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NZ Comnel Program Motivation
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» Goal: Explore how to integrate humans as
nodes in information networks with robots?

—Decentralized fusion
—On-line inference of team performance

—Decentralized/hierarchical task planning
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N Specific Research Goals

@
Q”

1.Develop probabilistic modeling methods to capture
human decision making

—Variety of complexities, data conditions, over time

2.Develop performance metrics for networks of human-
vehicle systems

— Information flow to/from human node

3.Develop and validate on-line methods for:

—inferring network performance: interaction, mistakes
—network adaptation: e.g information exchange, tasking

Pl Carnegie Mellon QNS

First Year Review e s
09/07/2009 ms

IIIIIIIIII




\/ Outline

* Motivation and Objectives

* Progress:
—Decision Modeling
—On-line inference: Discrete and continuous fusion

—Sensor Fusion
* large decentralized network
* robots only, humans only
e robots and humans
 Future work

—Collaborations
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\ Decision Modeling Work

@
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* *'MMS model for discrete decisions
—validation on benchmark and RoboFlag human data

» Currently attempting to model all human
decisions in RoboFlag games

—discrete and continuous

—hold out validation: how well can we do and what
are the limitations?

* presented in this talk
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3 )
\.;./ Multimodal softmax (MMS)

ACC 2008

 Discriminative modeling of complex
posterior distributions w/o relabeling data

— I.e. no a priori clustering

. < Divides (honconvex) multi-modal decision
@ data into convex sub-divisions

—enables rich decision models
» Marginalize out S to enable consistent

state variables l

softmax

blocks optimization, and create likelihoods:
sub- dIVISIOHSN‘U L// d; S1q
decisions P(D — dz‘X) — ZP(S — dZ]‘X)
71=1

e Asymptotic guarantees on convergence to the true model
parameters, given an infinite set data
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\ MMS Validation:

“ RoboFIag and Benchmarks

SMC 2009 (in review)

TABLE 3
RoboFlag Classification Error Statistics (mean % error, standard deviation).

Case Softmax SVM MMS GMM-A GMM-B HSS-A HSS-B Best ME
1 19.09 + 0.63 | 15.71 & 048 | 17.11 + 0.74 | 17.91 +£0.69 | 16.83 £0.47 | 18.35£0.95 | 19.174+1.03 | 16.27 £0.43 (ME2)
2 2323 £ 0.68 | 1853 +£ 0.83 | 18.01 £0.85 | 21.40 £0.77 | 20.65 + 0.77 | 19.36+0.77 | 19.21+0.74 | 18.47 £+0.68 (ME3)
3 61.934+ 0.28 | 40.62 £ 1.11 40.25 £1.06 | 43.12 £1.76 | 39.69 4+ 1.51 | 41.93+£1.13 | 43.224+1.11 | 41.42 £0.91 (ME4)
TABLE 4
RoboFlag Training Costs (mean training time (CPU secs), parameter count).

Case Softmax SVM MMS GMM-A GMM-B HSS-A HSS-B Best ME

1 2.24,39 | 173.06, 1222 | 16.21, 143 || 0.56, 13167 | 0.90, 21546 | 11.61, 143 | 34.51, 234 | 71.93, 104

2 1.89,39 | 135.52, 1404 | 5.30,104 | 0.37,9576 | 0.37,10773 | 6.06,104 | 7.86,117 | 96.47, 156

3 4.63,78 | 40.53,1428 | 9.42,6143 | 0.27, 13167 | 0.73, 21546 | 18.45, 143 | 48.96, 234 | 219.48, 208

* RoboFlag decision modeling demonstrates good results:
— error statistics, training time: compared to SOA classifiers

 Benchmark data (not shown) demonstrate similar results

+ produces probabilistic model, - not for problems
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‘\/ Use Models for Inference

@
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» Given a decision D, can we infer information
about the system X (that is not measured)?
—inferring operator intent

D —inferring individual/team performance
 To enable: operator assistance, adaptive tasking

aget o Fysion of discrete human observations and

location

@ continuous robot measurements

continuous bearing

Target at
location X \

\
\

\' Noisy bearing
\ measurement B(k)

\
% .< D(k) = “Target
’ Robot at
NorthWest at 2-4 m @7 7(k)

x coordinate (m)

ol Carnegie Mellon QNS

/ measurement
discrete h n
measurement ,
robot location (GPS)
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&
N7 Inference Example

» Unfortunately, joint pdf is no longer Gaussian

@  Given discrete decision D, infer continuous X
and the integral has no analytical solution

p(XT)P(D Xr)
f ) P(D| X7 )dX7
p(Xr, D)

p(Xr|D) =

* Must resort to approximation:
—discretization: does not scale with X
—Monte Carlo: SOA, but can be inefficient or slow
—bounds: approximate joint pdf
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o V. Q
N Inference using Local Variations N

@
Q”

» [Bouchard 2008]: for a Gaussian prior, approximate joint
PDF by Gaussian lower bound
Posterior Mean and

—Fast iterative estimation of lower LBound | \.;ance:

—Use for fusion, approximate posterior Exact: -6.418, 1.6365
Approx.: -6.4116, 0.4069

» Example: Localization of person

from ro bOt Wlth camera Results for observed D = Class 1, soft weights
— D: {"behind and far away”, “ behind and soll — P00 (rion L
” Y ” == ={(X,D) (var LB) \
Dearby , ‘next to”, m:‘ront and nearby’, 071 2 2P0 BX.D) (appro joind !
in front and far away”} oI True joint pdf |
|—X> (front) | “D” 0'4:
%------X-:r ----- ﬁ - |
\/\ \/\ é :l { 0!
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\/ Sensor Networks and Fusion \

N

» *Decentralization using channel filter
—scales well with nodes In a tree structure

* *Hierarchical fusion
—humans for ID, robots for mapping

» *Sensor fusion theory and experiments
—humans only network
—robots only network
—human and robot network

* presented in this talk
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A )
P Decentralized Fusion

L 4 Fusion 2009

Robot

* Decentralized terrain mapping (PDF) Location (GPS)
— grid based; Torair Xj
— requires tree like topology -
— could be used for: localization, ID,... X

e Channel filter )E%ﬁ%%be
_ _ _ Range
— Monitors data over communication channels J

— Orig developed for Kalman Filters (Durrant-\Whyte)
— Requires tree-like comm architectures
— Scales with the number of nodes (humans, robots),

— Yet achieves centralized soln even in presence of
communication uncertalntles (delays, dros)
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Collaborative Mapping
w/ Large Network

Chain Topolo gy
Agent 2

Discontinuity

* Vehicle (pose,
attitude), sensor
(align, noise)
uncertainties

e TCP-IP Terrain Mapping

: Chain Topologoyv
e Guarantees even in polog)

presence of
communication
uncertainties

Agcnt 2

e Results shown for 8
robots



N\~ Compare Topologies: Collaborative §
L

Mapping w/ Large Network

Chain Topolo gy Bridie Top(;logy
Agent 2 gent

7 8
2 3 4 5 6 7 8
1 2 3 4 5 6

errain Mapping Ferrain .\\apping
Chain 'l'upolug_\' Bri(lgc 'l'olmlog_\'
Agent 2 .‘\gcm 7

® Bridge network achieves results faster
— Fewer hops for the data
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\/’ Compare Topologies: Collaborative
S Mapping w/ Large Network &

Information Accumulation

ISensor Network (tf))

Accumulated Information (% of i

Normalized Time -- Time for Final Agent to Reach Max Information

* Topology important in terms of speed of response
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\.~/ Network of Humans Searching:
\'z'/ Decentralized Data Fusion ‘<

e Similar to robots: With human detection model, “fuse”
human observations exactly like other measurements:

A

Ng
_ )
p(xk|Ix) = p(xp|Ir-1) | | p(z;,|xx)
— _J - 7 . — _/
Fused Predicted =1 re
Search PDF Search PDF Likelihoode. .
10 e o . Canstraints
| human | ' »(buildings)
trajectory-- : : :
5"‘\
Satellite Map, e v

Overlaid with
Search PDF

x10 4.7003 " e

e

47002 74 B, 9 ...3.784

Localization R X
PDF . ¥ e
47001 Ga <10
I11TAA M;)rthing [m]
y 17
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Nz Fall 09 Experimental Campaign:
\v/ Network of Five Humans Searchings

* Five Human nodes

mmw. =
* (Uncertain) measurements &=
from each human operator
—Localize (GPS)
—Heading (compass)
—Human detection model:

“Rgect Network:

e N m«?‘* e Node 1 Node 3 Node 5

Node 2 Node 4

Converges to centrallzed soln
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Nz Five People Searching
e for Five Targets

NODE 1 | Price POF: N _ Pricr POF: N NODE 5

x 10 x 10

: Human
Object State

Location (GPS, heading)

Human
Detection

UTM Northing [m)]

. c -
378 3.782

UTM Eastmg [m] o
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A V. \
N« Human+Robot Fusion (and Tasking)

@
4’9

Terrain height

T L 70 1 L * Both human, robot info:
measuemen  _Robot: range, ID

X —Human: ID
Object R ooation (GPS) : :
Location * Object locations:
X — Continuous
— Channel filter for fusion

(T)ybrigct ) Eaerla(teli/e Range ° ObjeCt Type:
J Ciassifcation — Discrete (Blue, Red)
\@3"3@3?}%%“ » Robots: Search over joint PDF

Mission Goal: * Humans: Strategic Control
p(Xy O|XR7 ZR7 ZH)
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)

2
§,{ Hybrid: Strategic Tasking/Sensing &

* Operator GUI:
—Local vision, tasking

——— Robot Selection

i
Y * 4 Segways
| Red/Blue
B PDFs — GPS,
Red/Blue Slider s — vision, lidar
Robot Vision P BN e e

~Classifier Selection (Red,Blue,FA)
* Mission goal: Locate and classify objects

— Two types (red, blue)
— a priori PDFs of location of each
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Outdoor Testing

 Human Trials:

— Autonomous
— Slider (Red,Bl)

— Sldr+OverRide
Human Robot Distributed
Search Experiment  Human always

performs final
classification

® e * 5 min trials

e 4/2. 3/3, 2/4
red/blue

3 UGV + 1 Operator



N Initial Results
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Order of Entity Found

» Slider and over-ride provide statistically faster 1D
» Over-ride provide slight improvement in mean
» Results on-going
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\\/ Future Work

* Modeling: Strategic (temporal)
— Level 2 STt
* Inference: More in-depth
theory and analysis :
— Levels 2,3

* Network performance
as a function of Scaling

— Levels 2,3 o [ —
. o -
 Collaborations

— GMU: Adaptive Tasking (Level 1,2)
— MIT: Decentralized Plan/Fusion (Level 1,2)
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\\1) Collaborations: GMU ;\

T

* Project #1: Models of current studies to develop
deeper insight into correlations (e.g. scaling)

' Iogerati
tasks

Decentralized

Tasking
I Vehid%
« | tasks

ecentralize
Information
Fusion

Human-Vehicle Sensors

Optimization ; :
P Estimation

vehicle

SENSsors

* Project #2: On-line performance inference,

adaptive tasking
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A
N Collaborations: MIT

» Scaling to larger, more complex architectures
— Local and remote agents
* Modeling: event driven, and decision modeling
* Integrated, Model based Fusion and Task Allocation:

' operat

tasks

Decentralized
Information
Fusion

uman-Vehicle

Optimization Human-Vehicle

Estimation

Decentralized

Tasking
I vehicl
. tasési
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