (Vj is found in templateTi) and (Nj > 0) then
5: CL = CL− {V ′

i ,mi}; Nj = Nj − 1
6: conflict = conflict +mi({V ′

i })
7: else
8: CL = CL− {V ′

i ,mi}
9: conflict = conflict +1

10: end if
11: end for
12: if |CL| = 0 then
13: return conflict
14: else
15: conflict = conflict +|CL|
16: return conflict
17: end if

The strategy of template matching is to minimize the con-
flict between a template and a cluster of vehicles. The tem-
plate with the minimum conflict with the cluster of vehicles
is the matched one. The confidence level of the matched
template or unit type depends on the belief functions of each
vehicles in the cluster. Here we use a belief function to rep-
resent the confidence level of the unit type and we give one
way to compute the belief function of the matched unit type.

Definition 7 Given a cluster of vehicles{{V ′
1 ,m1}, . . . ,

{V ′
q ,mq}}, assumeTi is the matched template with min-

imum conflicts with the cluster. We first convert the ba-
sic probability assignment for each frame of discernment
{Vi,¬Vi} to the corresponding basic probability assignment
for the evidence{ei,¬ei} supporting templateTi,

m′
i({ei}) = mi({Vi})

m′
i({¬ei}) = mi({¬Vi})

and then we compute the belief function for{Ti,¬Ti} as

mTi = m′
1 ⊕m′

2, . . . ,m
′
q

For example, suppose the sensors find four T80 tanks
{T801, T802, T803, T804} and their basic probability as-
signments are shown as follows,

m1({T801}) = 0.7, m1({¬T801}) = 0.3
m2({T802}) = 0.8, m2({¬T802}) = 0.2
m3({T803}) = 0.7, m3({¬T803}) = 0.3
m4({T804}) = 0.7, m4({¬T804}) = 0.3

Then, the belief functions for a matched T80 platoon are

mT80 platoon({T80 platoon}) = 0.97
mT80 platoon({¬T80 platoon}) = 0.03

The above example tells us if we find fourT80 tanks stay
together, we can infer that it is likely aT80 tank platoon.
However, sometimes we may not find all four tanks; Instead,
we only find three out of four. At this time we need to adjust
the combined belief functions for the tank platoon.

Definition 8 Given a cluster of vehicles{{V ′
1 ,m1}, . . . ,

{V ′
q ,mq}} with q vehicles, assumeTi is the matched tem-

plate with minimum conflicts with the cluster andTi hasQ
vehicles.mTi

is the belief functions for{Ti,¬Ti}. The ad-
justed belief functionsm′

Ti
are

m′
Ti

({Ti}) = q/Q ∗mTi({Ti})
m′

Ti
({¬Ti}) = q/Q ∗mTi

({¬Ti})
m′

Ti
({Ti,¬Ti}) = 1−m′

Ti
({Ti})−m′

Ti
({¬Ti})

Suppose the sensors only find three tanksT801, T802,
and T803 and their basic probability assignments are the
same as above. Then, the belief functions for the three tanks
as a T80 platoon are

mT80 platoon({T80 platoon}) = 0.95
mT80 platoon({¬T80 platoon}) = 0.05

The adjusted belief functions for the three tanks are

m′
T80 platoon({T80 platoon}) = 0.7125

m′
T80 platoon({¬T80 platoon}) = 0.0375

Experiments
In this section, we first introduce a modeling and simula-
tion environment, OTBSAF (OneSAF Testbed Baseline)3

and its integration with the RETSINA system (Reusable En-
vironment for Task Structured Intelligent Network Agents)
(Sycaraet al. 2003). And then we discuss some experi-
mental results of force aggregation and classification in the
simulated testbed.

OTBSAF and RETSINA System
OTBSAF models common military vehicles, aircraft, and
sensors, and simulates uncertainty for entities’ individual
and doctrinal behaviors in the battlefield. We extend OTB-
SAF and integrate it with our RETSINA multiagent system.
One of our contributions to OTBSAF is to add three simu-
lated mounted sensors, SARSim, EOSim, and GMTISim, to
the simulation environment.

The SARSim simulates an automatic target recognition
(ATR) system that receives its input from a synthetic aper-
ture radar (SAR) that is operating inspotlight-mode. In
spotlight-mode, a SAR scans an area of terrain, and the ATR
will attempt to recognize any stationary object within the
bounds of that scanned area. The output from the SAR-
Sim is a list of candidate target types (e.g., M1 tank, T80
Tank, etc.) with different confidence levels. While a real
SAR/ATR system will report confidence levels for around
three dozen entities, SARSim will report for a dozen enti-
ties. The GMTISim simulates a ground moving target indi-
cator (GMTI) radar, which focuses a radar beam on one spot,
and if it detects a moving target there with its ATR system, a
motion tracker mechanism follows the movement of the tar-
get. While very similar in output and behavior to the SAR-
Sim, it is complementary, because it only recognizes entities
that are moving, while the SARSim only recognizes entities
that are stationary. The EOSim simulates an electro-optical
sensor that detects targets at distances and in conditions in
which they would be detectable in the ultraviolet, visible,
and infrared light spectra.

3http://www.onesaf.org/



 T80 Platoon 1 T80 Platoon 2 T80 Platoon 3  
 1014 1017 1020 1024 1027 1030 1034 1037 1040 1044 
USSR T80 0.4 0.4 0.05 0.4 0.3 0.4 0.4 0.05 - 0.3 
USSR T72M 0.3 0.3 0.05 0.3 0.4 0.3 0.3 0.05 - 0.4 
US M1 0.05 0.05 0.20 0.05 0.05 0.05 0.05 0.28 - 0.05 
US M1A1 0.05 0.05 0.28 0.05 0.05 0.05 0.05 0.24 - 0.05 
US M1A2 0.05 0.05 0.27 0.05 0.05 0.05 0.05 0.23 - 0.05 
USSR 2S6 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 - 0.02 
USSR ZSU23  0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 - 0.03 
US M977 - - - - - - - - - - 
US M35 - - - - - - - - - - 
US AVENGER - - - - - - - - - - 
US HMMWV - - - - - - - - - - 
USSR SA9 - - - - - - - - - - 
CLUTTER - - - - - - - - - - 
 

Figure 3: The confidence levels for tanks in aT80 tank company from the outputs of the low resolution SAR sensorS1 on an
F-16. Tank 1044 is in the company but it does not belong to any platoon. “-” means the field is empty in the SARSim output.

 T80 Platoon 1 T80 Platoon 2 T80 Platoon 3  
 1014 1017 1020 1024 1027 1030 1034 1037 1040 1044 
USSR T80 0.8 0.8 - 0.8 0.8 0.8 0.8 0.8 - 0.8 
USSR T72M 0.1 0.1 - 0.1 0.1 0.1 0.1 0.1 - 0.1 
US M1 - - - - - - - - - - 
US M1A1 - - - - - - - - - - 
US M1A2 - - - - - - - - - - 
USSR 2S6 - - - - - - - - - - 
USSR ZSU23  - - - - - - - - - - 
US M977 - - - - - - - - - - 
US M35 - - - - - - - - - - 
US AVENGER - - - - - - - - - - 
US HMMWV - - - - - - - - - - 
USSR SA9 - - - - - - - - - - 
CLUTTER - - - - - - - - - - 
 

Figure 4: The confidence levels for tanks in aT80 tank company from the outputs of the high resolution SAR sensorS2 on a
UAV. Tank 1044 is in the company but it does not belong to any platoon. “-” means the field is empty in the SARSim output.

Experimental Results

We consider a simple application of our approach for SAR-
Sims on the simulated testbed OTBSAF and RETSINA sys-
tem, where there are threeT80 tank platoons,P1, P2, and
P3, on the ground, and each platoon consists of threeT80
tanks. An F-16 is tasked to scan the area first using a low
resolution SARSim and then a UAV is tasked to scan the
same area using a high resolution SARSim. Figure 3 and
Figure 4 show a list of possible target identities with differ-
ent confidence levels for eachT80 tank on the ground. Note
that the highest confidence identification in a series of low-
confidence is not necessarily the correct classification, e.g.,
target 1020, 1027, 1037, and 1044 in Figure 3. Also, tank
1020 is only found by sensorS1 and tank 1040 is not found
by either sensor.

Given SARSim outputs for a tankVi, we first convert the
outputs to belief functions and then combine the belief func-
tions using Dempster’s rule of combination. SupposeCi

1 (or
Ci

2) is the confusion set for the outputs for tankVi from sen-
sorS1 (or S2). We consider the following situations when
fusing the outputs from sensorsS1 andS2.

1. We can combine the belief functions directly, where
Ci

1 and Ci
2 have the same active frame of discernment

{T80,¬T80}, e.g., tank 1014, 1017, 1024, 1030, 1034.

2. We need to reselect the active frame of discernment for
Ci

1, whereCi
1 andCi

2 have different active frames of dis-
cernment andCi

1 ∩ Ci
2 6= φ, e.g., tank 1027 and 1044.

3. We use belief functions for the active frame of discern-
ment{T80,¬T80} of Ci

2 as the fused result, whereCi
1

andCi
2 have different active frames of discernment and

Ci
1 ∩ Ci

2 = φ, e.g., tank 1037.

4. We choose the only available belief functions as the fused
results, where eitherCi

1 = φ or Ci
2 = φ, e.g., tank 1020

is only found by sensorS1.

Next we discuss how to recognize the type of a given ech-
elon solely based on the outputs of low resolution SARSim
S1, or based on the fused outputs of two SARsimsS1 and
S2 through Dempster-Shafer’s theory. We assume tanks or
vehicles have been clustered into platoons according to the
distances between them.



Platoon Level Classification In the platoon level, we
choose7 platoon templates from OTBSAF: US M1 platoon,
US M1A1 platoon, US M1A2 platoon, USSR T72M pla-
toon, USSR T80 platoon, USSR SA8 platoon, and USSR
2S6 platoon. Table 1 describes the number of each type of
vehicles in different platoon templates.

Platoon templates Vehicles
US M1 platoon 4 M1s
US M1A1 platoon 4 M1A1s
US M1A2 platoon 4 M1A2s
USSR T72M platoon 3 T72Ms
USSR T80 platoon 3 T80s
USSR SA8 platoon 4 SA8s
USSR 2S6 platoon 2 2S6s

Table 1: The number of each type of tanks or vehicles in
different platoon templates

Templates P1 P2 P3

M1 pl. 3 3 3 3 1.25 2
M1A1 pl 2.45 2.45 3 3 2 2
M1A2 pl. 3 3 3 3 2 2
T72M pl. 3 3 2.3 3 2 2
T80 pl. 1.6 1.36 1.6 0.56 1.3 0.38
SA8 pl. 3 3 3 3 2 2
2S6 pl. 3 3 3 3 2 2

Table 2: The conflicts of three clusters of tanks,P1, P2, P3,
with platoon templates, where the conflicts based on fused
outputs of sensorsS1 andS2 are in bold.

Table 2 describes the conflicts of three clusters of tanks
with platoon templates using Algorithm 2. Given the out-
puts of sensorS1, clusters of tanks,P1 andP2, have mini-
mal conflicts withT80 platoon template, and can be classi-
fied asT80 tank platoons. However, clusterP3 has minimal
conflict with M1 platoon template and is classified as a M1
tank platoon, instead of aT80 tank platoon. Note that our
algorithm is tolerant to noisy sensor information. For ex-
ample, although tank 1020 inP1 is identified as aM1A1
tank, we can still identify the clusterP1 of two T80 (1014,
1017) and oneM1A1 (1020) as aT80 tank platoon. Cluster
P3 is confused as a M1 tank platoon, since the sensor only
finds two out of three tanks in the cluster and one of them is
recognized as a M1 tank. In next section we will show our
algorithm can still recognize the right type of echelon in the
company level even with the outputs from the low resolution
sensor. Also, if we match the three cluster of tanks with tem-
plates using the fused outputs from sensorsS1 andS2, we
find the results enhance the template matching, where the
conflicts are minimized and all three clusters of tanks are
classified asT80 tank platoons.

The basic probability assignments for each cluster of
tanks, P1 and P2, as aT80 tank platoon can be com-
puted according to Definition 7 and results are shown as
in Table 3, where frame of discernment forP1 and P2 is
{T80 platoon,¬T80 platoon}. Similarly, the basic prob-
ability assignments and adjusted basic probability assign-
ments forP3 are shown in the same table, but its frame of

discernment is{M1 platoon,¬M1 platoon} for the out-
puts of sensorS1, and is{T80 platoon,¬T80 platoon} for
the fused outputs.

m1({P1}) m1({¬P1})
0.56 0.935 0.37 0.065

m2(P2}) m2({¬P2})
0.55 0.987 0.39 0.013
m3({P3}) m3({P ′3}) m3({¬P3}) m3({¬P ′3})
0.47 0.948 0.36 0.052
m′

3(P3}) m′
3(P

′
3}) m′

3({¬P3}) m′
3({¬P ′3})

0.31 0.632 0.24 0.035

Table 3: Basic probability assignments for clusters of tanks,
P1, P2, andP3, where basic probability assignments based
on fused outputs of sensorsS1 andS2 are in bold. Note that
m′({P3}), m′({¬P3}), m′({P ′3}), m′({¬P ′3}) are adjusted
basic probability assignments forP3 since the sensor only
finds two out of three tanks in the cluster.

Company Level Classification In this section we discuss
the problem of recognizing the type of echelons in com-
pany level from platoons. We choose six templates in the
company level: US M1 company, US M1A1 company, US
M1A2 company, USSR T72M company, USSR T80 com-
pany, USSR 2S6 battery (see Figure 4). Some platoons are
included in the template of a battalion level force directly,
e..g, USSR SA8 platoon. Companies may have some extra
vehicles besides the vehicles in the platoons. For example,
a USSR T80 company has three T80 platoons and one extra
T80 tank. In our experiments we do not consider the extra
vehicles during template matching.

Company templates Platoons
US M1 company 3 M1 platoons
US M1A1 company 3 M1A1 platoons
US M1A2 company 3 M1A2 platoons
USSR T72M company 3 T72M platoons
USSR T80 company 3 T80 platoons
USSR 2S6 battery 3 2S6 platoons

Table 4: The number of each type of platoons in different
company templates

Templates T80 company
M1 company 2.24 3
M1A1 company 3 3
M1A2 company 3 3
T72M company 3 3
T80 company 1.76 0.113
2S6 battery 3 3

Table 5: The conflicts of the assumedT80 company with
company templates, where the conflicts based on fused out-
puts of sensorsS1 andS2 are in bold.

Table 5 describes the conflicts of the assumedT80 com-
pany with company templates. Obviously, the assumedT80



company has the minimal conflicts withT80 tank com-
pany template. The conflict with theT80 company template
changes to0.113 when we use the fused outputs of sensors
S1 andS2. The basic probability assignments for theT80
company are, where the frame of discernment for theT80
company is{T80 company,¬T80 company}.

m({T80 C}) m({¬T80 C})
T80 C 0.66 0.999 0.30 0.001

Table 6: Basic probability assignments for the cluster of
tank platoons, where basic probability assignments based on
fused outputs of sensorsS1 andS2 are in bold.

Related Work
Lowrance at al. apply Dempster-Shafer theory in rea-
soning about the locations and activities of multiple ships
from intelligence reports (Lowrance, Garvey, & Strat 1986).
Bogler use Dempster-Shafer theory in the field of multisen-
sor target identification systems (Bogler 1987). Schubert ex-
tends those approaches to force clustering and classification
(Schubert 2001), where elements, e.g., intelligence reports,
vehicles, and echelons, are clustered into subsets. Schu-
bert uses the conflict of Dempster’s rule as an indication of
whether the elements belong together. However, their ap-
proach is not fully evaluated due to the complexity of the
algorithm. They choose one frame of discernment for the
whole set of propositions being considered, while we only
choose the active one for information fusion from multiple
frames of discernment for possible propositions. We avoid
combining conflicting sensor information if we cannot find
a common frame of discernment for them.

Bayesian techniques have been utilized for force aggre-
gation (Hinman 2002). Given the prior knowledge of each
target and sensor in the battlefield, a Bayesian classifier has
been developed for matching the observed echelon with dif-
ferent templates. For example, Bakert and Losiewicz par-
tition the force into a mutually and exclusive set of units
(Bakert & Losiewicz 1998). In their approach, the poste-
rior probability for each node is computing using Bayesian
methods and is propagated through the hierarchy network
of military force as positive or negative evidence for the in-
clusion of each unit in the partition. In this paper we use
a bottom-up approach, instead of the top-down approach as
described in (Bakert & Losiewicz 1998), for force aggrega-
tion and classification. It would be interesting to study the
possibility of combining these two approaches in force ag-
gregation and classification.

Conclusion
An understanding of force level and deployment is essen-
tial for battlefield situation assessment and threat assess-
ment. In this paper we present a novel approach to force
aggregation and classification using Dempster-Shafer the-
ory and doctrinal templates. Our goal is to develop dynamic
operational pictures of battlefields for better assessing the
situation in terms of potential opportunities and threats for
rapidly evolving environments, e.g., determining the likely
courses of action for engagement and the consequences of
those courses of action.

Just as for a real SAR sensor, the SARSsim may report
“false postive” targets where they do not exist in the simula-
tion. In the future work we plan to use the context of terrain
and redundant sensor data to identify false positive targets in
sensor reports. We also plan to study spatial template match-
ing for threat assessment. In this paper we do not consider
deployment patterns and disposition of enemy forces such
as locations and spatial constraints of enemy subechelons
within an echelon. A good understanding of spatial template
will help us reason about the movement and disposition of
enemy forces in the context of terrain.
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