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Cornell Program Motivation

• Goal: Explore how to integrate humans as 
nodes in information networks with robots?
– Decentralized fusion
– On-line inference of team performance
– Decentralized/hierarchical task planning

3
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Specific Research Goals

1.Develop probabilistic modeling methods to capture 
human decision making
– Variety of complexities, data conditions, over time

2.Develop performance metrics for networks of human-
vehicle systems
– Information flow to/from human node

3.Develop and validate on-line methods for:
– inferring network performance: interaction, mistakes
– network adaptation: e.g information exchange, tasking

4
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Outline

• Motivation and Objectives
• Progress:

–Decision Modeling
–On-line inference: Discrete and continuous fusion
–Sensor Fusion

• large decentralized network
• robots only, humans only
• robots and humans

• Future work
–Collaborations

5
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Decision Modeling Work

• *MMS model for discrete decisions
–validation on benchmark and RoboFlag human data

• Currently attempting to model all human 
decisions in RoboFlag games
–discrete and continuous
–hold out validation: how well can we do and what 

are the limitations?

6

* presented in this talk
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 Multimodal softmax (MMS)
• Discriminative modeling of complex 

posterior distributions w/o relabeling data 
– i.e. no a priori clustering

• Divides (nonconvex) multi-modal decision 
data into convex sub-divisions 
–enables rich decision models

• Marginalize out S to enable consistent 
optimization, and create likelihoods:
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MMS Validation: 
RoboFlag and Benchmarks

• RoboFlag decision modeling demonstrates good results:
– error statistics, training time: compared to SOA classifiers

• Benchmark data (not shown) demonstrate similar results

+ produces probabilistic model, - not for problems like vision
8

SMC 2009 (in review)

12

TABLE 3
RoboFlag Classification Error Statistics (mean % error, standard deviation).

Case Softmax SVM MMS GMM-A GMM-B HSS-A HSS-B Best ME

1 19.09 ± 0.63 15.71 ± 0.48 17.11 ± 0.74 17.91 ±0.69 16.83 ±0.47 18.35±0.95 19.17±1.03 16.27 ±0.43 (ME2)

2 23.23 ± 0.68 18.53 ± 0.83 18.01 ±0.85 21.40 ±0.77 20.65 ± 0.77 19.36±0.77 19.21±0.74 18.47 ±0.68 (ME3)

3 61.93± 0.28 40.62 ± 1.11 40.25 ±1.06 43.12 ±1.76 39.69 ± 1.51 41.93±1.13 43.22±1.11 41.42 ±0.91 (ME4)

TABLE 4
RoboFlag Training Costs (mean training time (CPU secs), parameter count).

Case Softmax SVM MMS GMM-A GMM-B HSS-A HSS-B Best ME

1 2.24, 39 173.06, 1222 16.21, 143 0.56, 13167 0.90, 21546 11.61, 143 34.51, 234 71.93, 104

2 1.89, 39 135.52, 1404 5.30, 104 0.37, 9576 0.37, 10773 6.06, 104 7.86, 117 96.47, 156

3 4.63, 78 40.53, 1428 9.42, 143 0.27, 13167 0.73, 21546 18.45, 143 48.96, 234 219.48, 208

average number of parameters listed in Table 4 for the ‘1-

vs-rest’ multiclass SVM model refers to the average number

of support vectors required in each case (rounded down to

the nearest integer).

The results in Table 3 show that the MMS model provides

the best predictions for Case 2 and is comparable to the

best models in Cases 1 and 3. In all cases, the MMS model

achieves a substantial improvement in accuracy over the

‘basic’ softmax model (which has the worst performance in

all cases) while incurring only slightly longer training times

and relatively mild increases in parametric complexity. In

fact, among all models other than the ‘basic’ softmax model,

the MMS model generally obtains the best balance between

training time and number of parameters. For instance,

while the more complex SVM and GMM-B models obtain

slightly better predictions than the MMS model in Cases

1 and 3, each of these models require parameter sets

that are between one to two orders of magnitude larger

than those needed for the MMS model. Also, while the

training times for the GMM models are extremely small

due to the existence of efficient closed-form EM-algorithm

updates for GMM parameter estimation, the number of

parameters required for the GMM models scales poorly as

the number of components and dimension of the feature

space grows (due to quadratic growth in the size of the

component covariance matrices). While the multiclass SVM

model achieves a high-levels of accuracy in all cases, it

requires long training times since the training set sizes are

fairly large and multiple SVMs must be trained in sequence

to perform multiclass classification.

These results also show that MMS model generally pro-

vides a more robust and accurate estimate of the complex

class posteriors for these data sets than the HSS models,

even though the HSS models have exactly the same or

similar structures to the MMS model. Interestingly, HSS-

B generally tends not to perform better than HSS-A, which

implies that the inclusion of extra hard subclasses via k-

means did not improve HSS model accuracy on these

particular data sets (at least up to the number of hard

subclasses considered). Although adding even more hard

subclasses could possibly improve the HSS models so that

their accuracy is comparable to the MMS model, this would

significantly increase the number of parameters in the HSS

models and possibly increase the required training times.

5 DISCUSSION

The results of the previous section show that the MMS

model can provide accurate discriminative estimates for

complex class posteriors and are computationally inexpen-

sive to learn. Since the MMS model does not require explicit

relabeling of training data, it is more robust than the hard

subclass model while remaining just as flexible.

In addition to the fact that it does not require explicit

relabeling, the MMS model has a number of other advan-

tageous properties. As the results of the previous section

show, the number of subclass parameters required by the

MMS model to achieve a high level of accuracy is gener-

ally not too much greater than the number of parameters

required to define a ‘basic’ softmax model for a given set

of data. The MMS model also scales well with the training

set size similarly to HME models, but typically requires

far fewer parameters to obtain a good estimate of the

class posterior. The MMS model can also handle binary or

multiclass problems in a straightforward, unified manner.

Since all MMS subclass weights are learned simultaneously,

there is no need to train multiple models as done with

HME and multiclass kernel machine models. Furthermore,

as in these models, the MMS model can be combined

with nonlinear feature maps to approximate complex class

boundaries more accurately.

However, the MMS model does have some limitations.

MMS models can struggle with sparse training sets (e.g.

less than 100 points per class), due to the fact that the

MMS models are more likely to be overfit via MLE when

there are not enough data present to estimate the subclass

parameters accurately. This can also lead to large variance

in the estimated MMS weights.

To control the magnitudes and variances of the MMS

weights in such cases, it is straightforward to incorporate

a regularization term into equation 10 (e.g. such as the
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Use Models for Inference
• Given a decision D, can we infer information 

about the system X (that is not measured)?
–inferring operator intent
– inferring individual/team performance

• To enable: operator assistance, adaptive tasking
• Fusion of discrete human observations and 

continuous robot measurements

9

Variational Bayesian Data Fusion of Multi-class Discrete Observations
with Applications to Cooperative Human-Robot Estimation

Nisar Ahmed and Mark Campbell
Sibley School of Mechanical and Aerospace Engineering

Cornell University, Ithaca, NY 14853, USA
{nra6,mc288}@cornell.edu

Abstract— A new method is presented for deterministically
fusing conventional continuous sensor observations together
with discrete multi-categorical state-dependent information,
which can be furnished by humans in many cooperative human-
robot interaction problems. The hybrid likelihood function for
the mapping between continuous hidden states and categorical
observations are specified via linear softmax models. Although
such likelihood models avoid discretization of continuous states,
they are challenging to implement for real-time data fusion
via Bayes’ rule since they are not analytically integrable. An
approximation based on variational Bayesian methods is pre-
sented here to obtain fast closed-form Gaussian solutions to the
desired posteriors in cases where the hidden continuous states
have Gaussian pdfs. A joint human-robot target localization
example is provided to illustrate the properties and utility of
the proposed hybrid fusion strategy.

I. INTRODUCTION

Problems of hybrid (i.e. continuous and discrete) mod-
eling and estimation are encountered in many human-robot
interaction applications [1]. Since humans are bound to cat-
egorize the state of their surroundings as an efficient way to
process and convey information, proper characterization and
exploitation of hybrid information sources is essential step
towards improving human-robotic interaction. For instance,
cooperative human-robot estimation systems have been pro-
posed to enable human agents to provide real-time high-
level and low-level situation assessment information, which
can be exploited for improved state estimation and mission
effectiveness [2]. However, the tools and experiments in this
area have largely been simplified for binary human inputs or
simple identification tasks.

Figure 1 illustrates an example cooperative data fusion
problem involving 2D localization of a static target by a
mobile robot and a nearby human. The robot moves through
the search space and takes continuous noisy bearings-only
measurements of the target’s position. The human inde-
pendently reports discrete categorical approximations of the
relative range and bearing between the robot and target using
visual inspection. Since the human is subject to various
perceptual uncertainties, one would not expect the human
observations to be as precise as, say, a laser range finder.
Consequently, the human is expected to visually categorize
the target’s relative bearing to the robot into 1 of 8 canonical
directions (‘North’, ‘NorthEast’, ‘East’, ‘SouthEast’, etc.)
and visually bin the relative range between the target and

robot in 2 m intervals up to some maximum distance. For
example, the human might report that the target is ‘2-4 m
NorthWest’ or ‘≥4 m North’ of the robot’s current location.

In this example, the uncertainty in the target location
can be large if bearings-only measurements are used [3].
Assuming that the human shares information that is sta-
tistically consistent with the true target state, the human’s
discrete range and bearing observations can provide useful
information about the target’s true position in the continuous
search space. Therefore, it is desirable to fuse together prior
knowledge of the target position with the robot’s continuous
measurements and the human’s discrete observations via
Bayes’ rule to obtain an updated probability distribution of
the target position. Using Figure 1’s notation, suppose for
now that p(X|B,Z) is a pdf that represents the robot’s belief
of the target location given its own available position mea-
surements and target bearing measurements. If p(D|X,Z)
represents the human’s discrete observation likelihood given
the true target and robot locations, Bayes’ rule gives

p(X|D,B,Z) =
p(D|X) p(X|B,Z)�

p(D|X,Z) p(X|B,Z) dX
(1)

Two problems immediately arise: (1) how does one specify
p(D|X), and (2) how does one actually compute the poste-
rior given this hybrid likelihood model? The answer to (2)
depends heavily on (1), which must be addressed by finding
a function which maps continuous robot and target states to
probability mass functions. One distribution that is popularly
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Inference Example

• Given discrete decision D, infer continuous X
• Unfortunately, joint pdf is no longer Gaussian 

and the integral has no analytical solution

10

• Must resort to approximation:
–discretization: does not scale with X
–Monte Carlo: SOA, but can be inefficient or slow 
–bounds: approximate joint pdf

XT

D
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Inference using Local Variations

• [Bouchard 2008]: for a Gaussian prior, approximate joint 
PDF by Gaussian lower bound
–Fast iterative estimation of lower LBound
–Use for fusion, approximate posterior

11
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Fig. 2. Variational Gaussian approximation with standard normal prior

(solid green). (a) Likelihood function (blue) is well-approximated by Gaus-

sian bound; the approximate joint pdf is almost identical to true joint pdf

(magenta=blue×green). (b) Likelihood approximation degrades at steeper

softmax likelihood weight, but joint pdf is still well-approximated.

A. General hybrid inference problem formulation

Consider the unobserved random state vector X ∈ Rn

with Gaussian prior p(X) = N (µ,Σ) and known mean µ ∈
Rn

and covariance Σ ∈ Rn×n
. Also consider an m-valued

discrete sensor variable D for some integer m ≥2, where

p(D = j|X) follows a softmax distribution with known

weights wj ∈ Rn
and scalar biases bj for j ∈ {1, ...,m}.

We assume here that all available continuous sensor mea-

surement updates have already been performed via Bayes’

rule, so that the prior p(X) is actually the posterior obtained

from fusing any available continuous observations. This of

course requires the additional assumption that the continuous

measurement update will render a Gaussian p(X) either

exactly or approximately.

The posterior pdf of X given D = j is

p(X|D = j) =
1
C

p(X) p(D = j|X)

=
1
C

��2πΣ−1
��

× exp
�
−(x− µ)T Σ−1(x− µ)

2

� exp(wT
j x + bj)�m

c=1 exp(wT
c x + bc)

,

(4)

where we have defined C =
�∞
−∞ p(X)p(D = j|X)dX .

Inspection of (4) reveals that the joint distribution is no

longer Gaussian or analytically integrable with respect to X ,

due to the sum of exponentials term in the denominator of

the softmax function.

B. Derivation of Approximate Posterior

We now derive a closed-form variational Gaussian approx-

imation to p(X|D = j), which is based on the observation

that the joint distribution p(X, D = j) = p(X) p(D = j|X)
can be reasonably well-approximated by an unnormalized
Gaussian function over X [11]. This is illustrated for the

binary softmax (i.e. logistic) case in Figure 2.

Therefore, we replace the softmax likelihood p(D = j|X)
with an unnormalized Gaussian f(D = j,X) and approxi-

mate the joint density and normalizing constant, respectively,

as

p(X, D = j) ≈ p̂(X,D = j) = p(X) f(D = j,X) (5)

C ≈ Ĉ =
� ∞

−∞
p̂(X,D = j) dX = P̂ (D = j). (6)

Note that now p̂(X, D = j) is an unnormalized Gaussian and

that Ĉ can be evaluated analytically. This leads to a closed-

form normalized Gaussian approximation to the posterior,

p(X|D = j) ≈ ˜p(X|D = j) =
1
Ĉ

p̂(X,D = j) (7)

= N (µ̃, Σ̃), (8)

where the sufficient statistics µ̃ and Σ̃ can be obtained by an

inspection of terms in p̂(X, D = j).
A Gaussian approximation f(X,D = j) to the softmax

function for m ≥2 can be obtained via the variational lower-

bound proposed in ref. [12]. This lower-bound is obtained

by replacing the sum of exponentials term in the softmax

denominator with a variational upper bound composed of a

product of m unnormalized Gaussians. In particular, for any

set of scalars α, ξc and yc for c ∈ {1, ...,m}, it is shown in

[12] that

log

�
m�

c=1

exp(yc)

�
≤ α +

m�

c=1

yc − α− ξc

2

+ λ(ξc)[(yc − α)2 − ξ2
c ] + log(1 + eξc)

(9)

where λ(ξc) = 1
2ξc

�
1

1+exp(−ξc)
− 1

2

�
.

The variables α and ξc are free variational parameters
that can nominally be selected to minimize the upper bound

in (9) for known yc to provide the tightest possible (lower

bounding) approximation to the original softmax likelihood

p(D = j|X). Here, yc = wT
c x + bc.

Setting the derivatives with respect to α and ξc to zero for

given yc yields

ξ2
c = y2

c + α2 − 2αyc (10)

α =
1
2 (m

2 − 1) +
�m

c=1 λ(ξc)yc�m
c=1 λ(ξc)

. (11)

However, since X is unobserved, the yc in these formulas

are unknown random variables. To deal with this, an efficient

procedure for finding α and ξc to maximize the ‘average’

softmax lower bound is presented in the next section.

Assume for now that α and all ξc are known with X
still unknown. Eq. (9) can now be applied to obtain an

approximate Gaussian posterior. We have that

log p(D = j|X) = wT
j x + bj − log

�
m�

c=1

exp(wT
c x + bc)

�
.

(12)

Replacing the last term with the upper bound in (9), simpli-

fying terms and exponentiating, we obtain

f(x,D = j) = exp(gj + hT
j x− 1

2
xT Kjx), (13)
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Sensor Networks and Fusion

• *Decentralization using channel filter
–scales well with nodes in a tree structure

• *Hierarchical fusion
–humans for ID, robots for mapping

• *Sensor fusion theory and experiments
–humans only network
–robots only network
–human and robot network

12

* presented in this talk
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Decentralized Fusion

• Decentralized terrain mapping (PDF)
– grid based; 
– requires tree like topology
– could be used for: localization, ID,...

• Channel filter
– Monitors data over communication channels 
– Orig developed for Kalman Filters (Durrant-Whyte)
– Requires tree-like comm architectures
– Scales with the number of nodes (humans, robots), 
– Yet achieves centralized soln even in presence of 

communication uncertainties (delays, drops)
13
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Compare Topologies: Collaborative 
Mapping w/ Large Network

15

WX356,0%*019'3$%"(-50B0#%30#.&1#%7"#103
– Fewer hops for the data 
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Compare Topologies: Collaborative 
Mapping w/ Large Network

• Topology important in terms of speed of response
16
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Network of Humans Searching: 
Decentralized Data Fusion

Measurement 
Likelihoods

Predicted 
Search PDF

Fused 
Search PDF
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• Five Human nodes
• (Uncertain) measurements     

from each human operator
–Localize (GPS)
–Heading (compass)
–Human detection model:

• Converges to centralized soln

Range Bearing

Detect

18

Network:

Fall 09 Experimental Campaign: 
Network of Five Humans Searching
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Five People Searching 
for Five Targets

19
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Human+Robot Fusion (and Tasking)

• Both human, robot info:
– Robot: range, ID
– Human: ID

• Object locations: 
–  Continuous
–  Channel filter for fusion

• Object Type:
–  Discrete (Blue, Red) 

• Robots: Search over joint PDF
• Humans: Strategic Control

20
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Hybrid: Strategic Tasking/Sensing

• Mission goal: Locate and classify objects
– Two types (red, blue)
– a priori PDFs of location of each

21

• 4 Segways
– GPS, 
– vision, lidar

• Operator GUI:
–Local vision, tasking

Red/Blue
PDFs

Robot Selection

Robot Vision

Red/Blue Slider

Classifier Selection (Red,Blue,FA)
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Outdoor Testing

• Human Trials:
–  Autonomous
–  Slider (Red,Bl)
–  Sldr+OverRide

• Human always 
performs final 
classification

• 5 min trials
• 4/2, 3/3, 2/4 

red/blue

22
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Initial Results

• Slider and over-ride provide statistically faster ID
• Over-ride provide slight improvement in mean 
• Results on-going

23

Distributed Terrain Map
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Future Work

•  Modeling: Strategic (temporal)
– Level 2

•  Inference: More in-depth                           
theory and analysis
– Levels 2,3

•  Network performance                                   
as a function of Scaling
– Levels 2,3

• Collaborations
– GMU: Adaptive Tasking (Level 1,2)
– MIT: Decentralized Plan/Fusion (Level 1,2)
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Collaborations: GMU

• Project #1: Models of current studies to develop 
deeper insight into correlations (e.g. scaling)

• Project #2: On-line performance inference, 
adaptive tasking

25

 

operator

tasks Decentralized
Information

Fusion

Human-Vehicle
Estimation

Decentralized
Tasking

Human-Vehicle
Optimization

vehicle

tasks

...

...

human

sensors

vehicle

sensors

...

...



09/07/2009
First Year Review

Collaborations: MIT

• Scaling to larger, more complex architectures
– Local and remote agents 

• Modeling: event driven, and decision modeling
• Integrated, Model based Fusion and Task Allocation:
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Publications
• M. Campbell, “Intelligent Robotics in Sensor Network Applications,” Keynote, SPIE Europe 

Conference on Unmanned Sensors and Sensor Networks, 2009.
• J. Schoenberg, M. Campbell, “Distributed Terrain Estimation Using a Mixture-Model Based 

Algorithm,” 12th International Conference on Information Fusion, 2009.
• D. Shah, S. Galster, M. Campbell, F. Bourgault, N. Ahmed, B. Knott, “A Study of Human-

Robotic Teams with Various Levels of Autonomy,” 2009 AIAA Infotech conference.
• F. Bourgault, A. Chokshi, J. Wang, D. Shah, F. Cedano and M. Campbell, “Scalable 

Bayesian Human-Robot Cooperation in Mobile Sensor Networks,” 2008 IEEE IROS.

• N. Ahmed, M. Campbell, “Variational Bayesian Data Fusion of Multi-class Discrete 
Observations in Cooperative Human-Robot Estimation,” submitted to the 2010 ICRA.

• D. Lee, J. Schoenberg, M. Campbell, “An Empirical Study of Adaptive Tasking in Human-
Robotic Search,” submitted to the 2010 ICRA Conference

• N. Ahmed, M. Campbell, “Discriminative Subclass Modeling without Relabeling,” submitted 
to the IEEE Transactions on Pattern Recognition.

• D. Shah, S. Galster, M. Campbell, N. Ahmed, B. Knott, “A Study of Human-Robotic Teams 
with Various Levels of Autonomy,” submitted to the IEEE Transactions on Systems, Man and 
Cybernetics
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