832

Edward A. Fox
Guest Editor

Intelligent Interactive

Video Simulation of a
Code Inspection

The need for technological solutionsto learning, in the software engineering
field isincreasing. The Advanced L earning Technologies Project (ALT) has
developed a highly interactive, high-fidelity simulation of group process
communication. The first course demonstrating these techniques is on the
formal technical review known as code inspection.

Scott M. Stevens

The Advanced L earning Technologies Project (ALT) at
the Software Engineering Institute is applying advanced
hardware and software technol ogies to software engi-
neering education. The content domain of the project is
the formal technical review of Adacode. The specific
type of review methodology taught is inspection. Code
inspection is aformal review process that has proven to
be an effective technique for defect identification. Ap-
propriately applied, code inspection is also a manage-
ment tool that provides visibility into the software de-
velopment process. The purpose of the project isto
demonstrate and promote advanced |l earning technolo-
gies that are applied to software engineering education.

The project has four broad, overlapping goals. First, it
demonstrates the applicability of technologically ad-
vanced educational mediato software engineering
problems. These media include Digital Video Interac-
tive (DV1), hypertext, hypermedia, and intelligent tutor-
ing systems. Second, it transitions modern software en-
gineering methods into practice by providing a
technology-based course. Third, it istaking thelead in
raising the awareness of the academic community, the
government, and industrial training communities on
technol ogy-intensive software engineering education.
Fourth, it investigates methods and techniques to re-
duce the cost, time, and effort necessary to develop a
technology based software engineering education.

The National Science Board (NSB) recognizes the
need for improved technology based solutions to engi-
neering education [18]. In calling for the application of
new technologies to engineering instruction the NSB
states:

The mechanisms and modes of delivery of in-
struction have taken on significance nearly as

Portions of this paper were presented at the Third Annual Ada Software
Engineering Education and Training Symposium (Denver. Col.. June 14-18),
1988.

Thiswork was sponsored by the Department of Defense.

© 1989 ACM 0001-0782/89/0700-0832 $1.50

Communications of the ACM

great as the content, with the advent of the new
technologies, especially the computer. Ways must
be sought to exploit the power of these technolo-
giesin the learning process, in the interests of
increased efficiency and effectiveness of learning
and lower overall costs.

The need for technological solutionsto learning is espe-
cially important in the software engineering discipline.
Software engineering has been a difficult area for edu-
cators because it continues to be human-intensive, es-
pecially in areas such as project management and tech-
nical review. Most of the instruction necessary to learn
skills in these areas depends on group-paced learning
and on instructors highly skilled in designing and deliv-
ering group-process oriented instruction. As aresult,
the quality of software engineering education often suf-
fers; instructors are primarily technical people, skilled
in and oriented toward software engineering technical
issues, but not experienced in instructional design or
group leadership.

Developing the teaching expertise necessary for these
courses isdifficult. IBM uses software developers and
project managers, with an average of ten years experi-
ence as educators, for atwo week course on software
engineering. Before they are allowed to teach this class,
they are given nine months of full-time training in how
to teach this course [19]. Obviously, most institutions
do not have the resources necessary for this approach.
Advanced learning technol ogies can capture this exper-
tise and deliver it when and where it is needed. These
technologies have proven to be fruitful, cost effective
teaching tools in numerous disciplines.

The Advanced L earning Technologies Project demon-
strates their efficacy in the field of software engineering
through a course on and simulation of an Ada code
inspection. The course is an intelligent tutoring/inter-
active digital video (intelligent video) system that pro-
vides self-paced education, while it also replicates the
interactive and adaptive aspects of classroom-style,
group-paced education.

July 1989 Volume 32 Number 7

Advantages of IV/ITS

Reasons for choosing an intelligent video approach in-
clude decreased cost and learning time and increased
learning effectiveness. A typical classroom course has a
modest, onetime development cost and high delivery
cost. A singleindustrial course may be given thousands
of times at hundreds of locations over an average five-
year lifetime. Each time it is given an instructor pre-
sents the course, grades papers, and provides follow-up
tutoring. By comparison, intelligent video has a higher
development cost but much lower delivery cost. The
only continuing delivery costs are management costs
that are incurred to provide students access to the ma-
terials and equipment. The courseware presents the
material, grades the student, and provides follow-up
tutoring. Studies with all of these factors considered
have shown traditional interactive video courses to be
three to five times less expensive than conventional
classroom training [9, 21].

Studies by the armed services have shown that stu-
dents learn material more fully and in less time with
interactive video, even when compared and contrasted
with computer-based training. In one army study [10],
three groups of students took a course on missile elec-
tronic troubleshooting. One group took a standard lec-
ture course, one a computer-based training course, and
one an interactive video course. After the courses the
students were given actual system faults to trouble-
shoot. The lecture group solved 25 percent of the faults.
Both the computer-based training group and the inter-
active video group found 100 percent of the faults.
While the classroom and computer-based training
groups took about the same amount of time to find the
faults, the interactive video group found the faultsin
one-half the time of the other two groups.

In another study, an intelligent tutoring system for
electronic troubleshooting gave technicians with 20
hours on the system the equivalent of four years of on
the job training [13]. Studies in other domains have
consistently found similar results [3, 8, 10, 20].

Transitioning the software engineering content into
practice is afundamental goal of the ALT Project. None
of intelligent video's advantages would be helpful, how-
ever, if the learning technology was not accepted. For-
tunately, there is a growing installed base of interactive
video systems in colleges, industry, and the armed serv-
ices. Of all U.S. organizations with 50 or more employ-
ees, 15.5 percent used interactive video to deliver job-
related training in 1986, up from 11.6 percent in 1985.
Thirty-six percent of all organizations with over 10,000
employees use interactive video [24]. With the lower
cost projected for DV systemsin 1990 and DVI's signifi-
cantly greater capabilities compared to videodisc, an
even greater acceptance of DVI can be expected.

I nteractive video technology has matured to the point
where it is clearly aviable medium for the delivery of
education and training. Videodiscs have been devel -
oped in project management, written and oral commu-
nications, physics, chemistry, mathematics, electronic
troubleshooting skills, and medical diagnoses [23].

July 1989 Volume32 Number 7

SPECIAL SECTION

Videodiscs have also been developed for training in op-
erating systems (UNIX®©) and computer languages (C).
One company, EmTech, has just begun developing ana-
log interactive videodiscs for software engineering edu-
cation. At present no other interactive video, much less
DVI projects, deal with computer science or software
engineering. Evidently the immaturity of these disci-
plines is the main reason for this as the medium is
being used very successfully in other equally abstract
areas.

Content: Inspections

The content area that was chosen is one of formal tech-
nical reviews, in this case, inspection. Inspections were
developed in the 1970s by Michael Fagan at IBM [5]
and have been used extensively at both IBM and AT&T.
Inspections can be used by alarge number of people on
a software project and are applicable during the devel-
opment, testing, and maintenance phases of a software
project.

Software inspections or, more correctly, software
development workproduct inspections are meet-
ings where devel opment workproducts-such as
design specifications, test plans, and code-are
"read." That is, the workproduct is examined me-
ticulously and systematically by its author and
his or her peers. The examination tries to find
defects, mismatches between the workproduct
and the specification or between the workproduct
and the standards. The sharp focus on detecting
defectsis the key to the effectiveness of in-
process inspections ... Checklists of common de-
fectsfor the type of workproduct being inspected
guide and enhance the meeting's defect detection
process [6].

The model of an inspection simulated by the ALT
Project includes four separate roles: a moderator, a
reader, arecorder, and a producer. Each rolein an
inspection involves specific duties, while all rolesre-
quire the participant to prepare for the review before-
hand and act as areviewer of the code during the
inspection. Preparation includes becoming thoroughly
familiar with the code. Additional responsibilities asso-
ciated with each role include:

Moderator: Typically, the moderator arranges for the
inspection meeting, contacting other inspectors, setting
time and place, and distributing materials. The modera-
tor also leads the inspection, controlling pace and me-
diating disputes.

Reader: The reader moves the inspection by reading
and summarizing the code sequentially. He or she also
raises action items related to pieces of code.

Recorder: The recorder records defects found and deci-
sions and issues raised in the inspection. The recorder
provides the defect log to the moderator after the in-

spection.

¢ UNIX isatrademark of AT&T.

Communications of the ACM

833

SPECIAL SECTION

Producer: The producer is the author of the work prod-
uct. He or she isresponsible for determining that the
code satisfies entry criteria, explains the product when
necessary, and reworks the product after the inspec-
tion.

The teaching of code inspections invariably requires
references to programming style and standards. This
project is using Ada programs as the work product for
inspection. Thus, the code inspection simulation per-
mits the introduction and discussion of Ada program-
ming style and standards. This is accomplished through
access to alibrary of materials and discussion of style
during a simulation of an inspection.

For the ALT course, a single, modestly sized piece of
code was desired for the inspection product. In 1978
Glenford J. Myers of the IBM Systems Research Insti-
tute performed a controlled experiment in inspec-
tions [16]. Myers wrote a PL/I program based on an
Algol program written using techniques of program-
correctness proofs by Naur [17] in which six errors
were discovered by Goodenough and Gerhart [7].
Myers translated the program to PL/I and introduced
several more errors, bringing the total to 15.

The PL/I program was translated into Ada for the
ALT system. In addition, there are a number of stylistic
points of discussion that have been introduced. This
brings the number of points of discussion directly re-
lated to the documents being inspected to almost 70.
The program has been divided into three separate arti-
facts for inspection. This permits a student to use the
simulation several times, using different code each
time.

It is clear from years of training in inspections at
organizations such as IBM and AT&T that for someone
to become proficient at the inspection process they
must have experience in it. For this reason group pro-
cess simulations are typically used in inspection train-
ing. Traditional training in inspections will last two
days. During the first day information on inspections
and group process will be delivered through alecture.
The second day is devoted to the group process simula-
tion of the inspection, where students perform an in-
spection and analyze the process they have just experi-
enced. This method affords the students experiencein
one or at most two roles in the inspection. ALT'sgoal is
to provide atechnological approach to each aspect of
inspection training, both the simple information trans-
fer associated with the lecture format and the knowl-
edge and skill discovery associated with the group pro-
cess simulation.

ALT Intelligent Video Simulation (A Cure for the
Common Code)
Our intent was to create a total learning environment
for inspections. In this environment a student can re-
ceive alecture at his or her own pace, peruse the hold-
ings of alibrary, study code to be inspected with debug-
ging and hypertext tools, or participate in an inspection.
The ALT system simulates a mythical company Ulti-

Communications of the ACM

mex. The user takes the role of a new software engineer
at Ultimex. The top level user interface is surrogate
travel through Ultimex's office building. The user has
access to six rooms: the Auditorium, the Training
Room, the User's Office, the Library, the Coffee Room,
and the Conference Room. These rooms provide the
user with information on and experiences in inspec-
tions, as well as tools supporting the inspection process.

In the Auditorium, a person using the system the first
time gets general information about inspections and
their value. Here, the user also receives information on
Ultimex and the course they are about to take. NASA
Apollo and Space shuttle films and short dramatizations
are used to illustrate the importance of software quality
and the potentially life threatening aspects of software
errors. Thisis principally a motivational section, the
"hook" that interests the students in the rest of the
course, and takes approximately ten minutes.

After the Auditorium, the student will be led into the
Training Room where they will learn how to navigate
through the simulated world, use both the window in-
terface, and the natural language interface. Here they
will also have access to instruction on inspections and
group process. The student is given information such as
the differences between walkthroughs, audits, and for-
mal inspections, as well as descriptions of the inspec-
tion process, types and checklists. The material in the
Training Room is presented through motion video,
graphics with narration, and text with graphics. De-
pending on their needs, users may spend from fifteen
minutes to one and one half hoursin the Training
Room.

From the Training Room users may go into the Li-
brary where they have easy access to alarge amount of
information. Thisis ahypermedialibrary containing
text, graphics, video, and audio materials. Users will be
able to view what looks to them like videotapes. These
are a series of vignettesillustrating what goes into a
good inspection, what happens to make inspections go
wrong, as well as tapes on group process. The Library
card catalogue provides access to alarge database of
print materials. Included are items such as checklists,
NASA Ada style guidelines, approximately 1000 slides
from traditional courses on inspections developed by
the jet Propulsion Laboratory and the Software Engi-
neering Institute, and 12 of the seminal papers on in-
spections.

Some of the material from the Training Room will be
accessiblein the Library as well. Also, while the user is
in the Training Room suggestions will be made as to
material for further study. This material will then be
highlighted in the Library. Access to both the Library
and the Training Room will be available to the student
at all times.

An important aspect of inspectionsis preparation. In
their Office the user has a number of tools to help
study the code in preparation for the inspection. To
help facilitate this process a windowing environment
and toolset was created. Off the shelf environments
were investigated. None, however, provided the perfor-

July 1989 Volume 32 Number 7

mance nor integration with the chosen expert system
language and DV | library that was required. The tool-
set, a source level debugger and hypertext system, was
designed to give the user assistance in the preparation
task, permit the system to monitor student work, and to
make the process paperless.

Source level debuggers are quite common and pro-
vide an excellent instrument for investigating the oper-
ation of another's code. The source level debugger in-
cluded in the ALT system allows students to trace a
program line by line, set break points, run the program
stopping just at those break points, and examine how
selected variables change during execution.

The hypertext tool links specific lines code to the
specification that generated it and specifications to the
code that was generated from them. This way the user
may more easily trace code to the requirements that
created that code and vice versa. |n addition, error re-
porting forms are provided for the user. These include
space for information on the specific error as well as
broader comments, and are linked automatically to the
particular line of code under study. The code, specifica-
tions, and error report forms compl ete with the hyper-
text links are available to the user in the Conference
Room during the simulation of the inspection.

While we recognized the need for this type of tool
independently, work by Soloway et al. has shown the
benefits of creating documentation to compensate for
delocalized plans [22]. The hypertext system, although
not intended to be a production level tool, points to the
type of tools we believe would be useful for dealing
with the problem of delocalized plans in software pro-
duction and inspection.

While they work in their Office, users are asked by
the secretary which role they would like to take when
they actually perform the inspection. As noted earlier,
experience in performing an inspection is crucial to
acquiring the skills needed for success in the inspection
process. The ALT system creates a high fidelity ssmula-
tion of an inspection, giving, we believe, the requisite
experiences to become proficient in the inspection
process.

Since each role is unique, the user is given the choice
of taking the role of moderator, reader, or recorder. The
role of the producer of the code is always simulated by
the system; there is no way for the students to use their
own code for the inspection. If such complete auto-
matic analysis of code was possible, inspections them-
selves would be unnecessary. Since code developed by
the user cannot be inspected, the user can never have
the pride of ownership that causes much of the conflict
associated with software reviews. While technically we
could have allowed the student to act as the producer
of the code in the inspection, we prohibit them from
assuming thisrole.

Depending on which role has been taken, the student
may schedule the inspection (as moderator) or inform
the group when they are ready to perform the inspec-
tion (if reader or recorder). The student then moves to
the Conference Room to perform the inspection. Here

July 1989 Volume32 Number 7

SPECIAL SECTION

the student will see the other three members of the
inspection team enter the room, sit down and begin
discussion. This begins the simulation of an inspection
and is the central piece of the ALT system. Several
features of Digital Video Interactive are critical to the
ALT system's ability to create this simulation.

DV permits up to seventy-two minutes of full
screen, full motion video to be stored on one compact
disc. The simulation of the inspection requires approxi-
mately ten hours of audio and two hours of motion
video with audio. We are able to increase the apparent
storage by saving fractional screen images and com-
posing the full image from still images plus motion
sequences.

In analog video, images are fixed during production
and post-production. For practical purposes, the image
on avideodisc or video tape cannot be altered signifi-
cantly during playback. If the information of interest
takes up only afraction of the screen one full frame of
analog video storage must still be allocated. Since im-
ages are stored digitally in DV neither of these limita-
tionsistrue. We are able to compose the visual image
during playback. Since we wished to store the images
of the actors separately we could save significant stor-
age space by saving only the section of the images that
is of interest.

The actors for the inspection simulation were shot in
a blue environment as shown in Figure 1. Camera
placement was held rigid during two weeks of produc-
tion through aworm drive gear head. The camera it-
self, anew generation CCD model, was extremely sta-
ble electronically. Lighting was meticulously checked
throughout the production. Rigorous attention to such
detail allows for the precise registration necessary to
compose the image during playback.

After production the table was repainted and a back-
ground placed in the scene. The scene with table and
background alone was then taped again as shown in
Figure 2 and saved as a still image which the actors are
keyed onto during playback aswe seein Figure 3. The
space for each actor is approximately one sixth of the
full screen. During playback only the actor speaking
moves. Stills of the other actors may be changed period-
ically. The viewer, looking at the speaker, gets the
impression of normal motion video at one sixth the
storage requirement.

Even with this technique, not enough full motion
video could be stored on a single CD-ROM to hold all
of the data necessary for the ALT system to simulate a
wide ranging discussion between four participants-a
discussion where the user may ask questions, respond
to questions, or change the topic of conversation at any
point. In terms of information transfer to the user, the
critical datais audio. An analysis was made to deter-
mine the most probable discourse. The data necessary
for this interaction, along with other high interest mon-
olouges were produced and stored as motion video with
audio. The remainder was recorded and stored as audio
only. This audio, approximately ten hours of AM qual-
ity, is presented in conjunction with still images. These

Communications of the ACM 835

SPECIAL SECTION

836

FIGURE 1.
of Simulation Participants

Blue Screen Images

stills (over 2,500 are available to the system) are contin-
ually changed during the audio presentation to give an
animated effect, drawing the viewer's attention to the
actor speaking. With these techniques the user's
impression is one of viewing and taking part in

a continuous discussion.

The producer of the code is part of the inspection
team no matter what role the user takes and is always
in the center of the image. The image is point of view.
Depending on which role the user takes, two of the
other three team members will be keyed into the image
to complete the scene. In order to allow any combina-
tion of team members, one actor will have to be pre-
sented screen right for one combination and screen left
for another. Rather than producing and storing one ac-
tor's scenes twice, once for left presentation and once
for right, only one seriesis stored and if necessary mir-
rored at playback, saving approximately twenty percent
of the total video stored as shown in Figure 4.

Each student will spend from one to two hoursin the
inspection, receiving a natural feedback on his or her
performance from the intelligent tutoring system driv-
ing the simulation. If the interactions are inappropriate,
simulated members of the inspection team will respond
accordingly. Still, more direct feedback will be desired
by many. On conclusion of the inspection the user will
be given performance feedback in the Coffee Room.
During the inspection a global history of the simulation
is kept. The tutoring system uses this history to analyze
the student's performance. From this analysis the sys-
tem's video trainer will explain directly both the posi-
tive and the negative aspects of the user's performance
in the inspection.

Prior to the introduction of DV 1, hardware capabili-
ties were unavailable to produce a simulation of this
type. But even with the impressive functionality of DVI,

Communications of the ACM

it isthe software that is critical to the creation of a high
fidelity, pedagogically sound simulation.

Expert System Driven Simulation

To simulate the interactions between participantsin
the inspection, to provide the ability for the user to
take any role, and to provide tutoring in the inspection
process, a rule-based expert system was developed to
model the participants. This expert system is used to
define the "personalities,” to control the dialogue be-
tween the simulated members of the inspection team,
personae, and the user, to interpret the response
from the user, and to intelligently control the visual
presentation.

The expert system is composed of over one hundred
rules in Ops/83. This was chosen because it is capable
of forward chaining, it is has acceptabl e performance
on an IBM AT, and it interfaces well with C (the lan-
guage of necessity for DVI development). The rule base
was devel oped from analyses of taped inspections, anal-
yses of normal conversations, and considered the work
of Bales[1, 2]. The rule base is used to make decisions
in areas such as who should speak, the tone they
should take, the content (context space search), and
who should be addressed.

To model different personalities, several emotional
attributes are defined for each individual simulated by
the system. Attributes include defensiveness, aggres-
siveness, talkativeness, and the tendency to make irrel-
evant, humorous comments.

State variables keep track of the history of the con-
versation. These variables capture information on the
current topic of discussion, the length of focus on this
topic, how the discussion is resolved, the opinion on
the topic for each participant, the current speaker, the
person focused on in the current comment, and the

July 1989 Volume32 Number 7

FIGURE 2. Still Background Image

person addressed in the current comment.

Rules control the conversation and model the person-
alities of the personae. Our paradigm is somewhat dif-
ferent from typical intelligent tutors. The student re-
ceives a natural feedback on his or her performance.
After the inspection simulation, more direct feedback is
available through an outlet interview with the trainer
in the Coffee Room, prior to exiting from the system.

SPECIAL SECTION

Development of the rule base proceeded from an En-
glish version of the rule to pseudocode and finally to its
Ops/83 implementation. For example, one rule deals
with a participant who has been dominating the con-
versation. This participant may be the user or one of
the simulated personae. Another simulated persona has
tired of this and wants to say something about it. Who
brings this up, what they say, and how they say it
depends on a number of factors including personality
variables set for the personae, the history of the conver-
sation, what this personasroleis, and what role the
user has taken. The English version of theruleis
shown in Figure 5, the pseudocode version in Figure 6,
and the Ops/83 implementation in Figure 7.

An example of items in the rule base's working mem-
ory are personal attributes as shown in Figure 8. This
includes information such as when this person last
spoke, the last comment made that was relevant to the
conversation at hand, and whether this person has
been dominating the conversation. Also included here
is the name of the person. The system cannot know a
priori which role the user is going to take or who a
personais going to address. When personae are address-
ing one another they are actually addressing arole, i.e.,
moderator, recorder, producer, or reader. The system
knowsiif it is about to address a simulated participant

FIGURE 3. Final Composed Image

July 1989 Volume32 Number 7

Communications of the ACM 837

SPECIAL SECTION

838

FIGURE 4. Mirrored
Image of Actress for
Simulation

whose name is known and stored or the user whose
name may not be known.

There is alarge audio database of names taken from
alist of the 120 most popular male and female names
[4]. Thus, for the majority of people the video charac-
terswill be able to address them by name. Thisis
possible since names, like all audio data, are stored as
digital files that can be concatenated with other sen-
tences as needed. Sentences are constructed such that
if the user's name is not in the audio database no direct
form of address is needed. For example the sentence
"Bill, what do you think about this?' stands without the
name as long as there is no ambiguity about who is
being addressed. When addressing the user, the speaker
looks directly at the user and the input interface is
presented, eliminating any ambiguity.

Other factors that are being modeled are defensive,
aggressive, and humorous traits. The typical user will
spend approximately one or two hoursin this smula-
tion, and if it were completely humorless they would
tune out very quickly. The simulation has been de
signed to walk afine line between being too funny and
not modeling a good review, and making it too boring
and losing the user.

The expert system does not generate the dialogue to
be spoken. Rather, it selects the dialogue from a large
audio and video database. The dialogue structure that
the rule base pulls from, is multi-dimensional. In Fig-
ure 9 the horizontal dimension is temporal. The verti-
cal dimension, the columns of cards, is one of the indi-
vidual being modeled. Each card represents what the
persona may have to say at any point in the conversa-

Communications of the ACM

tion. Within each card we model the affective dimen-
sion, where the upper areas represent very passive
kinds of statements, middle are more neutral, and the
lower areas are very aggressive or defensive statements.

During the simulation, the expert system determines
the temporal level of the conversation. It then deter-
mines who wants to speak and their affective state. The
dialogue data are then searched to find the appropriate
audio and video. If the search is successful, the persona
has something to say on this topic and is permitted to
speak. If the search fails, the system must still behave
reasonably.

This is accomplished since the dialogue structure is
actually four dimensional. The first three dimensions
are temporal, speaker, and affective. The fourth dimen-
sion is content, the context space. In Figure 10 each
enclosing rectangle represents a different content area
and the whole figure the context space. There are ac-
tually two different kinds, that is two granularities, of
content area. One is a broad temporally-based discus-
sion where the specificity of statements deepen with
discussion. Typically, these structures represent dis-
course on specific topics, such as code errors. Finer
grained content areas relate to single phrases acting as
quick pools of datato pull from.

Pools are used to react to special situations. For ex-
ample, one pooal is used when the expert system deter-
mines that someone is being asked a question for which
they have no answer, (i.e., the dialogue search as de-
scribed above has failed). The expert system will look
at a pool that contains phrases such as "l have nothing
to say," and pull an item from there. Since situations

July 1989 Volume 32 Number 7

SPECIAL SECTION

One of the participants in the inspection has spoken too frequently during the last few minutes and

someone (participant Y) other than this person is willing to talk.

If the user is taking the role of the moderator then usually the user will get various types of feedback such

as other participants beginning to lose interest or falling asleep. Frequently, participant Y will make a

comment to the user about the problem.

If the user is not the moderator (or occasionally when the user is the moderator) and if participant Y is

fairly aggressive, then Y tells the person talking too much to talk less. If the user is the moderator and this

problem has been brought up to the user before then participant Y will more forcefully tell the user there is a

problem (i.e. someone is dominating the conversation and the user, as moderator, should do something

about it). If Y is not aggressive, Y will simply suggest that others talk more. This rule adjusts the propensity

to talk of the individuals in the group. Other rules interact to after the defensiveness of the person (user

excluded) who is talking too much.

FIGURE 5. English Language Version of
Production Rule

such as this may occur several times and at any point
in the conversation, we store these comments as pools
that are accessible whenever needed.

These pools aso alow usto bridge between areas.
Due to changes in personality factors and intervention
by the user, speaker order isindeterminate. Thisre-
quiresindividual script atoms that are independent of
immediate order. Acknowledgement of the previous
statement, however, is key to arealistic dialogue. This
acknowledgement is handled with agreement and dis-
agreement pool topics.

For example, at one point in the conversation the

Let:
X =Any Reviewer
Z1 = The Set of Reviewers Excluding X
U = The User (Student)
M =Moderator

Pt(X) = Level of Talkativeness for Person X
0<Pt(X)<1

Pa(X) = Level of Aggressiveness for Person X
O<Pa(X)<1l

Pd(X) = Level of Defensiveness for Person X
0<Pd(X)<1

id(X) = Incremental Change in Defensiveness for Person X
0<id(X)< .4

dt(X) = Decremental Change in Talkativeness for Person X
-4 <dt(X)<0

newval(trait, person(s), change/person)
Where newval(d, X, id(X)) -> Pd(X) = Pd(X) + id(X)

All-Y-X -> For every person Q

Then the Production Rule is:

X has spoken MOUTHLIMIT of the time out of the last STATECHECK comments &
YisinZ1 & PY(Y) > 0.6 ->
it U= M then 75% of the time this rule fires do this:
Provide feedback to U on the problem, e.g. have Z1 fidget and
look annoyingly at X, or have Z1 begin to fall asleep and
snore a little. Possibly, have Y address U with the problem.
else (either U 1= M or 25% of the time when U = M)
f Pa(Y)>0.5 ->
if U =M & U was mildly scolded before ->
have Y scold M
Y prompts X to talk less, others to talk more;
newval(d, X, id(X))

newval (L X, 2 - dt(X))

else
Y just Prompts others to talk more;

newval(t, ALL - Y - X, it(ALL-Y-X));

FIGURE 6. Pseudocode Production Rule

July 1989 Volume 32 Number 7

reader may be able to say "It'sanice day," the modera-
tor "I think it's adreary day," and the producer "I think
it's abeautiful day." If the reader speaksfirst a pool
statement may be combined with the producer's state-
ment to create: "It'sanice day" (reader), "l agree, |
think it's a beautiful day" (producer). On the other
hand, if the moderator speaksfirst: "I think it's a dreary
day" (moderator), "I don't agree, | think it's a beautiful
day" (producer).

The four dimensional structure provides multiple
levels of granularity for phrase generation. It thus pro-
vides great flexibility for the expert system in generat-

rule p shut up

{ &T (spoketoomuch);
&Y (person user = Ob; role <> &T.talker; talkative > 60);
&G (global history);
&U (person user= 1b);
&C (conversation current = 1b);
&H (recent history comment made = &G.num speeches);
- (historycheck);
10.65] -->

-- Person &T.talker has been speaking too much. Y tells him to shut
-- up, and may also scold the moderator in the process.

local &waitforM: logical;

if (&U.role = moderator)
call scoldmoderator(&Y, &T.talker, 38, &waitforM)
--topic 38 = SHUT UP
else
&waitforM = Ob; -- No need to wait for moderator!
if (&waitforM = Ob)
{ -- Do not wait for the moderator. Have talker be addressed
- byY.
call say(&Y, 38, &T.talker, &T.talker, &G, &C, &H);
--topic 38=SHUT UP
call newval(talkative,ALL, &Y.role, &T.talker, 1, up);
if (&Y.aggressive > 50) .
{ - If Y IS aggressive there IS an increased
emotional response --
call newval(defensive, &T.talker, NONE, NONE, 1, up);
call newval(talkative, &T.talker, NONE, NONE, 2, down);
h
E

FIGURE 7. Ops/83 Production Rule Implementation

Communications of the ACM

839

SPECIAL SECTION

840

» spoke_last--When did this person last speak
« last relevant--When was the last relevant comment made
* num speeches--How often has this person spoken

| e name--What is the name of this person

« talkative--How talkative is this person
« uptalk--Increment value for talkative trait

+ downtalk--Decrement value for talkative trait

« defensive--How defensive is this person
 updef--Increment value for defensiveness trait

» downtalk--Decrement value for defensiveness trait

 aggressive--How aggressive is this person
* upagg--Increment value for aggressiveness trait

» downagg--Decrement value for aggressiveness trait

» wisecracker--How humorous is this person
* upwise--Increment value for humorous trait

« downwise--Decrement value for humorous trait
« role--What role is being taken
e user--Isthis the user

* prepared--1s this person prepared
FIGURE 8. Working Memory Item: Personal Attributes

ing conversations as well as responding to user input.

A unique feature is the ability to run the simulation
without taking arole. In this case the system models all
four individuals. They carry on a conversation among
themselves, performing a complete inspection with no
user intervention. Trainers and educators can set up
particular scenarios. For example, an instructor could
have the system model a very aggressive moderator,
defensive producer, and talkative reader and then let
the system play out the scenario to illustrate the conse-
quences. Asinreal life, discussions will vary depending
on the personalities of the participants. When the same
conversation is begun with new personalities, adiffer-
ent discussion will ensue.

An interesting part of the expert system is one that
we are calling Hitchcock, after the director. Thisisthe
visual director of the system. Now, for the first time
with digital video, we can manipulate the images when
we play them back. We have to do that for the ALT
system.

We want the expert system to behave intelligently in
presenting images, much like a director would do when
creating or editing an image. Here, the system doesi it
during playback. For instance, if the user is dominating
a conversation, the system may present a slightly lower
camera angle of the participants on the screen. Y ears of
experience and many studies have shown that images
such as this tend to convey to viewers the impression
that the viewers themselves are dominating the scene
[11, 12]. Conversely, if the user is being very passive,
we may wish to present a close-up from alow angle,
where the people in the scene now appear more domi-

Communications of the ACM

nant. From a history of the scene Hitchcock also makes
ajudgement on whether the presentation of awide

shot, medium shot, or close-up is called for.

Natural Language Interface

From the beginning, one of our largest concerns was
how the user should supply input. Ideally you would be
able to speak into the system, and it would be capable
of continuous speaker independent speech recognition,
including the comprehension of affective effects of

tone. Obviously, that technology is not here today.
Even free-form natural language text input on a system
the size of an IBM AT is not feasible with the reliability
we required.

To overcome these problems we developed a natural
language interface based, in part, on the work of Harry
Tennant [15]. Tennant has done work in a menu based
natural language system: Natural Access. In Natural
Access sentences are constructed from sentence frag-
ments. While allowing the user great freedom and
power in sentence construction, this method restricts
the domain and syntax to alevel manageable by our
target machine.

Figure 11 illustrates this interface. With it you con-
struct sentences, address comments to individuals, and
add tone and affect to your statement. Affect and tone
are handled by the sentences created and by selection
of tone icons. Tone ranges from passive (by selecting
the cool blue face) up through aggressive (by selecting
the red flame face).

The construction of the interface shell was straight-
forward. The most significant problem was the analysis
of the sentences to be constructed. For an interface
such as Natural Accessthe domain istypically an ap-
plication such as a spreadsheet, where analysisisrela-
tively simple. The discourse in an inspection is quite
freeinitsform and broad in its domain, however.

Elliot Soloway had performed a significant amount of
inspection analysis during a research project [14]. His
research team found that there were specific topic
areas that people spent most of their time on, during an
inspection, such as looking at clarity and correctness.
We recognized that this analysis might be extended to
look for particular sentence types. After discussions
with Soloway it was determined that ajoint project
would allow for the extension and tailoring of thisre-
search to aform that would provide the foundation for
the ALT language interface sub-system.

To complete this work, Robin Lampert was brought
to the SEI from Soloway's project. Lampert worked
with project members to extend and refine her earlier
research. This part of our work found seven main cate-
gories of discourse during an inspection which were
labeled: clarity, correctness, simulation, consistency,
design rationale /choice, procedural, and general dis-
cussion. Within each category a sufficiently small num-
ber of sentence types were identified to make the de-
velopment of a menu based natural language interface
feasible as shown in Figure 12.

July 1989 Volume32 Number 7

SPECIAL SECTION

Recorder == . . .
=== FIGURE 9. Single Topic Dialogue Structure
Reader e =1==1
] |
plap st =)
._—n
Moderator =222 Moderator <S238 » Moderator =222
=T e e 1
= | e
-|~;:; N W |
o[o | o}
= i —— [e
o e . Cee 0 [— 1
FIGURE 10. Four Dimensional Dialogue
Structure: Content (rectangular groups),
Speaker (individual cards), Affective (areas
within cards), and Temporal (horizontal
extension within a content structure)

For example, the user may wish to say:

"This line when bufpos = maxpos causes an error."
"Thisline" refersto aline of code and would be high-
lighted by the user.

This sentence is an example of the basic sentence
structure:

<object> when <code-action> causes an error.

To create this sentence a user selects the <object>
from the OBJECT list asin Figure 11. The portion called
<code-action> is a sub-section of SIMULATION with
construction of specific identifiers by keyboard input
allowed. Theline referred to by "This Line" might be
selected by pointing with the mouse and would remain
highlighted during the discussion.

Early experience with this interface suggests that
users adapt to it in a short time. More importantly, they
are able to quickly input the content if not exactly the
form of sentence they wish.

Conclusions

The ALT system has several modes of operation. Soft-
ware engineers and students use all aspects of the sys-
tem. Managers are given a presentation designed to
highlight management uses of inspections and typically
would not perform the inspection simulation. Educators

July 1989 Volume 32 Number 7

and trainers can use the resources in the Library along
with a projection monitor as a powerful presentation
system for lectures on inspections. The power of inter-
active technologies is, when designed properly, their
ability to adapt to the user.

Using expert system technology to model personali-
ties and control the simulation creates an exceptionally
interactive simulation. This allows, for the first time,
the creation of high fidelity simulations of interactions
between people. Rather than on-the-job education in
areas such as reviews and project management, where
errors are costly, the ALT system demonstrates that it
now becomes possible to give students and profession-
als technology based experience, where errors are free
of dire consequences.

The ALT Project has just begun formal evaluation.
The final CD-ROM disc is expected to be pressed in the
fall of 1989. Early use of prototype versions indicate
that users quickly adapt to the interface and find the
simulation engaging. The experience in other domains
suggests that benefits of the DVI, hypermedia, and in-
telligent tutoring learning environment of the ALT sys-
tem include: inexpensive dissemination of materials,
increased learning productivity, continuous assistance
to the learner, practical experience in the methodology,
and the ability to adapt the material to a diverse group
of users. It is believed that as the capabilities of CD-

Communications of the ACM

SPECIAL SECTION

842

the comment for

the name of

the value of

'the initialization off

|the assignment of
e declaration of

believe that
[am positive that =
It may be that |

<object> is (not) an ERROR. (?)

<object> has (in)CORRECT <programming construct-aspect>
<object> does (not) FULFILL the REQUIREMENTS.

<object> when <code-action> causes an ERROR.

<object> is (unN)NECESSARY.

<object> is in the WRONG POSITION.

<Object> SHOULD BE <(user input ?), variable-value-boundary>

FIGURE 12. Sentence Types for the Category of Correctness

ROMs and digital video become commonplace on work-
stations, high quality, technology-intensive education

Wi

Acknowledgments.

Il also become common.

The Advanced Learning TECH-

NOLOGIES Project team includes Judy Chiswell, in-
structional designer and Robin Lampert, research as-
sistant. A special note of thanks goes to Michael
Christel, project software engineer.

REFERENCES

1.

2.

Bales, R. Interaction Process Analysis. Addison-Wesley, Cambridge,

Mass,, 1951.

Bales, R. Personality and Interpersonal Behavior. Holt, Rinehart, and

Winston, New Y ork, 1970.

. Bernd, R. Interactive videodisc in the army. In Proceedings of the
Fifth Annual Conference on Ineractive Videodisc in Education and Train-
ing (Aug. 24-26, Arlington, VVa.). Society for Applied Learning Tech-
nology, Warrenton, Va., 1983, pp. 14-16.

. Bonanza Books, Inc. The Modern American Encyclopedia of Names for
Your Baby. Bonanza Books, New Y ork, 1981.

. Fagan, M.E. Design and code inspections to reduce errors in program
development. IBM Syst. J. 15, 3(1976), 182-211.

. Fowler, P. In-process inspections of workproductsat AT&T. AT&T

Tech. J. 65, 2(Mar.-Apr. 1986), 102-111.

Communications of the ACM

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21

22.

FIGURE 11. Menu Based Natural

Language Interface

Goodenough, J., and Gerhart, S. Toward a theory of test data selec-
tion. |EEE Trans. Softw. Eng. SE-1, 2(June 1975), 156-173.
Hon, D. The promise of interactive video. Perf. & Instr. J. 22, 9(Oct.
1983), 21-23.
Ketner, W. Videodisc interactive two dimensional equipment train-
ing. In Proceedings of the Fourth Annual Conference on Video Learning
Systems Videodisc for Military Training and Simulation. Society for
Applied Learning Technology, Warrenton, Va, 1982, pp. 18-20.
Kimberlin, D. U.S. army air defense school distributed instructional
system project evaluation. In Proceedings of the Fourth Annual Confer-
ence on Video Learning Systems Videodisc for Military Training and
Simulation (Aug. 25-27, Arlington, Va.). Society for Applied Learning
Technology, Warrenton, Va.,, 1982, pp. 21-23.
Kraft, R. The influence of camera angle on comprehension and re-
tention of pictorial events. Mem. & Cogn. 15, 4(1987), 291-307.
Kraft, R. Mind and media: The psychological reality of cinematic
principles. In Images, Information & Interfaces: Directions for the
1990's, D. Schultz and C.W. Moody, Eds. Human Factors Society,
New Y ork, 1988, pp. 13-36.
Lesgold, A. A coached practice environment for an electronics
troubleshooting job. In Computer Assisted Instruction and Intelligent
Tutoring Systems: Shared |ssues and Complimentatry Approaches, J,
Larking, and R. Chabay, Eds. Lawrence Erlbaum, Hillsdale, N. J. To
be published.
Letovsky, S., Pinto, J., Lampert, R., and Soloway, E. A cognitive
analysis of a code inspection. In Empirical Studies of Programming,
G. Olson, S. Sheppard, and E. Soloway, Eds. Ablex Publishers,
Norwood, N. J., 1987, pp. 231-247.
Miskoff, H. Understanding Artificial Intelligence. Texas Instruments,
Dallas, 1985.
Myers, G. A controlled experiment in program testing and code
walkthrough/inspections. Commun. ACM 21, 9(Sept. 1978), 760-768.
Naur, P. Programming by action clusters. BIT 9, 3(1969), 250-258.
NSB Task Committee On Undergraduate Science and Engineering
Education. Undergraduate science, mathematics and engineering
education. Tech. Rep. NSB 86-100, National Science Board, Wash-
ington, D.C., 1986.
Pietrasanta, A. Software engineering education in IBM. In |ssuesin
Software Engineering Education. R. Fairley and P. Freeman, Eds.
Springer-Verlag, New Y ork, 1989, pp. 5-18.
Pietri, J.,, Jr. An IBM perspective. In |EEE Videoconference Seminarsvia
Satellite Optical Discs: An Information Revolution (Fob. 26). IEEE and
The Learning Channel, New Y ork, 1987.
Reeves, T., and King, J. Development, production and programming
of an interactive videodisc adult literacy program. In Proceedings of
the Eighth Annual Conference on Interactive Videodisc In Education and
Training (Aug. 20-22, Washington, D. C.). Society for Applied Learn-
ing Technology, Warrenton, Va, 1986, pp. 44-49.
Soloway, E., Pinto, J., Letovsky, S., Littman, D., and Lampert, R.
Designing documentation to compensate for delocalized plans.
Commun. ACM 31, 11(Nov. 1988),1259-67.

July 1989 Volume32 Number 7

23. Stevens, S. Interactive videodisc: A background report. Tech. Rep.
Software Engineering Institute, Carnegie-Mellon University, Pitts-
burgh, 1987.

24. Training Magazine. Annual Industry Report. Market Report, Training
Magazine, Minneapolis, 1986.

CR Categories and Subject Descriptors: D.2.4 [Software Engineer-
ing]: Program verification; D.2.9 [Software Engineering]: Management-
software quality assurance; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs; 1.2.1 [Artificial
Intelligence]: Applications and Expert Systems; 1.3.m [Computer Graph-
ics|: Miscellaneous; 1.6.3 [Simulation and Modeling]: Applications; J.4
|Computer Applications]: Social and Behavioral Sciences; K.3.1 [Com-
puters and Education]: Computer Uses in Education

General Terms: Human Factors

Additional Key Words and Phrases: Code inspections, digital video,
digital video interactive, human computer interaction, intelligent tutor-
ing systems, intelligent video, interactive video

July 1989 Volume 32 Number 7

SPECIAL SECTION

ABOUT THE AUTHOR:

SCOTT M. STEVENS is asenior member of the technical staff
at Carnegie Mellon University's Software Engineering I nstitute
and the Project L eader for the Advanced L earning Technolo-
gies Project (ALT). His research interests include exploring the
role of cognitive sciences. Author's Present Address: Software
Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA 15213.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

Communications of the ACM

843

