
Minimizing Timestamp Size for Completely Asynchronous
Optimistic Recovery with Minimal Rollback

Sean W. Smith David B. Johnson

IBM Research Division Computer Science Department
T. J. Watson Research Center Carnegie Mellon University

Hawthorne, NY 10532 Pittsburgh, PA 15213
sean@watson.ibm.com dbj@cs.cmu.edu

Abstract

Basing rollback recovery on optimistic message logging
and replay avoids the need for synchronization between
processes during failure-free execution. Some previous
research has also attempted to reduce the need for syn-
chronization during recovery, but these protocols have suf-
fered from three problems: not eliminating all synchroniza-
tion during recovery, not minimizing rollback, or providing
these properties but requiring large timestamps. This paper
makes two contributions: we present a new rollback re-
covery protocol, based on our previous work, that provides
these properties (asynchronous recovery, minimal rollback)
while reducing the timestamp size; and we prove that no pro-
tocol can provide these properties and have asymptotically
smaller timestamps.

1. Introduction

Rollback recovery can provide fault tolerance for long-
running applications in asynchronous distributed systems.
Basing rollback recovery on optimisticmessage logging and
replay avoids the need for synchronization during failure-
free operation, and can add fault tolerance transparently. In
their seminal paper, Strom and Yemini [28] removed most
synchronization from recovery, but permitted a worst case
in which a single failure could lead to an exponential num-
ber of rollbacks. In our 1995 paper [27], we eliminated all
synchronization and minimized the number of rollbacks, but
used large timestamps. Damani and Garg [7], in a subse-
quent paper, further reduced timestamp size, but sacrificed
some asynchrony and minimality properties.

This research was performed while the first author was with Los Alamos
National Laboratory, and this paper is registered as a Los Alamos
Unclassified Release. This research was sponsored in part by the Advanced
Research Projects Agency, under contract number DABT63-93-C-9954,
and by the Department of Energy, under contract numberW-7405-ENG-36.
The views and conclusions contained in this document are those of the au-
thors alone.

In this paper, we make two contributions. First, we
present a new optimistic rollback recovery protocol, based
on our earlier work [27], that preserves all properties of
asynchronous recovery and minimal rollback, but reduces
the timestamp size over our previous protocol. Second,
we prove that no optimistic recovery protocol can have a
smaller bound on timestamp size and still preserve all of
these properties.

1.1. Asynchronous, Optimistic Recovery

In an asynchronous distributed computation, processes pass
messages that either arrive after some unbounded, unpre-
dictable positive delay, or never arrive at all. Rollback re-
covery may be used to add fault tolerance to long-running ap-
plications on asynchronous distributed systems. An implicit
goal of this recovery is that the protocol be as transparent as
possible to the underlying computation, both during failure-
free operation and during recovery. Optimistic message log-
ging is an approach to recovery that attempts to minimize
the failure-free overhead, at the expense of complicating
recovery from failure. Asynchronous optimistic recovery
reduces this cost by removing the need for synchronization
between processes during recovery, and allowing recovery
to proceed without impacting the asynchronous nature of
the underlying computation.

We assume that processes are piecewise deterministic: a
process’s execution between successive received messages
is completely determined by the process’s state before the
first of these messages is received and by contents of that
message. We define a state interval to be the period of
deterministic computation at a process that is started by the
receipt of a message and continues until the next message
arrives. If a process p fails and then recovers by rolling
back to a previous state, process p’s computation since it
first passed through the restored state becomes lost. The
state at a surviving process is an orphan when it causally
depends on such lost computation.

A process begins a new incarnation when it rolls back
and restarts in response to anyone’s failure [28]. A process
begins a new version when it rolls back and restarts only in
response to its own failure [7].

In message logging protocols, processes checkpoint their
local state occasionally, and log all incoming messages.
Consequently, a process can restore a previous state by
restoring a preceding checkpoint and replaying the subse-
quent logged messages in the order originally received. (The
ability to restore arbitrary previous states, between check-
pointed states, eliminates the domino effect [22, 23].) In
optimistic protocols, processes log messages by buffering
them in volatile memory and later writing them to stable
storage asynchronously. As a consequence, the failure of
a process before the logging of some received messages
completes can cause the state at other processes to become
orphans—since the failed process may have sent messages
during a state interval (now lost) begun by the receipt of
such an unlogged message.

1.2. Wishlist for Optimistic Rollback Recovery

Ideally, an optimistic rollback recovery protocol should ful-
fill several criteria:

Complete Asynchrony. The recovery protocol should
have no impact on the asynchrony of the underlying compu-
tation. In particular, the protocol should meet the following
conditions:

No Synchronization. Recovery should not require
processes to synchronize with each other.

No Additional Messages. Recovery should not require
any messages to be sent beyond those in the underlying
computation.

No Blocking During Recovery. Recovery should not
force execution of the underlying computation to block.

No Blocking During Failure-Free Operation. Failure-
free operation should not force execution of the underlying
computation to block. (In particular, computation should
never wait for messages to be logged to stable storage.)

No Assumptions. The protocol should make no assump-
tions about the underlying communication patterns or pro-
tocols.

Minimal Rollback. The recovery protocol should min-
imize the amount of computation lost due to rollback. This
property requires minimizing both the number of rollbacks
as well as the propagation of orphans, as expressed in these
conditions:

Minimal Number of Rollbacks. The failure of any one
process should cause any other process to roll back at most
once, and then only if that process has become an orphan.

Immediate Rollback. A process in an orphan state should
roll back as soon as it can potentially know that its current
state is an orphan.

No New Contamination. A process p not in an orphan
state should not accept a message sent from a process q in an
orphan state, if p can potentially know that q was an orphan.

Small Timestamp Size. Optimistic recovery protocols
typically require appending some type of timestamp struc-
tures to messages. These timestamps should be as small as
possible.

Independence of Underlying Computation. The roll-
back computation itself is a distributed computation, which
should have the following independence properties:

Process State Opacity. The user state of processes is
opaque to the rollback computation.

Message Content Opacity. Except for the timestamp and
the identity of the source and destination processes, the con-
tents of messages are opaque to the rollback computation.

Process Program Opacity. The programs (state transition
functions) governing the user computation are opaque to the
rollback computation.

This independence serves to make the rollback protocol
universal, in that it can transparently add fault-tolerance to
any underlying computation. Specifying the space of roll-
back protocols also leads to additional conditions:

Piecewise Determinism of Rollback Computation. At
each process, the state of the rollback computation changes
deterministically with each arriving message based on the
visible components, with each new state interval, and with
each timestamp generation. Each timestamp generation is
determined by the state of the rollback computation and the
identity of the destination process.

No Needlessly Discarded Messages. For each incoming
message, the rollback protocol can decide to discard the
message only when the message is a knowable orphan.

1.3. Previous Work

In this paper, we concentrate on rollback based on opti-
mistic message logging and replay. Recovery protocols
based instead on checkpointing without message logging
(e.g., [1, 3, 4, 5, 8, 15, 16, 29]) may force processes to roll
back further than otherwise required, since processes can
only recover states that have been checkpointed. Recovery
protocols based on pessimistic message logging (e.g., [2, 9,
11, 21]) can cause processes to delay execution until incom-
ing messages are logged to stable storage. In this section,
we discuss previous work in optimistic message logging and
replay, for protocols that reduce the need for synchroniza-
tion during recovery. Table 1 summarizes this work and
compares it to the work described in this paper.

Parameters. To discuss the timestamp size required by
an optimistic recovery protocol, we need to introduce some
parameters. Let n be the number of processes in the system.
In a particular execution of the system, let F;R; V be the to-
tal number of failures, rollbacks, and versions (respectively)

YesYes

Timestamp
size (bits)

Minimal
rollback

Asynchronous
recovery

Smith, Johnson,
and Tygar [27]

Strom and Yemini [28]

Damani and Garg [7]

Our protocol

Theoretical limit

pr
ev

io
us

th
is

Mostly

Yes

Yes

Somewhat

No

Somewhat

Yes

Yes

O(n log sL)

O(n log sY +
R log sI + R log rM)

O(n log V + n log sV)

O(V log sV)

Ω(V log sV)

w
or

k
pa

pe
r

Table 1. Summary of research into removing syn-
chronization from recovery while minimizing roll-
back and reducing timestamp size. This paper
establishes a theoretical limit where the underly-
ing computation is opaque.

across all processes (V = n+F). We introduce three mea-
sures of state intervals: let sI be the maximal number of
state intervals in any single incarnation of any process [28];
let sV be the maximal number in any single version [7]; and
let sL be the maximal number in any single live history [28].
We have sI � sV , since many incarnations may comprise a
single version.

Additionally, let sY be the maximum number of system
state intervals (defined below) in an incarnation; sI � sY .
Let vi be the number of versions at the ith process, and let ri
be the number of rollbacks. Let rM be the maximal number
of rollbacks at any one process.

Of the previous work shown in Table 1, Strom and
Yemini [28] use the smallest timestamps, followed by
Damani and Garg [7], followed by our previous proto-
col [27]. The timestamp size required by the protocol pre-
sented in this paper is substantially less than in our previous
protocol. But this timestamp size is still larger than in
Damani and Garg’s protocol, although unlike their protocol,
our protocol fully preserves all properties of asynchronous
recovery and minimal rollback.

Strom and Yemini. Strom and Yemini [28] opened
the area of optimistic recovery. Their protocol provided
mostly asynchronous recovery, but required some block-
ing and additional messages. Furthermore, their protocol
permitted a worst-case scenario in which one failure at one
process could cause another process to roll back an exponen-
tial number of times; this pathology arose from the lack of
the Immediate Rollback property described in Section 1.2.
Strom and Yemini used timestamps of sizeO(n log sL) bits.
Some subsequent work in optimistic recovery minimized
the number of rollbacks by sacrificing asynchrony during
recovery [13, 20, 24, 7], and some of these even reduced
the timestamp size to O(log sL) bits [13, 24].

Smith, Johnson, and Tygar. Our earlier protocol [27]
achieves fully asynchronous recovery while also minimiz-
ing rollbacks and wasted computation. However, we ob-

tained this result by using large timestamps.1 We intro-
duced a second level of partial order time, separating the
user computation from the system computation of the roll-
back recovery protocol itself that is transparent to the user
computation. We required a system timestamp vector con-
sisting of n entries of a pair of integers each, and a user
timestamp vector consisting of n entries whose total size
was O(R) integers. Thus, the number of integers in our
timestamps is bounded2 by O(n+R). In terms of bits, the
system timestamp vector is bounded by

P
i
(log ri+log sY)

bits; as written, the user timestamp vector is bounded byP
i
ri(log ri + log sL), but a straightforward modification

replaces the sL by sI . Together, the timestamps require
O(n log sY +R log sI + R log rM) bits.

Damani and Garg. Damani and Garg [7] present an op-
timistic protocol that requires little synchronization, mini-
mizes the number of rollbacks, and requires timestamps con-
sisting of a version index and a state index for each process.
These timestamps are bounded by O(n logV + n log sV)
bits (although the logV factor might be reduced, since it
cannot be the case that all versions occur at all processes.)

However, the Damani and Garg protocol fails to meet
other criteria from Section 1.2. In particular, it requires
extra messages for failure announcements and assumes reli-
able broadcast for them. In addition, it may cause blocking
during recovery, as a process that has received a message
from a rolled-back process without receiving the failure an-
nouncement will be forced to block if it executes a receive
and no other messages have arrived. Finally, the protocol
allows new contamination by orphan processes, since an
orphan process will continue executing until it receives a
failure announcement, and a process that has not yet re-
ceived the failure announcement will accept messages sent
by an orphan process, even if either could potentially know
that the process is in fact an orphan.

1.4. This Paper

Section 2 presents our new recovery protocol, and Section 3
demonstrates how it reduces timestamp size toO(V log sV)
bits. Section 4 establishes that this timestamp size is opti-
mal, in that any protocol meeting the criteria of Section 1.2
cannot have a smaller upper bound on timestamp size. The
Appendix presents the proofs of these arguments.

1In that paper, we characterized timestamp size in terms of the number
of entries. Damani and Garg [7] characterize timestamp size in terms of
number of integers, since some entries may require more than one integer.
In this paper, we characterize timestamp size in terms of the number of bits,
in order to maximize accuracy.
2Damani and Garg [7] express this bound as O(n2f) integers, where f is
the maximal number of times any one process has failed, by boundingR
by nF and boundingF by nf .

2. The Protocol

The technique of using partial order time [10, 18, 25]
to describe distributed asynchronous computation is well-
known. Experience puts a total order on the state intervals
at each individual process; the sending of a message makes
the state interval containing the send precede the state in-
terval begun by the receive. The transitive closure of the
union of these two relations comprises a partial order on the
state intervals of all processes. As described in our earlier
work [26], issues such as failure require generalizations such
as timetrees (partial orders on the state intervals at individual
processes) and multiple levels of time.

Section 2.1 reviews partial order time. The optimistic
rollback recovery protocol presented in this paper is defined
in terms of four levels of partial order time, and Section 2.2
describes these four levels. Section 2.3 reviews the concept
of knowable orphans and how to write rollback protocols
in terms of knowable orphan tests. Section 2.4 uses vector
clocks for these levels of time to build a more efficient test
for knowable orphans. Plugging this test into the scheme of
Section 2.3 produces our new protocol.

2.1. Partial Order Time and Vector Clocks

The motivation behind partial order time is the ability to
express the temporal ordering on state intervals that occur
at physically separate locations—if two state intervals can-
not have influenced each other, then neither interval should
precede the other in the partial order. In its usual form,
partial order time decomposes into linear timelines (one for
each process) and links (one for each received message) be-
tween each timeline. In previous work [25, 26], we have
generalized this structure to allow for more general models
at processes, and for hierarchies of time. We use � and �
to denote time orderings within a single process, and �!
and �! to denote time orderings across two or more
processes.

In the context of partial order time, a vector is an array
of state intervals (or, more precisely, names or indices of
intervals), one per process. The total order on each timeline
induces a natural partial order on vectors: we say that vector
V precedes vector W when each entry of V precedes or
equals the corresponding entry of W in the timeline for that
entry. We use the same notation to compare vectors (�,�)
that we use for process time, since the vector comparison
arises from process time.

For any state interval A, we define its timestamp vec-
tor V (A) as follows: for each process p, the p entry of
V (A) is the maximal state interval B at process p such
that B � A. These timestamp vectors function as clocks:
for any A and B, V (A) � V (B) exactly when A �! B.
When each processp can sort state intervals in the timeline of
each other process q, vector clocks are also implementable.

Each process p maintains its current clock; when sending
a message, process p includes the timestamp vector of the
send event on the message, and when receiving a message,
process p sets its own timestamp vector to the entry-wise
maximum of its current value and the timestamp vector on
the received message.

In earlier work [25, 26], we show how this mechanism
applies to more general forms of time, including partial or-
ders in which the local time at individual processes forms
timetrees instead of timelines. The key requirement, again,
is that processes have the ability to sort state intervals in the
timetrees of other processes.

2.2. Four Levels of Time

Our earlier protocol [26, 27] introduced the notion of system
time and user time. System time organizes the system state
intervals at each process into a linear sequence, reflecting
the order in which they happened. User time organizes
the user state intervals at each process into a timetree, with
a new branch beginning each time the process rolls back
and restarts. The system-level computation implements the
user-level computation, and there may thus be a number
of individual states in system time corresponding to each
state in user time. All user-level messages are carried in
system-level messages, but system messages can have extra
content, just as the user-level state at a process is contained
within the system-level state, which itself can contain extra
information.

In this paper, we introduce two intermediate levels, as
illustrated in Figure 1 for a single process, p.

The first new level is failure time, which reproduces the
relevant properties of user time but is more efficient to track.
Failure time also applies to user state intervals, and also
organizes the state intervals at each process into timetrees.
However, failure time begins a new branch in the process
timetree only when a process restarts after its own failure,

A B C D E G

This process fails Another process fails

A B C D E G

v1,i1,A v1,i1,B v2,i1,C v2,i1,D v2,i1,E v2,i2,Gv2,i1,A v2,i2,C

user timetree

failure timetree

compressed system timeline

system timeline

p:

p:

p:

p:

Figure 1. Four levels of time at a process p.

extra dataincarnationversionuser data

user state

failure state

compressed system state

system state

Figure 2. Different subsets of the bits at a
process form states for the different levels of time.

not after rollback due to the failure of another process. That
is, in user time, a new branch begins with each process
incarnation, whereas in failure time, a new branch begins
with each process version. Tracking failure time is possible
because a process does not lose system-level state when it
rolls back due to a failure of a process other than itself; the
process can thus continuously number its own state intervals
across such rollbacks. As we shall show later, tracking
failure time is sufficient: although processes need to know
about rollbacks elsewhere, knowledge of failures elsewhere
communicates equivalent information—since all rollbacks
have a first cause in some failure.

The second new level is compressed system time3, which
reproduces the relevant properties of system time but is more
efficient to track. In system time, process state consists of
the user state, plus additional information including which
version the process is in, and which incarnation within that
version. In compressed system time, we compress state
to exactly this information. These compressed states are
ordered linearly, as the original system states are.

When appropriate, we use subscripts to indicate whether
a state interval or comparison is made in user time, system
time, or failure time—e.g.,AS �S BS compares two system
state intervals in their process timeline. When it is clear, we
omit subscripts on the partial order time comparison, since
the partial order time model is implied by the subscripts on
the state intervals.

Mapping States Across Levels. Figure 2 shows how the
bits at a process comprise the various levels of state. As this
structure indicates, a natural mapping exists from “lower”
level state to “higher” level state. We define names for
these functions: S to C maps each system state to a unique
compressed system state; C to F maps each compressed
system state to a unique failure state; F to U maps each
failure state to a unique user state. We compose these maps
in the obvious way, to obtain S to F, S to U, and C to U.

Since these maps are not in general bijective (one-to-
one), moving in the other direction is a bit more complicated.
Since user states are the same as failure states, we still have
that each user state maps to a unique failure state. We denote

3Treated informally in earlier versions of this paper, compressed system
time is necessary for the protocol to have sufficiently small timestamp size;
furthermore, explicit treatment adds clarity.

this mapping by U to F. However, F to C maps each fail-
ure state to at least one (and potentially many) compressed
system states. (The number may be more than one, since a
process may return to a user state after rollback.) Similarly,
C to S maps each compressed system state to at least one
(and potentially many) system states. (The number may be
more than one, since a process may go through several sys-
tem state transitions that do not affect any of the compressed
system state components.) We compose these maps in the
obvious way, to obtain U to C, U to S, and F to S.

Figure 3 illustrates the relationships between these map-
ping functions.

2.3. Rollback using Knowable Orphans

Multiple levels of time permits an insight into when a
process can know a user state is an orphan. Suppose AU is
a user state interval at process p, and BS is a system state
interval at process q. Process q in state BS can know that
user state AU is an orphan when the following conditions
all hold: when process q inBS knows aboutAU ; when state
AU has been made an orphan by causally following state
lost due to a restart R at some possibly different process
(after either rollback or failure there); and when process q
in BS can know about R.

As in our earlier work [27], we define a predicate
KNOWABLE ORPHAN(AU ; BS) to capture this property.
The predicate KNOWABLE ORPHAN(AU ; BS) is defined
whenAS �! BS for someAS 2 U to S(AU). When de-
fined, KNOWABLE ORPHAN(AU ; BS) is true if and only
if there exists, at some process r, a user state interval CU
and system state interval DS satisfying: CU �! AU ; DS

rolls back CU ; and DS
�! BS .

The ability to test for knowable orphans enables asyn-
chronous rollback recovery. Each time a process q receives
a system-level message, it checks whether its current user
state is a knowable orphan—if so, q rolls back to its most

C_to_F

F_to_U U_to_F

U_to_C

C_to_SS_to_C

C
_t

o_
U

S_
to

_F

S_
to

_U

U
_to_C

F
_to_S

U
_to_S

user states

failure states

compressed
system states

system states

Figure 3. Maps take states across levels; dashed
lines indicate one-to-many maps.

recent state interval that is not a knowable orphan. Before
a process q accepts a user-level message, it checks whether
the user state that sent the message is a knowable orphan—if
so, q rejects the message.

2.4. An Efficient Test for Knowable Orphans

Mapping Ordering Across Levels. Our earlier protocol
[27] worked because we tracked system time and user time,
and were able to compare states across these levels. Our
new protocol works because it suffices to track compressed
system time instead of system time; and to track failure time
instead of user time. To establish these facts, we need to
establish first how orderings map across levels of time.

Both failure precedence and user precedence imply sys-
tem precedence:

Lemma 1 (1) Let AS be the minimal inter-
val in F to S(AF) and BS be any interval in
F to S(BF). IfAF �! BF thenAS �! BS .
(2) LetCS be the minimal interval in U to S(CU)
and DS be any interval in U to S(DU). If
CU �! DU then CS �! DS .

System precedence corresponds to compressed system
precedence:

Lemma 2 For any AS ; BS ; AC; BC :

AS �!BS =) S to C(AS) �! S to C(BS)

AC �!BC =) C to S(AC) �! C to S(BC)

User precedence implies failure precedence; failure
precedence of the images of non-orphan user states implies
user precedence:

Lemma 3 Let AF ; BF be the respective images
of AU ; BU under U to F.

(1) If AU �! BU then AF �! BF .

(2) If AF �! BF and there exists a
CS where KNOWABLE ORPHAN(AU ; CS) and
KNOWABLE ORPHAN(BU ; CS) are both false,
then AU �! BU .

Cross-Level Comparison. In our previous protocol, we
defined a way to compare state intervals between the user
and system levels [27]. Here, we extend this definition
to accommodate cross-level comparison through the inter-
mediate levels. Let AU , BC , and CS be state intervals
at some process, corresponding to unique failure state in-
tervals AF ; BF ; CF , respectively (under U to F, C to F,
and S to F, respectively). We can compare AU to BC by
comparing AF to BF in the failure timetree; we denote this
by �UFC and �UFC . Similarly, we can compareAU toCS
by comparing AF to CF in the failure timetree; we denote
this by �UFS and �UFS .

Lemma 4 Suppose BC = S to C(CS). Then
BF = CF , so we have AU �UFC BC if and only
if AU �UFS CS .

We extend these comparisons (defined for state intervals
at a single process) to compare vectors in the natural way.

Testing Knowable Orphans via Failure Time. The
heart of our new protocol is a novel method of testing for
knowable orphans.

Our earlier work showed that tracking the system level
and the user level of partial order time allows process q in
system stateBS to determine if a user stateAU is a knowable
orphan. Process q merely needs to map each entry of the
system timestamp vector on BS to its corresponding user
state interval, and then do a vector comparison with the user
timestamp vector on AU .

However, if all rollbacks have a first cause in some fail-
ure, then comparing user state intervals to system state in-
tervals via their failure time images exactly captures the
knowable orphan property:

Theorem 1 Suppose a rollback protocol only
rolls back two classes of state intervals: those
that are lost due to failure of their processes, and
those that are knowable orphans. Suppose user
state interval AU at process p and system state
interval BS at process q satisfy AS �! BS ,
for some AS in U to S(AU). Let XU be
the user timestamp vector of AU , and let YS
be the system timestamp vector of BS . Then
KNOWABLE ORPHAN(AU ; BS) is true if and
only if XU 6�UFS YS .

Lemma 2 and Lemma 4 implies that we can substitute
compressed system time for system time.

The fact that our protocol meets the conditions in
Section 1.2 follows from these results.

3. Timestamp Size

Failure Time. The new protocol requires that processes still
be able to sort within user timetrees, but only for state inter-
vals that are not knowable orphans. Lemma 3 established
that, for purposes of user timestamp vectors on state inter-
vals that cannot be known to be orphans, tracking failure
time suffices. Failure state intervals can be represented by a
pair of integers, representing the current version and the in-
dex within that version. Sorting within failure time requires
extending this index with a “version start array,” showing
the tree structure of the version segments at a process.

Thus, tracking failure vectors takes one entry for each
process. That entry consists of one index of O(log sV) bits
for each version at the process; thus the net contribution is
O(V log sV) bits.

Compressed System Time. At first glance, the new
protocol may also appear to require that processes main-
tain system timestamp vectors. However, Lemma 2 and
Lemma 4 imply that tracking compressed system timestamp
vectors suffices. Compressed system state intervals can be
represented by a triple of integers, representing the cur-
rent version, the current incarnation within that version, and
the current index within that incarnation. Comparing these
triples lexicographically captures the order.

Thus, tracking compressed system vectors takes one en-
try for each process. The version count gives log vi bits.
The incarnation count is bounded by sV , since each roll-
back must lose a user state that is never restored, thus giving
log sV bits. The current index is also bounded by sV , giv-
ing an additional log sV bits. Thus the net contribution is
bounded by O(n log sV +

P
i
log vi), which is bounded by

O(V log sV), since
P

i
log vi is bounded by O(V).

Overall Timestamp Size. Thus, the straightforward im-
plementation of tracking indices requires the total timestamp
size to be bounded above by O(V log sV) bits.

4. Optimality

We now establish that, for any optimistic recovery protocol
meeting the requirements of Section 1.2, computations exist
where the upper bound on timestamp size must be at least

(V log sV) bits. This result establishes the asymptotic
optimality of timestamp size in our new protocol.

Since many definitions of asymptotic complexity only
discuss functions of one variable, we review the more gen-
eral definitions [6]. A function f(v; s) is in
(g(v; s))
when there exist constants c; v0; s0 such that for any pair
v; s with v � v0 and s � s0, 0 � cg(v; s) � f(v; s). A
function f(v; s) is in O(g(v; s)) when there exist constants
c; v0; s0 such that for any pair v; s with v � v0 and s � s0,
0 � f(v; s) � cg(v; s).

Theorem 2 There exists a function g(V; sV) in

(V log sV) such that for any rollback protocol
satisfying the criteria in Section 1.2 and for any
V; sV , there exists a computation in which: some
message M must be timestamped with at least
g(V; sV) bits (where V is the number of process
versions in the computation perceivable by M ;
and sV is the maximum number of state intervals
in any one version in this computation).

As a consequence of this result, for any rollback protocol
satisfying the conditions of Section 1.2, the upper bound on
timestamp size is at least
(V log sV).

5. Future Directions

Previous work has shown how timestamp size can be re-
duced by sacrificing asynchrony or minimal rollback. Our

results yield an optimal timestamp size while preserving
asynchrony and minimal rollback. However, our lower
bound proof holds only asymptotically, and for independent,
deterministic rollback protocols. Each of these conditions
suggests an avenue for further research:

Relaxing Complete Asynchrony. Our results yield
completely asynchronous, minimal rollback always—but
smaller timestamps are possible by sacrificing optimum per-
formance in unlikely pathological cases. Exploring heuris-
tics such as not sending vector entries the destination process
is likely to have, and using unreliable broadcasts to more ag-
gressively distribute some rollback and timestamp informa-
tion, might yield better results most of the time. Extending
our system model to incorporate probabilities of message
delay and loss, as well as benchmarking to determine the
failure patterns that arise in practice (and how our protocol
performs then), would be fruitful areas of further work.

Relaxing Determinism. The lower-bound proof on time-
stamp size appeared to require that the rollback protocol be
deterministic. Thus, optimistic rollback protocols that use
randomness might achieve lower timestamp size.

Reducing Practical Size. Optimistic rollback protocols
might use timestamps with the same asymptotic bound but
with a smaller constant. Optimistic rollback protocols might
also reduce the average size of timestamps.

Relaxing Independence. Optimistic rollback protocols
might exploit properties of the underlying computation to
reduce timestamp size (essentially by re-using information
present in the messages themselves and in the process states).

Appendix: Proofs

Proof of Lemma 1. First we consider (1). We establish
this result by induction: If AF and BF occur at the same
process, this is easily true. IfAF sends a message that begins
BF , then some interval in F to S(AF) precedes BS , so
clearly AS must also. For more general precedence paths,
choose an intermediate nodeCF withAF �! CF �!BF ,
and choose the minimal CS from F to S(CF). Establish
the result for AF and CF , and for CF and BF .

The proof of (2) can be found in [27].

Proof of Lemma 2. Two consecutive system states either
map to the same compressed system state, or to consecutive
compressed system states.

Proof of Lemma 3. First we consider (1). Each branch-
point in a failure timetree also is a branch in the corre-
sponding user timetree. Consequently, each path in a user
timetree is also a path in the failure timetree. Thus the state-
ment holds for state intervals at any one process; since the
cross-process links are the same for both time models, the
statement holds in general.

We now consider (2). Suppose AF �! BF and such
a CS exists. The failure time path from AF to BF de-

composes into a sequence of one or more segments, each
contained within a timetree and each separated by a message.
If AU =�! BU , then at least one of these segments is not
a user timetree path. Suppose DF � EF at process q
is the first such segment from AF ; let DU ; EU be their
respective images under F to U. Since DU 6�EU , some
GU � DU must have been restored in a rollback HS be-
fore EU first occurred. By choice of q, AU �! DU . Let
ES be the minimal interval in F to S(EF). HS � ES ,
so by Lemma 1 and hypothesis, HS

�! CS . Hence
KNOWABLE ORPHAN(AU ; CS)

Proof of Lemma 4. This follows directly from the defin-
itions.

Correctness. The knowable orphan definition is given
in terms of rollbacks. We establish that knowable orphans
can be characterized in terms restart after a process’s own
failure (a subset of rollbacks).

Lemma 5 Suppose the only user state inter-
vals rolled back are those that are lost due to
failure of their processes, and those that are
knowable orphans. Suppose also that some
AS �! BS for some AS in U to S(AU). Then
KNOWABLE ORPHAN(AU ; BS) is true if and
only if there exists a CU and DS (both at some
process q) such that: (1) CU �! AU ; and (2)
CU is lost due to failure of process q, which then
restarts in DS ; and (3) DS

�! BS

Proof. If such a CU ; DS ; q exist, then the predi-
cate KNOWABLE ORPHAN(AU ; BS) clearly holds, since
restart after failure is a special case of rollback.

Conversely, suppose KNOWABLE ORPHAN(AU ; BS)
holds. By definition, there exists a C1

U
and D1

S
at process

q1 such that: C1

U
�! AU ; and D1

S
rolls back C1

U
; and

D1

S
�! BS . By the assumed causes of rollback, at

least one of the following statements must be true: C1

U

is lost due to failure of q1 which then restarts in D1

S
; or

KNOWABLE ORPHAN(C1

U
; D1

S
) is true. If the latter, then

we can iterate; since computations are finite, eventually
we reach some Ck

U
; Dk

S
; qk such that former rollback cause

holds.

We also establish some relations among lost states and
failure time.

Lemma 6 Suppose AU is lost due to failure,
and BS is the restart after that failure. (1) If
AS 2 U to S(AU) then AS �S BS . (2) If CS
satisfies BS �S CS and AF = U to F(AU),
then AF 6�FS CS.

Proof. The first statement holds because we can only
restart after failure has occurred. The second statement
holds because lost states remain lost.

Proof of Theorem 1. Suppose the predicate
KNOWABLE ORPHAN(AU ; BS) holds. Then Lemma 5
gives us that at some process r, there exists a user
state interval CU and system state interval DS sat-
isfying the statements: (1) CU �! AU ; (2) CU is
lost due to failure, whose restart was DS ; and (3)
DS

�! BS . Let CF = U to F(CU). Statement (1)
implies that CU � XU [r], and thusCF � U to F(XU [r]).
Statement (2) and Lemma 6 imply that CF 6�FS ES for
any ES satisfying DS �S ES . Statement (3) implies that
DS �S YS [r]. Hence CF 6�FS YS [r]. If XU [r] �UFS YS [r],
then CF �FS YS [r] since a failure time path exists from
CF to XU [r] in the failure timetree at r. Thus
XU [r] 6�UFS YS [r].

Conversely, suppose XU 6�UFS YS . Then there exists a
process r with XU [r] 6�UFS YS [r]. Let CU = XU [r]; let
CF = F to U(CU); letCS be the minimal state interval in
U to S(CU). By hypothesis, someAS 2 U to S(AU) sat-
isfiesAS �! BS . By the definition of a timestamp vector,
CU � AU . By Lemma 1, CS � AS . Thus CS �! BS .
Applying the definition of timestamp vector again yields
CS �S YS [r]. Since by hypothesis CF 6�F S to F(YS [r]),
a DS must exist such that CS �S DS �S YS [r] and DS

restarts r after a failure that lost CU . Since DS
�! BS ,

we have KNOWABLE ORPHAN(AU ; BS).

Optimality. A restarted state interval occurs when a
process restarts after its own failure. At each process, the
first version begins with state interval 0. The jth restarted
state interval (ordered by time) begins version j + 1. Each
new version must begin with the restart of a state interval
that was active in the previous version. As a consequence,
for any one process, we can unambiguously label the first
interval in each version with an index relative to the start
of computation. These indices form a non-descending se-
quence. For a state interval S at a process, define �S to be
the index of S relative to the most recent preceding element
in this sequence. For completeness, we define �S = 0,
where S is the initial state interval of a process.

SupposeM is a message sent in state intervalS at process
p. Define F(M) to be the set of restarted intervals that
causally precede the state interval in which M was sent.
Define V(M) to be the set of state intervals in the timestamp
vector of S.

Proof of Theorem 2. For any V; sV ; n (where V and sV
are each beyond some constant and V � n), we construct
a class C(V; sV) of computations where V is the number of
versions and sV is the maximum number of state intervals
in any one version as follows.

Let k = n � 3. Let us distinguish processes: PS , the
sender; PR, the receiver; PC, the clock; and P1 through
Pk, the processes that failed. (We use the clock solely to
send out the messages that begin state intervals.) Distribute

V � (k+1) failures among thePi. Let each version run out
to sV state intervals. Let us assume that the Pi only ever
restart from even state intervals, and only send messages
out in odd state intervals. Furthermore, suppose in each odd
state interval in each version, each Pi sends messages both
to PS and PR. For each i, at least one message has made
it from Pi to PS , and all messages that do arrive have not
been lost. For each i, let the most recent message to arrive
be Mi, sent in interval Si in version Vi.

Now, in state interval S, PS is preparing to send a
message M to PR. Define the configuration of PS at this
point to consist of the following: for each i, the sequence
�F for F 2 F(Mi); and for each i, the value �Si.

We now establish that PS cannot send the same time-
stamp on M in two different configurations. Suppose oth-
erwise. One of two cases holds:

(1) At some Pi, the �F sequence differs. Let j be the
first restart where a difference occurs: the jth version in
configuration C1 began earlier than the jth version in con-
figuration C2. By assumption, there exists at least one odd
state interval in version j � 1 between these restarts, and a
message M 0 was sent to PR during this interval. Since the
configurations do not differ until later and since the rollback
protocol is piecewise deterministic, the timestamp on M 0

is the same in both configurations. However, M 0 is rolled-
back inC1. SupposeM 0 is the only messagePR has actually
received. Should PR then receive M , whether PR needs to
roll back or not depends on the configuration—which PR
cannot distinguish if PS uses the same timestamp on M in
both. (Figure 4 illustrates this case.)

(2) The �F sequences are identical, but at some Pi,
the �Si has a different value. Without loss of generality,
suppose that this occurs at process P1, in version j: the
successful send in configuration C1 occurs earlier than the
successful send in configuration C2. By assumption, there
exists at least one even state interval between the index of
the S1 intervals in the two configurations. In either config-

M

PR

PS

Pi

MiM'

?

Figure 4. In case (1), a message M 0 was sent
in the intervening state interval. If M 0 is the only
message PR received, then the timestamp on M
must tell PR whether or not to roll back.

PR

PS

Pi

Mi M'

M

?

Figure 5. In case (2), Pi might later restart from
the intervening state interval. But then Pi will
not know which of the possible Mi got through,
so M 0 cannot indicate this. If M is the only
message that PR received, then, when M 0 ar-
rives, the timestamp on M must tell PR whether
or not to roll back.

uration, the computation might continue by having version
j +1 begin from this interval. Then S1 is rolled-back in C2

but not in C1. Suppose M is the only message that PR ac-
tually receives, until it later receives a message M 0 directly
from P1, sent in version j + 1. PR can accept M 0 in C1 but
must first roll back in C2. Since P1 has no information to
contribute regarding whether PS was in C1 or C2 when PS
sent M , PR must get this information from the timestamp
on M . (Figure 5 illustrates this case.)

Let W (V; sV) be the number of configurations for
C(V; sV). W (V; sV) equals the number of ways the restarts
and the Si could have been laid out. Since each restart and
each si can occur at any even interval among sV , we have:

W (V; sV) 2
((
sV
2
)v)

For some c and for W (V; sV) sufficiently large, the num-
ber of bits necessary to distinguish membership in a set of
W (V; sV) objects is at least cV log sV

2
for at least some of

these objects.

This lower-bound proof based on failures does not gen-
eralize to the case of rollbacks because all rollbacks have
first causes. Consider case (1) above: if Pi rolled back but
did not fail, then PS when receiving Mi knows about the
failure elsewhere that caused this rollback. Thus PR knows
when receiving M , and can decide for itself whether theM 0

it received was an orphan.

Acknowledgements

We are grateful to Doug Tygar and Vance Faber for their
helpful discussions on this work. We would also like to
thank the referees, whose comments helped to improve the
clarity of the presentation.

References

[1] B. Bhargava and S. Lian. “Independent Checkpointing and
Concurrent Rollback Recovery for Distributed Systems—
An Optimistic Approach.” Seventh Symposium on Reliable
Distributed Systems. 3–12. IEEE, 1988.

[2] A. Borg, J. Baumbach, and S. Glazer. “A Message System
Supporting Fault Tolerance.” Proceedings of the Ninth ACM
Symposium on Operating Systems Principles. 90–99. 1983.

[3] D. Briatico, A. Ciuffoletti, and L. Simoncini. “A Distributed
Domino Effect Free Recovery Algorithm.” IEEE Symposium
on Reliability in Distributed Software and Database Systems.
207–215. October 1984.

[4] K. M. Chandy and L. Lamport. “Distributed Snapshots:
Determining Global States of Distributed Systems.” ACM
Transactions on Computer Systems. 3: 63–75. February
1985.

[5] A. Ciuffoletti. “La Coordinazione Delle Attivita Di Ripristino
Nei Sistemi Distribuiti.” A.I.C.A. Annual Conference
Proceedings. October 1989.

[6] T. H. Corman, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. MIT Press, 1990.

[7] O. P. Damani and V. J. Garg. How to Recover Efficiently
and Asynchronously When Optimism Fail. Electrical and
Computer Engineering Technical Report TR-PDS-1995-014,
University of Texas at Austin. August 1995. A revised ver-
sion appears in the Sixteenth International Conference on
Distributed Computing Systems, May 1996.

[8] E. N. Elnozahy, D. B. Johnson and W. Zwaenepoel. “The
Performance of Consistent Checkpointing.” Eleventh IEEE
Symposium on Reliable Distributed Systems. 39–47. October
1992.

[9] E. N. Elnozahy and W. Zwaenepoel. “Manetho: Transparent
Rollback-Recovery with Low Overhead, Limited Rollback
and Fast Output Commit.” IEEE Transactionson Computers.
41 (5): 526–531. May 1992

[10] C. J. Fidge. “Timestamps in Message-Passing Systems
That Preserve the Partial Ordering.” Eleventh Australian
Computer Science Conference. 56–67. February 1988.

[11] D. B. Johnson and W. Zwaenepoel. “Sender-Based Message
Logging.” Seventeenth Annual International Symposium on
Fault-Tolerant Computing. 14–19. 1987.

[12] D. B. Johnson. Distributed System Fault Tolerance Using
Message Logging and Checkpointing. Ph.D. thesis, Rice
University, 1989.

[13] D. B. Johnson and W. Zwaenepoel. “Recovery in
Distributed Systems Using Optimistic Message Logging
and Checkpointing.” Journal of Algorithms. 11: 462–491.
September 1990.

[14] D. B. Johnson. “Efficient Transparent Optimistic Rollback
Recovery for Distributed Application Programs.” Twelfth
IEEE Symposium on Reliable Distributed Systems. 86–95.
October 1993.

[15] R. Koo and S. Toueg. “Checkpointing and Rollback-
Recovery for Distributed Systems.” IEEE Transactions on
Software Engineering. 13 (1): 23–31. January 1987.

[16] P. Leu and B. Bhargava. “Concurrent Robust Checkpointing
and Recovery in Distributed Systems.” Fourth International
Conference on Data Engineering. 154–163. 1988.

[17] K. Li, J. F. Naughton and J. S. Plank. “Real-Time,
Concurrent Checkpointing for Parallel Programs.” Second
ACM SIGPLAN Symposium on Principles and Practices of
Parallel Programming. 79–88. 1990.

[18] F. Mattern. “Virtual Time and Global States of Distributed
Systems.” In Cosnard, et al, ed., Parallel and Distributed
Algorithms. Amsterdam: North-Holland, 1989. 215–226.

[19] P. M. Merlin and B. Randell. “State Restoration in
Distributed Systems.” International Symposium on Fault-
Tolerant Computing. June 1978.

[20] S. L. Peterson and P. Kearns. “Rollback Based on Vector
Time.” Twelfth IEEE Symposium on Reliable Distributed
Systems. 68–77. October 1993.

[21] M. L. Powell and D. L. Presotto. “Publishing: A Reliable
Broadcast Communication Mechanism.” Proceedings of the
Ninth ACM Symposium on Operating Systems Principles.
100–109. 1983.

[22] B. Randell. “System Structure for Fault Tolerance.” IEEE
Transactions on Software Engineering. SE-1: 220–232,
1975.

[23] D. L. Russell. “State Restoration in Systems of
Communicating Processes.” IEEE Transactions on Software
Engineering. 6 (2): 183–194. March 1980.

[24] A. P. Sistla and J. L. Welch. “Efficient Distributed Recovery
Using Message Logging.” Eighth ACM Symposium on
Principles of Distributed Computing, 223–238.August1989.

[25] S. W. Smith. A Theory of Distributed Time. Computer
Science Technical Report CMU-CS-93-231, Carnegie
Mellon University. December 1993.

[26] S. W. Smith. Secure Distributed Time for Secure Distributed
Protocols. Ph.D. thesis. Computer Science Technical Report
CMU-CS-94-177, Carnegie Mellon University. September
1994.

[27] S. W. Smith, D. B. Johnson and J. D. Tygar.
“Completely Asynchronous Optimistic Recovery with
Minimal Rollbacks.” 25th International Symposium on
Fault-Tolerant Computing. June 1995.

[28] R. Strom and S. Yemini. “Optimistic Recovery in Distributed
Systems.” ACM Transactions on Computer Systems. 3: 204–
226. August 1985.

[29] Y.-M. Wang and W. K. Fuchs. “Lazy Checkpoint
Coordination for Bounding Rollback Propagation.” Twelfth
IEEE Symposium on Reliable Distributed Systems. 78–85.
October 1993.

