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Researchers have investigated various negotiation mod-
els from different points of view for a long time. Game
theorists view a negotiation as a dynamic, incomplete in-
formation game, and try to solve the game by giving some
predicted outcomes in certain conditions. Volumes of litera-
ture exist in this field. A good survey can be found in Bich-
ler [2]. Although successful in some problems, the game-
theoretical approach is hard to extend to general problem
domains, simply because the complexity and inherent un-
certainty in real-world negotiation thwart accurate analysis.

In this paper, we present a computational model for on-
line agent negotiation. Instead of focusing on the predicted
outcomes, our model emphasizes the negotiation process it-
self. Specifically, we model a negotiation process as a se-
quential decision-making process: In every negotiation it-
eration, an agent checks the history of the process, updates
its beliefs about its opponents and then tries to maximize its
own expected payoff based on its own subjective beliefs.

When bargaining with others, a human’s subjective be-
liefs play an important role. A buyer (she) may just believe
that the seller (he) will never decrease his price offer in the
next negotiation round. She may be right (because her spy
told her current offer is the seller’s reservation price). Or
she may be wrong (because the seller intentionally leaked
the false information to her spy). Whether she is right or
wrong, her mental beliefs will play the same role in the ne-
gotiation as far as the outcomes are concerned. In this paper,
we conduct a series of experiments to examine the impact
of different beliefs on the outcomes of a basic on-line nego-
tiation scenario. Our approach directly models the mental
beliefs and examines their impact on the outcomes.

Bazzan and Bordini [1] studied the impact of agents’
“personalities” on outcomes of the Minority Game. Sen et
al.[6] examined a probabilistic strategy, which can be in-
terpreted as the agent’s beliefs about other agents, used by
an agent to help others in a not-perfectly-friendly environ-
ment. Gmytrasiewicz and Lisetti [4] directly modeled an
agent’s “mental emotion” as a probability distribution over
the possible states of the environment. Zeng and Sycara [8]
used belief updating as a learning mechanism in negotia-
tion. Here we directly model an agent’s beliefs over its op-
Abstract

Agent-based on-line negotiation technology has the po-
tential to radically change the way e-business is conducted.
In this paper, we present a formal model for autonomous
agents to negotiate on the Internet. In our model, the nego-
tiation process is driven by the internal beliefs of participat-
ing agents. We empirically identify the relative strength of
a group of belief updating methods and show how an agent
can change its behavior by adjusting some critical param-
eters. The advantage of our model is that it is flexible and
easy to implement. To show different ”personalities”, one
only needs to plug in suitable “subjective beliefs” to one’s
agents. Our results provide directive reference on how these
beliefs should be chosen and what values of the related pa-
rameters should be assigned.

1 Introduction

With the rapid growth of Internet, autonomous software
agents, which can be viewed as delegates of human beings
in the cyberspace, have drawn much attention in recent years
because of their potential capacity to radically change the
current style of practicing e-business. For example, a soft-
ware agent, deployed as a delegate of its master, can shop
on the Web. Once finding the commodity it is looking for, it
will bargain with the owner about the price, just as a hu-
man will do. The owner, probably, is an agent as well.
Compared to today’s passive on-line shopping, where peo-
ple themselves search the Web and finish the trade manu-
ally, we think the agent-delegated shopping will be the way
of future on-line trading.

However, before the wide application of multi-agent sys-
tems in the real-world electronic commerce, several chal-
lenges, including both technical and social aspects, must be
addressed as in Sycara[7]. One of these challenges is to
determine how these heterogeneous, self-interested agents
should interact and negotiate with each other, given that
there is no global control on the Internet. A common ap-
proach to this problem is to construct a negotiation model
that guides the agents’ negotiation activities.
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ponents’ action sets. The joint actions of all the agents drive
the environment to shift. Every agent tries to maximize its
final payoff by choosing its own optimal action based on its
own subjective beliefs.

Our work is closely related to the line of research
on “belief-desire-intention (BDI) model”, in which agents
adapt themselves to the uncertain environment by using dif-
ferent “intention reconsideration policies”. In our model,
the uncertainty is rooted in the negotiation process itself:
agents are uncertain about what actions their opponents may
take and use different “belief updating methods” to interact
with each other. An empirical study of different “intention
reconsideration policies” can be found in [5].

2 The Formal model

Consider a game with � states played by � players
in a limited time horizon ������� . In each time period�
	 �
����������� �������
� � , each player takes an action
simultaneously. Driven by the joint actions taken by all the
players, the game transfers to another state at time

�����
. For

each player � the following information is associated with it.

Public information(shared with all other players):
����� : a finite set of all possible actions player � may

take.
��� � : a finite set of all possible types player � may be.
� � 	"!$#%�'&�(��*) � #+�-,/. : a transition automaton that

defines the structure of the game. Where

–
#

is a finite set of states.
#

consists of terminal
states and nonterminal states.

–
&�(

is the initial state of the game.

–
) � # is the input alphabet of the automaton,
where

) � #0	2143�6587 � � is the Cartesian produc-
tion of n players’ action sets. Each member in the) � # is a n-tuple, the � �:9 element of this tuple cor-
responds to the action taken by player i. The fact
that the input symbols are n-tuples means that the
state to which the game would transfer depends
on all players. For any individual player, even af-
ter taking a certain action, it doesn’t know what
the next state would be. The name

) � # stands
for Joint Action Sets.

–
,

: transition function of the automaton, which
maps a joint action to a state, i.e.

,<;=&>�:?
@
, where&�AB#+�:?CAD) � # , denotes the state to which the

automaton would transfer from state
&

given the
joint action

?
.

Private information(only known to player � itself):
��EF� : the real type of player � , EF� A �G� .
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�IH%� ;=&>� E�� @ : utility function of player i, which denotes
the payoff player � will get if the game ends at state&JAK#

and its real type is E � .
� LME$N�O*� ; ��P @ : the probability player � believes that playerQ

would take action ��P .
At each time period

�SR ������� , if current state is a termi-
nal state

&
, the game ends and all players obtain their final

payoffs HT� ;=&�� E�� @ . Otherwise, the game goes forward, player
� computes its payoff by the following formula,

LJ� ? N�UGUWV� ;X&$@Y	[Z]\�^_*`ba�cG` !
3d

Pe5f7=P$g5h�
LMEiN�O � ; � P @kj LJ� ? N�UGU Vml 7� ;X&Fno@-.

where
& n 	p,<;=&>� � @ is the state to which the game transfers

from state
&
, driven by the joint action � 	 1�3q 587 � q taken

by all the players.
To maximize its expected payoff, player � should take ac-

tion �
r� such that

� r� 	s\�t'u]Z]\i^_v`wa�cG` !
3d

Pe587bP$g5h�
LMEiN�Ov� ; ��P @kj LJ� ? N�UGU Vml 7� ;=& n @v.>�

(2)

At the last period ������� , the payoff is realized as utility
function of player � . i.e.:

LJ� ? N�UGUyx _vzF{� ;X& n @Y	 H � ;=& n � E � @*� (3)

In the classic game theory, the word “type” refers to some
private information that characterizes an individual player.
All the players’ beliefs about what “types” others may as-
sume form the “common knowledge” of the game, i.e., ev-
eryone knows that everyone knows that ....everyone knows
those beliefs. Based on the “common knowledge”, the game
converges to certain equilibrium. In a Internet negotiation
scenario, for instance, the shopping example mentioned be-
fore, it is generally hard for the software agents to form
the “common knowledge” about others’ types (reservation
prices). However, agents’ actions (price offers) are always
observable. In our model, players observe their opponents’
actions, interpret those actions based on some subjective be-
liefs and then take corresponding action to maximize their
own payoffs. Every player’s subjective beliefs are its own
“personal experiences”, not shared with anyone else. Just
as “experiences” of a human negotiator will determine his
strategy, “beliefs” held by an agent in our model will deter-
mine its behavior in negotiation.

If a player chooses to negotiate with only one other
player, the time spent by it to compute its best offer is| ;'} � 7 }6} ��~ }X� � � ������� @ in each iteration, where

} � 7 }��$} ��~ }
are the respective sizes of the action sets of these two play-
ers. The game keeps going for at most ������� periods,
hence the total computation complexity is

| ;e} �J7 }6} � ~ }�� � �
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���>��� ~ @ at worst case. If one chooses to negotiate with
multiple players simultaneously, the computation time will
be exponential to the number of players. But one can solve
this problem by carefully choosing the number of players
based on its computational resource constraints.

3 Negotiation process

In this section, we show how to apply the model above
to develop a basic negotiation scenario involving one buyer,
one seller and one commodity. The buyer and the seller have
reservation prices ��� , ��� on the commodity, respectively. In
each negotiation iteration

�
, the buyer and the seller offer

price proposals simultaneously. If the buyer’s offer O V is no
less than the seller’s offer

& V , the game ends. Otherwise,
the game goes to next iteration until reaching the maximal
time horizon ������� . Clearly, � � , the reservation price of
the buyer, is a crucial piece of information to characterize
the buyer, thus we set the “real type” of the buyer to be��� . Similarly, the real type of the seller is ��� . To explicitly
express the states of the negotiation game, we make two
assumptions:
� There is a price range

� � �b� L � ������L�� agreed by both
players, and � � , � � , O V , & V all belong to this range.
� The players have set a minimal price increase/decrease

unit before the game begins.

Given these 2 assumptions, we can change the price scale
such that all the prices involved in the negotiation are inte-
gers. For example, if the price range is

�
	 ��� 	��
� �6��� � and the
price increase/decrease unit is 0.1 dollar, we can scale the
unit to 1 dime and then the price range becomes

� �
� �
� � � .
So, in the rest of this paper, we always assume that all the
prices, lower and upper bound of the price range, are inte-
gers. Once we make the price range discrete, we can de-
fine other parameters of the game based on the price range.
Namely:
� The state set of the game is defined as� � �b� L � ������L�� j � � �=� L � �����WL�� . A state

&
is

an ordered pair
; � �:?
@ , where � is the seller’s price

offer,
?

is the buyer’s price offer. If ��� ? , & is a
terminal state, otherwise, it is a nonterminal state.
� The action sets and the type sets for both players are� � �b� L � ������L�� .
� The transition function of the game is defined as,<;=&�� � @T	 � for nonterminal state

&
, i.e., from a nonter-

minal state, the game can transfer to any other state de-
fined by two players joint actions. For example, if the
current time is

�
and the current state is

;w�F�
���>@
, since

the seller’s offer
���

is greater than the buyer’s offer
�
,

it is a nonterminal state. If the seller offers 9 and the
buyer offers 6, then the game transfers to state

;��
����@
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in the next iteration
�Y� �

. For a terminal state,
,

is
undefined since the game ends in this state.
� Every player maintains a vector of beliefs over its op-

ponent’s action set. During each iteration, the beliefs
are fixed. A player may update its beliefs between it-
erations. The methods of updating the beliefs will be
discussed in next section.

In a real-world negotiation, a buyer always prefers
to bid a lower price for a certain commodity. Our
model incorporates this observation by requiring that the
buyer’s utility function be monotonic, i.e., H���������� satisfiesH ����� ��� ;=& 7 � � � @"! H ��������� ;X& ~ � � � @ for any states

& 7 �-& ~ such
that
& 7 	 ; � �e? 7 @*�'& ~ 	 ; � �:? ~ @ and

? 7 � ? ~ . If the game
ends at a nonterminal state, the players do not agree with
each other and hence no trade will happen. In this case,
both the buyer and the seller get nothing. So, H �������#� ;X&>� � � @
should equal to 0 for any nonterminal state

&
, i.e., there is no

penalty for both players if they fail to make an agreement.

4 Experiments and analysis

In all experiments, we assume that all the conditions men-
tioned in section 3 hold. And we still refer to the basic ne-
gotiation setting: one buyer, one seller and one commodity.

Before checking the updating methods, we first define the
players’ utility functions. Through out this section, both
players use the linear utility functions. The buyer’s utility
function is defined as:

H$��������� ;:; � �:?
@v� ��� @Y	&% ���%� z l �~ �'� ?
� N � (/�

The seller’s utility function is defined as:

H �#��)*)+��� ;:; � �:?
@*� � � @T	 % �,� � � z l �~ �'� ?
� N � ( �

In above formulas,
&�	"; � �:?
@ is a state. As said before,�'� ? means

&
is a terminal state.

Suppose at time
�
, the seller’s offer is

& V ,and the buyer’s
offer is O V . We compare the following belief updating meth-
ods (Here we state the methods from the buyer’s perspec-
tive. It is easy to give the corresponding formulas for the
seller):

1. The buyer doesn’t update at all, and always uses
the uniform distribution over the price interval� � �b� L � ���>�WL��

2. The buyer sets a uniform distribution over interval� � �b� L �'& V �
3. The buyer sets an exponential distribution over interval� � �b� L �'& V � , and

& V has the highest probability :

LMEiN�O-��������� ; � @T	 �.0/ ��1 ! � � & V2 ; �������I� �:@ .
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where � A � � �b� L �'& V � , . is a normalization factor,
�

is
the current time, ������� is the time horizon,

2
is a pa-

rameter characterizing the aggressiveness of an player.

4. The buyer sets an exponential distribution over interval� � �b� L �-& V � , and � �b� L has the highest probability

5. The buyer sets a uniform distribution over interval� O V �'& V �
6. The buyer sets an exponential distribution over interval� O V �'& V � , and

& V has the highest probability

7. The buyer sets an exponential distribution over interval� O V �'& V � , and O V has the highest probability

In the method 3, 4, 6 and 7, the time horizon of the game
has been taken into consideration. In the method 3 and 6,
the less time left, the more the buyer believes that the seller
will not change his current offer

& V . While in method 4 and
7, the buyer does not believe that the seller is offering her a
reasonable price. The less time left, the more she believes
that the seller will decrease his current offer

& V .

4.1 Both players use the same method

For the buyer, the updating methods 2, 3 and 4 set prob-
abilities over interval

� � �b� L �'& V � . For the seller, the inter-
val is

� O V � ������L�� . In Figure 1, we show the trade prices
for the cases where both the buyer and the seller use the
same method in this group (method 2, 3 and 4). We fix
the buyer’s reservation price to be

�F���
, increase the seller’s

reservation price from
�

to
���>�

with step length
�
. We set2 	 �

for method 3 and
2 	 �����

for method 4. In Fig-
ure 1, the x-coordinate is the seller’s reservation price; and
the y-coordinate is the final trade price. From the results,
we can find that method 4 produces the “hardest” negotiator
among these three methods: only when the seller’s reserva-
tion price falls between

�
and
� �

, the players make a deal. If
the seller’s reservation price is higher than

� �
, even though

there exists a potentially wide negotiation range, no agree-
ment is reached. On the other hand, method 3 produces the
“easiest” negotiator: for the seller’s reservation price vary-
ing from

�
to

�>�
, a deal can always be found. Method 2

stands between the “easiest” and the “hardest”. The range
for method 2 to make a deal is [0, 45].

What is the effect of changing
2

in method 3 and method
4? A little thought will confirm that with a bigger

2
, method

3 will become “harder”, and method 4 will become “eas-
ier”. A bigger

2
will make the exponential distributions

of methods 3 and 4 (with opposite tail directions) converge
to an uniform distribution, which is the distribution used in
method 2.

In method 2, 3 and 4, when the current price offered by
the seller is

& V , the buyer sets the probabilities over range� � �b� L �'& V � . Given that the buyer has offered O V at time
�
,

the seller will never offer a price lower than O V after time
0-7695-1435-9/02 $17
 35th  Annual Hawaii International Conference on System Sciences (HICSS-35�02) 
$17.00 © 2002 IEEE 
. 0 10 20 30 40 50 60 70 80 90
50

55

60

65

70

75

80

85

90

95

100

Figure 1: o:method 2, *:method 3 with ����� , +:method 4 with
�����
	�	
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Figure 2: o:method 5, *:method 6 with ���
� , +:method 7
with ������	�	

�
. Similarly, the buyer will never offer a price higher than

the lowest price proposed by the seller before. Therefore, it
seems more reasonable for the buyer and the seller to set the
probabilities over

� O V �'& V � . That is what method 5, 6 and 7
do. We show the results in Figure 2. In this experiment, all
the settings are the same as those in the first experiment ex-
cept that the updating methods are changed to method 5, 6
and 7. We can see that this group of methods are more effi-
cient than the methods used in the first experiment: with the
buyer’s reservation price fixed at 100 and the seller’s reser-
vation price varying from 0 to 95, the players can always
reach a deal by using any one of these three methods. An
explanation to these results is that since both players have
more “reasonable” beliefs on what price their opponent will
offer, it is easier for them to negotiate successfully. Simi-
larly, increasing

2
will make method 6 and 7 converge to

method 5.

4.2 Players use different methods

In the above experiments, we showed the final trade
prices if both players use the same belief updating method.
In this section, we conduct a series of experiments to see
.00 (c) 2002 IEEE 4
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what will happen if players use different updating methods.
In all these experiments, the settings are the same as those
in previous subsection.

Figure 3 shows the case where the seller uses method 4
and the buyer uses method 2. In Figure 1, we show the cases
where both players use method 4 and method 2. In order to
compare with those results, we show the results of those two
cases here again. Compared to the case where both player
use method 4, now the buyer switches to a “weaker” updat-
ing method, so the seller manages to sell his item at a higher
price, and also extends the reservation price range on which
he is willing to make a deal with the buyer. Compared to the
case where both players use method 2, now the seller uses a
harder updating method, so he still manages to sell his item
at a higher price but shrinks the reservation price range on
which he is willing to make a deal.

In the case where the seller uses method 2, and the buyer
uses method 3, as shown in Figure 4, we see that the seller
is better off than the buyer. Compared to the case where
both players use method 2, the fact that the buyer switches
to a weaker method 3 is exploited by the seller, so he can
manage to sell his item at a much higher price while extend-
ing the reservation price range simultaneously. Compared
to the case where both players use method 3, although the
seller decreases the reservation price range a little, the trade
prices are much higher than those observed in Figure 2.

0 5 10 15 20 25 30 35 40 45
50

52
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58

60

62

64

66

Figure 3: o:both use method 2, +:both uses method 4 with � �
�
	 	 , x: the seller uses method 4 with � � �
	 	 , the buyer uses
method 2

Figure 5 shows the case where the seller uses method 7
and the buyer uses method 5. Here we only compare the re-
sults with those in the case where both players use method 5
because the results obtained by using method 5 and method
7 are very close, as shown in Figure 2. In Figure 5, we
also show the results where the seller uses method 5 and the
buyer uses method 6. In this case, since the seller uses a
weaker method, the trade prices are lower than those in the
case where he uses method 6.

In Figure 6, we show the trade prices where the seller uses
method 4, the buyer uses method 7, and both with

2 	p���>�
.
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Figure 4: o:both use method 2, *:both use method 3 with � � � ,
x: the seller uses method 2, the buyer uses method 3 with � � �
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Figure 5: o:both use method 5, x: the buyer uses method 5 , the
seller uses method 7 with � � ��	�	 , +: the buyer uses method 5,
the seller uses method 6 with � � �

We can see that the seller takes obvious advantage of the
buyer.

In Figure 7. we show the trade prices where the seller
uses method 2 and the buyer uses method 5.

In Figure 8. we show the results where the seller uses
method 3 and the buyer uses method 6. Here the buyer uses
a stronger method and she manages to buy the item at lower
prices.

Till now, we have not elaborated on method 1. In Figure
9 we show the results where the seller uses method 1 and the
buyer uses method 3. We can see that method 1 is close to
method 3 with

2 	 �
. But method 3 has an extra desirable

feature: it performs as well as method 1 when the seller
has a low reservation price, and is more flexible when the
seller has a high reservation price. As shown in the figure,
if the seller’s reservation price exceeds 40 and both players
use method 1, they can’t reach a deal. But if the buyer uses
method 3, they can make a deal.

To explain all these results, let’s first take a close look at
the group of method 2,3 and 4. We claim that method 4 is
“harder” than method 2. To show this, let’s take the buyer’s
point of view. Method 4 and method 2 both set the probabil-
7.00 (c) 2002 IEEE 5
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Figure 6: *:both use method 4 with � � �
	 	 , +: both uses
method 7 with �����
	 	 , x: the buyer uses method 7, the seller
uses method 4, both set � ���
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Figure 7: *:both use method 5, o: both uses method 2, x: the
buyer uses method 5, the seller uses method 5

ities over interval
� � �b� L �-& V � . The probability in method 4

decreases exponentially from � �b� L to
& V . This means that

the buyer believes that the chance for the seller to offer a
lower price is exponentially higher than the chance for the
seller to offer a higher price. The probability distribution
in method 2 is uniform. This means that the buyer believes
that all the prices in range

� � �b� L �'& V � are equally likely to
be proposed by the seller. In a real-word negotiation, no
one knows what kind of beliefs are “right” without extra in-
formation; but it is exactly the different beliefs that make
the negotiators behave differently. Obviously, if the buyer
holds the beliefs of method 4, she will be a harder negotiator
than the one who holds the beliefs of method 2. Similarly,
we can say that method 2 is harder than method 3. In the
group of methods 5, 6 and 7, we can find that method 7 is
harder than method 5, and method 5 is harder than method
6. By the same argument, we can say that method 2 is harder
than method 5. Given the same

2
, method 3 is harder than

method 6, and method 4 is hard than method 7. Of course,
two methods are compared with the same

2
value if they

involve this parameter.
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Figure 8: � ��� , o:both use method 6, *: both uses method 3, x:
the buyer uses method 3, the seller uses method 6
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Figure 9: o:both use method 1, x: the buyer uses method 3, the
seller uses method 1

5 Conclusions

We have developed a computational model for on-line
agent negotiation. In the basic negotiation scenario. One
of the difficulties presented to a negotiation agent on the In-
ternet is that it has little information about its opponents. To
achieve mutual interactions while defending its own benefits
at the same time, an agent can adopt the “beliefs” mecha-
nism to adjust its behavior. We show that with different “in-
ternal beliefs”, agents can behave differently, just as human
beings: some are hard negotiators, while others are very
willing to make a deal with his/her opponent. By simula-
tions, we empirically show the relative strength of a group of
“internal belief updating” methods. Our experiments show
that an agent should make a trade-off in negotiation: if it
is too hard , it may lose the chance to earn more profits by
making a deal with its opponent; while if it is too weak,
the agent probably just earns marginal profits even though it
gets a deal with its opponent. We show that we can adjust
the parameter

2
to make this trade-off in our model. The

advantage of our model is that it is flexible and easy to im-
plement. To show different ”personalities” in a negotiation,
one only needs to plug in suitable “subjective beliefs” to
7.00 (c) 2002 IEEE 6
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one’s agents. By plugging in different beliefs, one can con-
trol the behavior of the agent. Our results provide directive
reference on how these beliefs should be chosen and what
values of the related parameters should be assigned.
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