Minimizing Timestamp Size for Completely Asynchronous
Optimistic Recovery with Minimal Rollback

Sean W. Smith

IBM Research Division
T. J. Watson Research Center

Hawthorne, NY 10532

sean@watson.ibm.com

Abstract

Basing rollback recovery on optimistic message logging
and replay avoids the need for synchronization between
processes during failure-free execution. Some previous
research has also attempted to reduce the need for syn-
chronization during recovery, but these protocols have suf-
fered from three problems: not eliminatingall synchroniza-
tion during recovery, not minimizing rollback, or providing
these properties but requiring large timestamps. This paper
makes two contributions: we present a new rollback re-
covery protocol, based on our previous work, that provides
these properties (asynchronous recovery, minimal rollback)
whilereducing thetimestamp size; and we prove that no pro-
tocol can provide these properties and have asymptotically
smaller timestamps.

1. Introduction

Rollback recovery can provide fault tolerance for long-
running applications in asynchronous distributed systems.
Basing rollback recovery on optimistic messagelogging and
replay avoids the need for synchronization during failure-
free operation, and can add fault tolerance transparently. In
their seminal paper, Strom and Yemini [28] removed most
synchronization from recovery, but permitted a worst case
inwhich asinglefailure could lead to an exponential num-
ber of rollbacks. In our 1995 paper [27], we eliminated all
synchronization and minimized the number of rollbacks, but
used large timestamps. Damani and Garg [7], in a subse-
quent paper, further reduced timestamp size, but sacrificed
some asynchrony and minimality properties.

This research was performed while the first author was with Los Alamos
National Laboratory, and this paper is registered as a Los Alamos
Unclassified Release. Thisresearchwas sponsoredin part by the Advanced
Research Projects Agency, under contract number DABT63-93-C-9954,
and by the Department of Energy, under contract number W-7405-ENG-36.
The views and conclusionscontained in this document are those of the au-
thorsalone.

David B. Johnson

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213
dbj@cs.cmu.edu

In this paper, we make two contributions. First, we
present a new optimistic rollback recovery protocol, based
on our earlier work [27], that preserves all properties of
asynchronous recovery and minimal rollback, but reduces
the timestamp size over our previous protocol. Second,
we prove that no optimistic recovery protocol can have a
smaller bound on timestamp size and till preserve dl of
these properties.

1.1. Asynchronous, Optimistic Recovery

In an asynchronous distributed computation, processes pass
messages that either arrive after some unbounded, unpre-
dictable positive delay, or never arrive at al. Rollback re-
covery may be used to add fault tol erancetolong-running ap-
plicationson asynchronousdistributed systems. Animplicit
goal of thisrecovery isthat the protocol be as transparent as
possibleto the underlying computation, both during failure-
free operation and during recovery. Optimistic messagelog-
ging is an approach to recovery that attempts to minimize
the failure-free overhead, a the expense of complicating
recovery from failure. Asynchronous optimistic recovery
reduces this cost by removing the need for synchronization
between processes during recovery, and allowing recovery
to proceed without impacting the asynchronous nature of
the underlying computation.

We assume that processes are piecewise deterministic: a
process's execution between successive received messages
is completely determined by the process's state before the
first of these messages is received and by contents of that
message. We define a state interval to be the period of
deterministic computation at a processthat is started by the
receipt of a message and continues until the next message
arrives. If a process p fails and then recovers by rolling
back to a previous state, process p's computation since it
first passed through the restored state becomes lost. The
state at a surviving process is an orphan when it causaly
depends on such lost computation.

A process begins a new incarnation when it rolls back
and restarts in response to anyone'sfailure[28]. A process
begins anew version when it rollsback and restarts only in
responseto itsown falure[7].

In message logging protocol s, processes checkpoint their
local state occasionally, and log all incoming messages.
Consequently, a process can restore a previous state by
restoring a preceding checkpoint and replaying the subse-
guent logged messagesintheorder originally received. (The
ability to restore arbitrary previous states, between check-
pointed states, eliminates the domino effect [22, 23].) In
optimistic protocols, processes |log messages by buffering
them in volatile memory and later writing them to stable
storage asynchronously. As a consequence, the failure of
a process before the logging of some received messages
compl etes can cause the state at other processes to become
orphans—since the failed process may have sent messages
during a state interval (now lost) begun by the receipt of
such an unlogged message.

1.2. Wishlist for Optimistic Rollback Recovery

Ideally, an optimisticrollback recovery protocol should ful-
fill several criteria

Complete Asynchrony. The recovery protocol should
have no impact on the asynchrony of the underlying compu-
tation. In particular, the protocol should meet the following
conditions:

No Synchronization. Recovery should not require
processes to synchronize with each other.

No Additional Messages. Recovery should not require
any messages to be sent beyond those in the underlying
computation.

No Blocking During Recovery. Recovery should not
force execution of the underlying computation to block.

No Blocking During Failure-Free Operation. Failure-
free operation should not force execution of the underlying
computation to block. (In particular, computation should
never wait for messages to be logged to stable storage.)

No Assumptions. The protocol should make no assump-
tions about the underlying communication patterns or pro-
tocols.

Minimal Rollback. The recovery protocol should min-
imize the amount of computation lost due to rollback. This
property requires minimizing both the number of rollbacks
as well as the propagation of orphans, as expressed in these
conditions:

Minimal Number of Rollbacks. The failure of any one
process should cause any other process to roll back at most
once, and then only if that process has become an orphan.

Immediate Rollback. A processin an orphan state should
roll back as soon as it can potentially know that its current
state is an orphan.

No New Contamination. A process p not in an orphan
state should not accept amessage sent fromaprocessg inan
orphan state, if p can potentially know that ¢ was an orphan.

Small Timestamp Size. Optimistic recovery protocols
typically require appending some type of timestamp struc-
tures to messages. These timestamps should be as small as
possible.

Independence of Underlying Computation. The roll-
back computation itself isa distributed computation, which
should have the following independence properties:

Process State Opacity. The user state of processes is
opague to the rollback computation.

Message Content Opacity. Except for the timestamp and
theidentity of the source and destination processes, the con-
tents of messages are opague to the rollback computation.

Process Program Opacity. The programs(statetransition
functions) governing the user computation are opaqueto the
rollback computation.

This independence serves to make the rollback protocol
universal, in that it can transparently add fault-tolerance to
any underlying computation. Specifying the space of roll-
back protocolsaso leads to additional conditions:

Piecewise Determinism of Rollback Computation. At
each process, the state of the rollback computation changes
deterministically with each arriving message based on the
visible components, with each new state interval, and with
each timestamp generation. Each timestamp generation is
determined by the state of the rollback computation and the
identity of the destination process.

No Needlessly Discarded Messages. For each incoming
message, the rollback protocol can decide to discard the
message only when the message is a knowabl e orphan.

1.3. Previous Work

In this paper, we concentrate on rollback based on opti-
mistic message logging and replay. Recovery protocols
based instead on checkpointing without message logging
(eg., [1,3,4,5, 8, 15, 16, 29]) may force processes to roll
back further than otherwise required, since processes can
only recover states that have been checkpointed. Recovery
protocols based on pessimistic message logging (e.g., [2, 9,
11, 21]) can cause processes to delay execution until incom-
ing messages are logged to stable storage. In this section,
wediscuss previouswork in optimistic message logging and
replay, for protocols that reduce the need for synchroniza
tion during recovery. Table 1 summarizes this work and
compares it to the work described in this paper.
Parameters. To discuss the timestamp size required by
an optimistic recovery protocol, we need to introduce some
parameters. Let n bethe number of processes in the system.
Inaparticular execution of thesystem, let F, R, V betheto-
tal number of failures, rollbacks, and versions(respectively)

Asynchronous| Minimal Timestamp
recovery rollback size (bits)
" Strom and Yemini [28] Mostly No O(nlog s))
> N
_g Smith, Johnson, Yes Yes O(nlog s, +
[

work

and Tygar [27] Rlog s, + Rlog r,,)

p

Damani and Garg [7] Somewhat | Somewhat | O(nlog V+ nlog s,)

Our protocol Yes Yes O(Vlog s,)

this
paper

Theoretical limit Yes Yes Q(Vlog s,)

Table 1. Summary of research into removing syn-
chronization from recovery while minimizing roll-
back and reducing timestamp size. This paper
establishes a theoretical limit where the underly-
ing computation is opaque.

across al processes (V = n + F). We introduce three mea-
sures of state intervals: let sy be the maximal number of
stateintervalsin any singleincarnation of any process[28];
let sy bethemaximal number in any singleversion [7]; and
let s, bethemaximal number inany singlelivehistory [28].
We have s; < sy, Since many incarnations may comprise a
singleversion.

Additionally, let sy be the maximum number of system
state intervals (defined below) in an incarnation; s; < sy.
Let v; bethenumber of versionsat theith process, and | et r;
be the number of rollbacks. Let r,s be the maxima number
of rollbacks at any one process.

Of the previous work shown in Table 1, Strom and
Yemini [28] use the smallest timestamps, followed by
Damani and Garg [7], followed by our previous proto-
col [27]. The timestamp size required by the protocol pre-
sented in this paper is substantially lessthan in our previous
protocol. But this timestamp size is still larger than in
Damani and Garg's protocol, athough unliketheir protocol,
our protocol fully preserves all properties of asynchronous
recovery and minimal rollback.

Strom and Yemini. Strom and Yemini [28] opened
the area of optimistic recovery. Their protocol provided
mostly asynchronous recovery, but required some block-
ing and additional messages. Furthermore, their protocol
permitted a worst-case scenario in which one failure at one
process could cause another processtoroll back an exponen-
tial number of times; this pathology arose from the lack of
the Immediate Rollback property described in Section 1.2.
Strom and Yemini used timestamps of size O(n log s1,) bits.
Some subsequent work in optimistic recovery minimized
the number of rollbacks by sacrificing asynchrony during
recovery [13, 20, 24, 7], and some of these even reduced
the timestamp sizeto O(log s,) bits[13, 24].

Smith, Johnson, and Tygar. Our earlier protocol [27]
achieves fully asynchronous recovery while also minimiz-
ing rollbacks and wasted computation. However, we ob-

tained this result by using large timestamps.! We intro-
duced a second level of partia order time, separating the
user computation from the system computation of the roll-
back recovery protocol itself that is transparent to the user
computation. We required a system timestamp vector con-
sisting of n entries of a pair of integers each, and a user
timestamp vector consisting of n entries whose total size
was O(R) integers. Thus, the number of integers in our
timestampsis bounded® by O(n + R). Interms of bits, the
system timestamp vector isbounded by 3. (log r; +log sy)
bits; as written, the user timestamp vector is bounded by
>, ri(logr; +logsy), but a straightforward modification
replaces the sp by s;. Together, the timestamps require
O(nlogsy + Rlog s + Rlogrys) bits.

Damani and Garg. Damani and Garg [7] present an op-
timistic protocol that requires little synchronization, mini-
mizesthenumber of rollbacks, and requirestimestamps con-
sisting of aversion index and astate index for each process.
These timestamps are bounded by O(nlogV + nlogsy)
bits (although the log V' factor might be reduced, since it
cannot be the case that all versions occur at al processes.)

However, the Damani and Garg protocol fails to meet
other criteria from Section 1.2. In particular, it requires
extramessages for failure announcements and assumes reli-
able broadcast for them. In addition, it may cause blocking
during recovery, as a process that has received a message
from arolled-back process without receiving the failure an-
nouncement will be forced to block if it executes a receive
and no other messages have arrived. Finaly, the protocol
allows new contamination by orphan processes, since an
orphan process will continue executing until it receives a
failure announcement, and a process that has not yet re-
ceived the failure announcement will accept messages sent
by an orphan process, even if either could potentially know
that the processisin fact an orphan.

1.4. This Paper

Section 2 presents our new recovery protocol, and Section 3
demonstrates how it reducestimestamp sizeto O(V log sv)
bits. Section 4 establishes that this timestamp size is opti-
mal, in that any protocol meeting the criteria of Section 1.2
cannot have a smaller upper bound on timestamp size. The
Appendix presents the proofs of these arguments.

LIn that paper, we characterized timestamp size in terms of the number
of entries. Damani and Garg [7] characterize timestamp size in terms of
number of integers, since some entries may require more than one integer.
Inthis paper, we characterizetimestamp size in termsof the number of bits,
in order to maximize accuracy.

2Damani and Garg [7] expressthis bound as O (n? f) integers, where f is
the maximal number of times any one process has failed, by bounding R
by nF and bounding F" by nf.

2. TheProtocol

The technique of using partial order time [10, 18, 25]
to describe distributed asynchronous computation is well-
known. Experience puts atotal order on the state intervals
at each individual process; the sending of a message makes
the state interval containing the send precede the state in-
terval begun by the receive. The transitive closure of the
union of these two relations comprises a partia order onthe
state intervals of al processes. As described in our earlier
work [26], issuessuch asfailurerequire generalizationssuch
astimetrees (partia ordersonthestateintervalsat individual
processes) and multiplelevels of time.

Section 2.1 reviews partial order time. The optimistic
rollback recovery protocol presented in thispaper is defined
in terms of four levels of partia order time, and Section 2.2
describes these four levels. Section 2.3 reviews the concept
of knowable orphans and how to write rollback protocols
in terms of knowable orphan tests. Section 2.4 uses vector
clocks for these levels of time to build a more efficient test
for knowable orphans. Plugging thistest into the scheme of
Section 2.3 produces our new protocol.

2.1. Partial Order Time and Vector Clocks

The motivation behind partia order time is the ability to
express the temporal ordering on state intervals that occur
at physically separate |ocations—if two state intervals can-
not have influenced each other, then neither interval should
precede the other in the partia order. In its usual form,
partial order time decomposes into linear timelines (one for
each process) and links (one for each received message) be-
tween each timeline. In previous work [25, 26], we have
generalized this structure to alow for more general models
at processes, and for hierarchies of time. We use < and <
to denote time orderings within a single process, and —
and — to denote time orderings across two or more
processes.

In the context of partial order time, a vector is an array
of state intervals (or, more precisely, names or indices of
intervals), one per process. Thetotal order on each timeline
inducesanatura partia order on vectors. we say that vector
V precedes vector W when each entry of V' precedes or
equa sthe corresponding entry of W in thetimelinefor that
entry. We use the same notation to compare vectors (<,<)
that we use for process time, since the vector comparison
arises from process time.

For any state interval A, we define its timestamp vec-
tor V(4) as follows: for each process p, the p entry of
V(A) is the maxima state interval B at process p such
that B < A. These timestamp vectors function as clocks:
forany A and B, V(A) < V(B) exactly when A — B.
When each processp can sort stateinterval sinthetimelineof
each other process ¢, vector clocks are also implementable.

Each process p maintains its current clock; when sending
amessage, process p includes the timestamp vector of the
send event on the message, and when receiving a message,
process p sets its own timestamp vector to the entry-wise
maximum of its current value and the timestamp vector on
the received message.

In earlier work [25, 26], we show how this mechanism
applies to more general forms of time, including partial or-
ders in which the local time at individual processes forms
timetrees instead of timelines. The key requirement, again,
isthat processes have the ability to sort stateintervalsin the
timetrees of other processes.

2.2. Four Levesof Time

Our earlier protocol [26, 27] introduced the notion of system
time and user time. System time organizes the system state
intervals at each process into a linear sequence, reflecting
the order in which they happened. User time organizes
the user state intervals at each processinto a timetree, with
a new branch beginning each time the process rolls back
and restarts. The system-level computation implements the
user-level computation, and there may thus be a number
of individua states in system time corresponding to each
state in user time. All user-level messages are carried in
system-level messages, but system messages can have extra
content, just as the user-level state at a processis contained
within the system-level state, which itself can contain extra
information.

In this paper, we introduce two intermediate levels, as
illustrated in Figure 1 for asingle process, p.

Thefirst new level isfailure time, which reproduces the
relevant propertiesof user timebut ismore efficient to track.
Failure time also applies to user state intervals, and also
organizes the state intervals at each process into timetrees.
However, failure time begins a new branch in the process
timetree only when a process restarts after its own failure,

1 1
I This process fails | Another process fails

user timetree | 1
c DE £l G

BI
G

p: —»ﬁ—%

}
)) 1
failure timetree 1

SR ko

compressed system timeline
v1,il,A Vv1,i1,B Vv2il1,A v2,il,C v2il,D v2il,E v2i2,C v2,i2,G

p: —@ o—

system timeline

o —~(QIRTTETT->CTRITECTD > qECTRCTY-»~CQTRTTRIT- > CRITICTD- >~ CECTRIT-»~CRTIITY-»~CRNTIIIT>

Figure 1. Four levels of time at a process p.

user data version incarnation extra data

user state

failure state

compressed system state

system state

Figure 2. Different subsets of the bits at a
process form states for the different levels of time.

not after rollback dueto thefailure of another process. That
is, in user time, a new branch begins with each process
incarnation, whereas in failure time, a new branch begins
with each process version. Tracking failuretimeispossible
because a process does not lose system-level state when it
rollsback dueto afailure of a process other than itself; the
process can thus continuously number itsown stateintervals
across such rollbacks. As we shall show later, tracking
failure timeis sufficient: athough processes need to know
about rollbacks €l sewhere, knowledge of failures elsewhere
communicates equivaent information—since dl rollbacks
have afirst cause in some failure.

The second new level iscompressed systemtime®, which
reproducestherelevant propertiesof systemtimebutismore
efficient to track. In system time, process state consists of
the user state, plus additional information including which
version the processisin, and which incarnation within that
version. In compressed system time, we compress state
to exactly this information. These compressed states are
ordered linearly, as the origina system states are.

When appropriate, we use subscriptsto indicate whether
astate interval or comparison is made in user time, system
time, or failuretime—e.g., As <s Bs comparestwo system
stateintervalsin their processtimeline. When itisclear, we
omit subscripts on the partial order time comparison, since
the partial order time model isimplied by the subscripts on
the state intervals.

Mapping StatesAcrossL evels. Figure2 showshow the
bitsat a process comprisethevariouslevelsof state. Asthis
structure indicates, a natura mapping exists from “lower”
level state to “higher” level state. We define names for
thesefunctions: S_to_C maps each system stateto aunique
compressed system state; C_to_F maps each compressed
system state to a unique failure state; F_to_U maps each
fallure state to aunique user state. We compose these maps
intheobviousway, toobtainS_to_F, S_to_U,and C_to_U.

Since these maps are not in genera bijective (one-to-
one), movingin theother directionisabit morecomplicated.
Since user states are the same asfailure states, we till have
that each user state mapsto auniquefailurestate. Wedenote

3Treated informally in earlier versions of this paper, compressed system
timeis necessary for the protocol to have sufficiently small timestamp size;
furthermore, explicit treatment adds clarity.

thismapping by U _to_F. However, F _to_C mapseach fail-
ure state to at least one (and potentially many) compressed
system states. (The number may be more than one, since a
process may return to a user state after rollback.) Similarly,
C_to_S maps each compressed system state to at |east one
(and potentialy many) system states. (The number may be
more than one, since a process may go through severa sys-
tem statetransitionsthat do not affect any of the compressed
system state components.) We compose these maps in the
obviousway, to obtainU _to_C, U_to_S and F_to_S.

Figure 3 illustrates the relationshi ps between these map-
ping functions.

2.3. Rollback using Knowable Orphans

Multiple levels of time permits an insight into when a
process can know a user state is an orphan. Suppose Ay is
auser state interval at process p, and Bg is a system state
interval at process g. Process ¢ in state Bg can know that
user state Ay is an orphan when the following conditions
all hold: when processgq in Bg knowsabout Ay ; when state
Ay has been made an orphan by causally following state
lost due to a restart R at some possibly different process
(after either rollback or failure there); and when process q
in Bs can know about R.

As in our earlier work [27], we define a predicate
KNOWABLE_ORPHAN(Ay, Bs) to capture this property.
The predicate KNOWABLE_ORPHAN(Ay, Bs) is defined
when Ay — BgforsomeAds € U_to_§Ay). Whende-
fined, KNOWABLE _ORPHAN(Ay, Bg) istrueif and only
if there exists, at some process r, a user state interva Cy
and system stateinterval D satisfying: Cy — Ay; Dg
rollsback Cy; and Ds — Bg.

The ability to test for knowable orphans enables asyn-
chronousrollback recovery. Each time a process q receives
a system-level message, it checks whether its current user
state is a knowable orphan—if so, ¢ rolls back to its most

user states

[y
FtoU U_to_F
- \

| failure states - = = = = = —

1

A I 1
) F lU_to C I
|

|

sorn

Sto U

Sto F

C to U
O
3

A J
compressed
system states
[T
Sto C I CtoS
v

system states

Figure 3. Maps take states across levels; dashed
lines indicate one-to-many maps.

recent state interval that is not a knowable orphan. Before
aprocess q accepts a user-level message, it checks whether
theuser statethat sent the message isaknowabl eorphan—if
S0, q rejects the message.

24. An Efficient Test for Knowable Orphans

Mapping Ordering Across Levels. Our earlier protocol
[27] worked because we tracked system time and user time,
and were able to compare states across these levels. Our
new protocol works because it suffices to track compressed
system timeinstead of system time; and to track failuretime
instead of user time. To establish these facts, we need to
establish first how orderings map across levels of time.

Both failure precedence and user precedence imply sys-
tem precedence:

Lemma 1 (1) Let As be the minima inter-
val in F_.to_S(4r) and Bg be any intervd in
F_tO_S(BF). If Ar — BrpthenAds — Bs.
(2) Let C's betheminimal interval inU_to_SC)
and Ds be any interval in U_to_§Dy). If
Cy — Dy thenCs — Ds.

System precedence corresponds to compressed system
precedence:

Lemma2 Forany Ag, Bs, A¢, Be:

As — Bs — S_tO_C(As) — S_tO_C(Bs)
A¢ — Be — C_to_§4¢) — C_to_§B¢)

User precedence implies failure precedence; failure
precedence of the images of non-orphan user statesimplies
user precedence:

Lemma3 Let Ar, Br betherespectiveimages
of Ay, By under U_to_F.

(l) If Ay — By thenAr — Bp.

(20 If Ap — Br and there exists a
Cs where KNOWABLE_ORPHAN(A4y, Cs) and
KNOWABLE_ORPHAN(By, Cs) are both false,
then Ay — By.

Cross-L evel Comparison. Inour previous protocol, we
defined a way to compare state intervals between the user
and system levels [27]. Here, we extend this definition
to accommodate cross-level comparison through the inter-
mediate levels. Let Ay, Be, and Cs be state intervals
at some process, corresponding to unique failure state in-
tervas Ag, Br, Cr, respectively (under U_to_F, C_to_F,
and S_to_F, respectively). We can compare Ay to B¢ by
comparing Ar to By inthefaluretimetree; we denotethis
by <urc and <ygc . Similarly, we can compare Ay to Cyg
by comparing Ar to Cr in the failure timetree; we denote
thley <urs and <yks.

Lemma4 Suppose B¢ = S_t0_C(Cys). Then
Br = Cr, sowe have Ay <yrc Be if and only
if Ay <ursCs.

We extend these comparisons (defined for state intervals
at asingle process) to compare vectors in the natural way.

Testing Knowable Orphans via Failure Time. The
heart of our new protocol is a novel method of testing for
knowable orphans.

Our earlier work showed that tracking the system level
and the user level of partia order time allows process ¢ in
system state Bs todetermineif auser state Ay isaknowable
orphan. Process ¢ merely needs to map each entry of the
system timestamp vector on By to its corresponding user
stateinterval, and then do avector comparison with the user
timestamp vector on Ay

However, if dl rollbacks have afirst cause in some fail-
ure, then comparing user state intervals to system state in-
tervals via their failure time images exactly captures the
knowabl e orphan property:

Theorem 1 Suppose a rollback protocol only
rolls back two classes of state intervals: those
that are lost due to failure of their processes, and
those that are knowable orphans. Suppose user
state interval Ay at process p and system state
interval Bg a process ¢ satisfy As — Bg,
for some Ag in U_to_§(4y). Let Xy be
the user timestamp vector of Ay, and let Yg
be the system timestamp vector of Bs. Then
KNOWABLE_ORPHAN(Ay, Bs) is true if and
only if Xy AupsYs.

Lemma 2 and Lemma 4 implies that we can substitute
compressed system time for system time.

The fact that our protocol meets the conditions in
Section 1.2 follows from these results.

3. Timestamp Size

FailureTime. Thenew protocol requiresthat processes till
be able to sort within user timetrees, but only for stateinter-
vals that are not knowable orphans. Lemma 3 established
that, for purposes of user timestamp vectors on state inter-
vals that cannot be known to be orphans, tracking failure
time suffices. Failure stateintervals can berepresented by a
pair of integers, representing the current version and thein-
dex withinthat version. Sorting withinfailuretime requires
extending this index with a “version start array,” showing
the tree structure of the version segments at a process.

Thus, tracking failure vectors takes one entry for each
process. That entry consists of oneindex of O(log sy) bits
for each version at the process; thus the net contributionis
O(V log sy) bits.

Compressed System Time. At first glance, the new
protocol may aso appear to require that processes main-
tain system timestamp vectors. However, Lemma 2 and
Lemma4 imply that tracking compressed system timestamp
vectors suffices. Compressed system state intervals can be
represented by a triple of integers, representing the cur-
rent version, the current incarnation within that version, and
the current index within that incarnation. Comparing these
tripleslexicographically captures the order.

Thus, tracking compressed system vectors takes one en-
try for each process. The version count gives log v; bits.
The incarnation count is bounded by sy, since each roll-
back must losea user statethat isnever restored, thusgiving
log sy bits. The current index is aso bounded by sy, giv-
ing an additional log sy bits. Thus the net contribution is
bounded by O(nlog sv + >, logv;), which isbounded by
O(V log sv), since), log v; isbounded by O(V').

Overall Timestamp Size. Thus, the straightforward im-
plementation of tracking indicesrequiresthetotal timestamp
size to be bounded above by O(V log sy) bits.

4. Optimality

We now establish that, for any optimistic recovery protocol
meeting the requirements of Section 1.2, computationsexist
where the upper bound on timestamp size must be at least
Q(Vlog sy) bits. This result establishes the asymptotic
optimality of timestamp size in our new protocol.

Since many definitions of asymptotic complexity only
discuss functions of one variable, we review the more gen-
eral definitions [6]. A function f(v,s) isin Q(g(v,s))
when there exist constants ¢, vo, so such that for any pair
v,8 Withv > vg and s > s, 0 < cg(v,8) < f(v,5). A
function f(v, s) isin O(g(v, s)) when there exist constants
¢, o, S0 Such that for any pair v, s withv > vg and s > sy,
0 < f(v,8) <cg(v,s).

Theorem 2 There existsafunction g(V, sy) in
Q(V log sy) such that for any rollback protocol
satisfying the criteriain Section 1.2 and for any
V, sy, there exists a computation in which: some
message M must be timestamped with at least
g(V, sy) bits (where V is the number of process
versions in the computation perceivable by M;
and sy isthe maximum number of state intervals
in any oneversion in this computation).

Asaconseguence of thisresult, for any rollback protocol
satisfying the conditions of Section 1.2, the upper bound on
timestamp sizeis at least Q(V log sv).

5. FutureDirections

Previous work has shown how timestamp size can be re-
duced by sacrificing asynchrony or minimal rollback. Our

results yield an optimal timestamp size while preserving
asynchrony and minimal rollback. However, our lower
bound proof holdsonly asymptotically, and for independent,
deterministic rollback protocols. Each of these conditions
suggests an avenue for further research:

Relaxing Complete Asynchrony. Our results yield
completely asynchronous, minimal rollback always—Dbut
smaller timestamps are possi bl e by sacrificing optimum per-
formance in unlikely pathological cases. Exploring heuris-
tics such asnot sending vector entriesthe destination process
islikely to have, and using unreliabl e broadcaststo more ag-
gressively distribute some rollback and timestamp informa-
tion, might yield better results most of thetime. Extending
our system model to incorporate probabilities of message
delay and loss, as well as benchmarking to determine the
failure patterns that arise in practice (and how our protocol
performs then), would be fruitful areas of further work.

Relaxing Determinism. The lower-bound proof on time-
stamp size appeared to require that the rollback protocol be
deterministic. Thus, optimistic rollback protocols that use
randomness might achieve lower timestamp size.

Reducing Practical Sze. Optimistic rollback protocols
might use timestamps with the same asymptotic bound but
withasmaller constant. Optimisticrollback protocolsmight
also reduce the average size of timestamps.

Relaxing Independence. Optimistic rollback protocols
might exploit properties of the underlying computation to
reduce timestamp size (essentialy by re-using information
present inthemessagesthemsel vesandin theprocessstates).

Appendix: Proofs

Proof of Lemma 1. First we consider (1). We establish
this result by induction: If Ar and B occur at the same
process, thisiseasily true. If Ar sendsamessagethat begins
Bp, then some interval in F_to_S(AF) precedes Bs, SO
clearly As must also. For more general precedence paths,
choose an intermediate node Cr with A — Cr — Bp,
and choose the minimal Cs from F_to_§Cr). Establish
theresult for Ar and Cr, and for Cr and Br.
The proof of (2) can befoundin [27]. [

Proof of Lemma 2. Two consecutive system states either
map to the same compressed system state, or to consecutive
compressed system states. [

Proof of Lemma 3. First we consider (1). Each branch-
point in a failure timetree adso is a branch in the corre-
sponding user timetree. Consequently, each path in a user
timetreeisalso apathinthefailuretimetree. Thusthe state-
ment holds for state intervals at any one process; since the
cross-process links are the same for both time models, the
statement holdsin generd.

We now consider (2). Suppose A —— Bp and such
a Cs exists. The failure time path from Ar to Br de-

composes into a sequence of one or more segments, each
contai ned within atimetree and each separated by amessage.
If Ay /= By, then &t least one of these segments is not
a user timetree path. Suppose D < Eg a process g
is the first such segment from Ag; let Dy, Ey be their
respective images under F_to_U. Since Dy AEy, some
Gu < Dy must have been restored in a rollback Hg be-
fore Ey first occurred. By choice of ¢, Ay — Dy. Let
Es bethe minimal interval in F_to_§Er). Hg =< Es,
so by Lemma 1 and hypothesis, Hs — Cs. Hence
KNOWABLE_ORPHAN(A4y, Cs) O

Proof of Lemma 4. Thisfollowsdirectly from the defin-
itions.

Correctness. The knowable orphan definition is given
in terms of rollbacks. We establish that knowable orphans
can be characterized in terms restart after a process's own
failure (a subset of rollbacks).

Lemma 5 Suppose the only user state inter-
vals rolled back are those that are lost due to
fallure of their processes, and those that are
knowable orphans. Suppose aso that some
As — BgsforsomeAginU_to_S(Ay). Then
KNOWABLE_ORPHAN(Ay, Bs) is true if and
only if there existsa Cy and Dy (both a some
process q) such that: (1) Cy — Ay; and (2)
Cy islost dueto failure of process ¢, which then
restartsin Dg; and (3) Ds — Bgs

Proof. If such a Cy, Dg,q exist, then the predi-
cate KNOWABLE_ORPHAN(Ay, Bs) clearly holds, since
restart after failureis a special case of rollback.

Conversely, suppose KNOWABLE _ORPHAN(Ay, Bs)
holds. By definition, there exists a C{ and D% a process
¢ such that: C} — Ay; and D} rolls back C}; and
Dy — Bs. By the assumed causes of rollback, at
least one of the following statements must be true: Cf
is lost due to failure of ¢* which then restarts in D%; or
KNOWABLE _ORPHAN(C}, D%) istrue. If the latter, then
we can iterate; since computations are finite, eventually
we reach some CE, D%, ¢* such that former rollback cause
holds. O

We also establish some relations among lost states and
failluretime.

Lemma 6 Suppose Ay is lost due to falure,
and Bg is the restart after that failure. (1) If
Ags € U_tO_S(AU) then As <s Bs. (2) If Cs
satisfies Bs <sCs and Arp = U_tO_F(AU),
then Ap ﬁFSCS'

Proof. The first statement holds because we can only
restart after failure has occurred. The second statement
holds because lost states remain lost. [

Proof of Theorem 1. Suppose the predicate
KNOWABLE_ORPHAN(Ay, Bs) holds. Then Lemma 5
gives us that at some process r, there exists a user
dstate interval Cy and system state interva Dg sat-
isfying the statements: (1) Cy — Ay; (2) Cy is
lost due to failure, whose restart was Dg; and (3)
Dy — Bg. Let Cp = U_to_F(Cy). Statement (1)
impliesthat Cyy < XU[r],and thusCr < U_tO_F(XU[T‘]).
Statement (2) and Lemma 6 imply that Cr Aprg Es for
any Eg satisfying Ds <s Fs. Statement (3) implies that
Dg stS[T‘]. Hence Cg ﬁFSYS[T]' If XU[T‘] jUF3Y5[T‘],
then Cr <rsYs[r] since a failure time path exists from
Cr to Xy[r] in the falure timetree & r». Thus
Xu[r] AursYsr]-

Conversely, suppose Xy Ayes Ys. Then there exists a
process r with Xy [r] Aues Ys[r]. Let Cu = Xy[r]; let
Cr = F_to_U(Cy); let Cs betheminimal stateinterval in
U_to_§Cy). By hypothesis,some4s € U_to_S§ Ay) sat-
isfiesAs — Bgs. By thedéfinition of atimestamp vector,
Cy < Ay. ByLemmal, Cs < Ag. ThusCs — Bg.
Applying the definition of timestamp vector again yields
Cs =sYg[r]. Since by hypothesis Cr A S_to_F(Ys[r]),
a Dg must exist such that Cs <s Ds <sYs[r] and Dg
restarts r after afalurethat lost Cy. Since Dg — Bg,
we have KNOWABLE _ORPHAN(A4y, Bs). O

Optimality. A restarted state interval occurs when a
process restarts after its own failure. At each process, the
first version begins with state interval 0. The jth restarted
state interval (ordered by time) beginsversion j + 1. Each
new version must begin with the restart of a state interval
that was active in the previous version. As a consequence,
for any one process, we can unambiguously label the first
interval in each version with an index relative to the start
of computation. These indices form a non-descending se-
guence. For astateinterval S at a process, define AS to be
theindex of S relative to the most recent preceding element
in this sequence. For completeness, we define AS = 0,
where S istheinitia state interval of a process.

Suppose M isamessage sentinstateinterval S at process
p. Define F(M) to be the set of restarted intervals that
causally precede the state interval in which M was sent.
Define V(M) tobetheset of stateintervalsinthetimestamp
vector of S.

Proof of Theorem 2. For any V, sy, n (where V and sy
are each beyond some constant and V' > n), we construct
aclassC(V, sy) of computationswhere V' isthe number of
versions and sy is the maximum number of state intervals
in any oneversion as follows.

Let k = n — 3. Let usdistinguish processes. Ps, the
sender; Pg, the receiver; Pg, the clock; and P; through
Py, the processes that failed. (We use the clock solely to
send out the messages that begin state intervals.) Distribute

V —(k+ 1) failluresamong the P;. Let each version run out
to sy state intervals. Let us assume that the P; only ever
restart from even state intervals, and only send messages
out in odd stateintervals. Furthermore, supposein each odd
state interval in each version, each P; sends messages both
to Ps and Pr. For each 4, at least one message has made
it from P; to Pg, and al messages that do arrive have not
been lost. For each i, let the most recent message to arrive
be M;, sentininterval S; inversion V;.

Now, in state interval S, Ps is preparing to send a
message M to Pg. Define the configuration of Pg at this
point to consist of the following: for each 4, the sequence
AF for F € F(M;); and for each 7, thevdue A S;.

We now establish that Ps cannot send the same time-
stamp on M in two different configurations. Suppose oth-
erwise. One of two cases holds:

(1) At some P;, the AF sequence differs. Let j be the
first restart where a difference occurs. the jth version in
configuration Cy began earlier than the jth version in con-
figuration C. By assumption, there exists at |east one odd
stateinterval in version 5 — 1 between these restarts, and a
message M’ was sent to P during thisinterval. Sincethe
configurationsdo not differ until later and since therollback
protocol is piecewise deterministic, the timestamp on M’
is the same in both configurations. However, M’ isrolled-
back in C;. Suppose M istheonly message Pr hasactually
received. Should Pg then receive M, whether P needsto
roll back or not depends on the configuration—which Pg
cannot distinguish if Pg uses the same timestamp on M in
both. (Figure 4 illustratesthis case.)

(2) The AF sequences are identica, but a some F;,
the AS; has a different value. Without loss of generality,
suppose that this occurs at process Pg, in version j: the
successful send in configuration C; occurs earlier than the
successful send in configuration Cy. By assumption, there
exists a least one even state interval between the index of
the S, intervalsin the two configurations. In either config-

Pr

\/

Ps

A\

Figure 4. In case (1), a message M’ was sent
in the intervening state interval. If M’ is the only
message Pg received, then the timestamp on M
must tell Pr whether or not to roll back.

Figure 5. In case (2), P; might later restart from
the intervening state interval. But then P; will
not know which of the possible M; got through,
so M’ cannot indicate this. If M is the only
message that Pg received, then, when M’ ar-
rives, the timestamp on M must tell P whether
or not to roll back.

uration, the computation might continue by having version
J + 1 beginfrom thisinterval. Then S, isrolled-back in C;
but not in C;. Suppose M isthe only message that Pr ac-
tually receives, until it later receives a message M’ directly
from Py, sentinversion j + 1. Pg can accept M’ in C; but
must first roll back in Cy. Since P; has no information to
contribute regarding whether Ps wasin C; or Cs when Pg
sent M, Pr must get this information from the timestamp
on M. (Figure5illustratesthis case.)

Let W(V,sy) be the number of configurations for
C(V, sv). W(V, sy) equasthe number of waystherestarts
and the S; could have been laid out. Since each restart and
each s; can occur a any even interval among sy, we have:

W(V,sv) € (5)")
For some ¢ and for W (V, sy) sufficiently large, the num-
ber of bits necessary to distinguish membership in a set of
W(V, sy) objectsis at least ¢V log % for at |east some of
these objects. [

This lower-bound proof based on failures does not gen-
eralize to the case of rollbacks because all rollbacks have
first causes. Consider case (1) above: if P; rolled back but
did not fail, then Ps when receiving M; knows about the
failure elsewhere that caused thisrollback. Thus Pr knows
when receiving M, and can decidefor itself whether the M’
it received was an orphan.

Acknowledgements

We are grateful to Doug Tygar and Vance Faber for their
helpful discussions on this work. We would aso like to
thank the referees, whose comments hel ped to improve the
clarity of the presentation.

References

(1]

(2]

(3]

[4]

(5]

(6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

B. Bhargava and S. Lian. “Independent Checkpointing and
Concurrent Rollback Recovery for Distributed Systems—
An Optimistic Approach.” Seventh Symposium on Reliable
Distributed Systems. 3-12. IEEE, 1988.

A. Borg, J. Baumbach, and S. Glazer. “A Message System
Supporting Fault Tolerance.” Proceedingsof the Ninth ACM
Symposiumon Oper ating Systems Principles. 90-99. 1983.
D. Briatico, A. Ciuffoletti, and L. Simoncini. “ A Distributed
Domino Effect Free Recovery Algorithm.” IEEE Symposium
on Reliability in Distributed Softwareand Database Systems.
207-215. October 1984.

K. M. Chandy and L. Lamport. “Distributed Snapshots:
Determining Global States of Distributed Systems.” ACM
Transactions on Computer Systems. 3: 63-75. February
1985.

A. Ciuffoletti. “LaCoordinazione Delle AttivitaDi Ripristino
Nei Sistemi Distribuiti.” A.l.C.A. Annual Conference
Proceedings. October 1989.

T.H. Corman, C. E. Leiserson,and R. L. Rivest. Introduction
to Algorithms. MIT Press, 1990.

O. P. Damani and V. J. Garg. How to Recover Efficiently
and Asynchronously When Optimism Fail. Electrical and
Computer Engineering Technical Report TR-PDS-1995-014,
University of Texas at Austin. August 1995. A revised ver-
sion appears in the Sixteenth International Conference on
Distributed Computing Systems, May 1996.

E. N. Elnozahy, D. B. Johnson and W. Zwaenepoel. “The
Performance of Consistent Checkpointing.” Eleventh |IEEE
Symposiumon Reliable Distributed Systems. 39-47. October
1992.

E. N. Elnozahy and W. Zwaenepoel. “Manetho: Transparent
Rollback-Recovery with Low Overhead, Limited Rollback
and Fast Output Commit.” IEEE Transactionson Computers.
41 (5): 526-531. May 1992

C. J. Fidge. “Timestamps in Message-Passing Systems
That Preserve the Partial Ordering.” Eleventh Australian
Computer Science Conference. 56—67. February 1988.

D. B. Johnson and W. Zwaenepoel. “ Sender-Based Message
Logging.” Seventeenth Annual International Symposium on
Fault-Tolerant Computing. 14-19. 1987.

D. B. Johnson. Distributed System Fault Tolerance Using
Message Logging and Checkpointing. Ph.D. thesis, Rice
University, 1989.

D. B. Johnson and W. Zwaenepoel. “Recovery in
Distributed Systems Using Optimistic Message Logging
and Checkpointing.” Journal of Algorithms. 11: 462-491.
September 1990.

D. B. Johnson. “Efficient Transparent Optimistic Rollback
Recovery for Distributed Application Programs.” Twelfth
IEEE Symposium on Reliable Distributed Systems. 86-95.
October 1993.

R. Koo and S. Toueg. “Checkpointing and Rollback-
Recovery for Distributed Systems.” IEEE Transactions on
Software Engineering. 13 (1): 23-31. January 1987.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]

[26]

[27]

[28]

[29]

P. Leu and B. Bhargava. “ Concurrent Robust Checkpointing
and Recovery in Distributed Systems.” Fourth International
Conferenceon Data Engineering. 154-163. 1988.

K. Li, J F Naughton and J. S. Plank. “Real-Time,
Concurrent Checkpointing for Parallel Programs.” Second
ACM SIGPLAN Symposium on Principles and Practices of
Parallel Programming. 79-88. 1990.

F. Mattern. “Virtual Time and Global States of Distributed
Systems.” In Cosnard, et a, ed., Parallel and Distributed
Algorithms. Amsterdam: North-Holland, 1989. 215-226.

P. M. Merlin and B. Randell. “State Restoration in
Distributed Systems.” International Symposium on Fault-
Tolerant Computing. June 1978.

S. L. Peterson and P. Kearns. “Rollback Based on Vector
Time.” Twelfth IEEE Symposium on Reliable Distributed
Systems. 68—77. October 1993.

M. L. Powell and D. L. Presotto. “Publishing: A Reliable
Broadcast Communication Mechanism.” Proceedingsof the
Ninth ACM Symposium on Operating Systems Principles.
100-109. 1983.

B. Randell. “System Structure for Fault Tolerance.” |EEE
Transactions on Software Engineering. SE-1: 220232,
1975.

D. L. Russell. “State Restoration in Systems of
Communicating Processes.” |EEE Transactionson Software
Engineering. 6 (2): 183-194. March 1980.

A. P. Sistlaand J. L. Welch. “Efficient Distributed Recovery
Using Message Logging.” Eighth ACM Symposium on
Principlesof Distributed Computing, 223—-238. August 1989.
S. W. Smith. A Theory of Distributed Time. Computer
Science Technical Report CMU-CS-93-231, Carnegie
Mellon University. December 1993.

S. W. Smith. SecureDistributed Time for Secure Distributed
Protocols. Ph.D. thesis. Computer Science Technical Report
CMU-CS-94-177, Carnegie Mellon University. September
1994,

S. W. Smith, D. B. Johnson and J. D. Tygar.
“Completely Asynchronous Optimistic Recovery with
Minimal Rollbacks.” 25th International Symposium on
Fault-Tolerant Computing. June 1995.

R. Stromand S. Yemini. “Optimistic Recovery in Distributed
Systems.” ACM Transactionson Computer Systems. 3: 204—
226. August 1985.

Y-M. Wang and W. K. Fuchs. “Lazy Checkpoint
Coordination for Bounding Rollback Propagation.” Twelfth
IEEE Symposium on Reliable Distributed Systems. 78-85.
October 1993.

