Completely Asynchronous Optimistic Recovery
with Minimal Rollbacks

Sean W. Smith*, David B. Johnson, and J. D. Tygar

Computer Science Department
Carnegie Méellon University
Pittsburgh, PA 15213-3891 USA

Abstract

Consider the problem of transparently recovering an
asynchronous distributed computation when one or more
processes fail. Basing rollback recovery on message log-
ging and replay is desirable since failure-free operation re-
quiresno synchronization between processes, and sincelog-
ging a received messageis cheaper than recording a check-
point. Furthermore, surviving processes have the ability to
recreate states other than those recorded in checkpoints—
so only computation that depends on the failure must be
rolled back. Although optimistic rollback recovery proto-
cols make failure-free operation even cheaper by logging
received messages asynchronously, optimism complicates
recovery. Previous optimistic rollback recovery protocols
have either required synchronization during recovery, or
have permitted a failure at one process to potentially trig-
ger an exponential number of process rollbacks. In this
paper, we present an optimistic rollback recovery protocol
that provides compl etel y asynchronousrecovery, whileal so
reducing the number of times a process must roll back in
response to a failureto at most one.

1. Introduction
1.1. TheProblem

Consider a long-running application program on an asyn-
chronousdistributed system. Suppose aprocessp fails, and

This research was sponsored in part by the Advanced Research Projects
Agency under contract number F19628-93-C-0193, IBM, Motorola, the
National Science Foundation under Presidential Young Investigator Grant
CCR-8858087, TRW, and the U. S. Postal Service. The first author also
received support from an ONR Graduate Fellowship.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Government.

*Dr. Smith is currently affiliated with the Computer Research and Appli-
cations group at Los Alamos National Laboratory, Mail Stop M986, PO.
Box 1663, Los Alamos, NM 87545 USA.

recovers by rolling back to a previous state. Process p's
computation since it first passed through the restored state
has become lost. The failure and rollback of p may cause
the state at asurviving processto become an orphan: astate
that causally dependson lost computation. The existence of
orphan states causes the system stateto beinconsistent. The
challenge of rollback recovery isto restore and maintain a
consi stent system state when one or more processes fail and
roll back.

One of the desirable properties of a rollback recovery
protocol is the ability to perform recovery transparently to
theapplication program. Another desirable property ismin-
imizing the amount of computation wasted due to rollback.
For example, after a process failure, we might measure the
number of surviving processes that must roll back, the num-
ber of times each process must roll back, and the amount
of rolled-back computation beyond that which causaly de-
pends on the computation lost due the failure. An extreme
case of such wasted computation is the domino effect [21,
22], in which al processes are forced to roll back to their
initia states regardless of the amount of progress made or
the amount of state individually saved for each process. A
third desirable property of rollback recovery isminimizing
the overhead incurred by the protocol, both during failure-
free execution and during recovery. During failure-free
execution, synchronization between processes slows down
the application program; during recovery, synchronization
between processes slows down recovery and may prevent
recovery from concurrent failures from proceeding concur-
rently.

Optimally, surviving processes roll back at most once,
and only roll back the portion of their own computation
that has become an orphan. In this paper, we present a
protocol that provides this property, while also providing
complete asynchrony. Processes do not synchronize with
each other during failure-free execution or during recov-
ery, and processes record all recovery information during
failure-free operation (logged messages and checkpoints)
on stable storage asynchronously.

The protocol isbased on optimistic message logging. In
thegeneral messagel ogging approachto recovery, processes
log their received messages and occasionally checkpoint
their loca state. A process may recover to any past state
by restarting from an earlier checkpoint and then replaying
fromthelog the sequence of messagesit originally received
after that checkpoint. This approach to recovery assumes
that the execution of each process is piecewise determinis-
tic [26], in that its execution between successive received
messages is completely determined by the process state be-
fore the first of these messages is received and by contents
of that message. After receiving a message, a process per-
forms a sequence of deterministic state transitions, some of
which may involve sending messages to other processes.
The process then attempts to receive another message, and
blocks until one is available. This scheme can aso be ex-
tended to handle some nondeterminism [8, 13] by treating
each nondeterministic influence as a message, logging it
and replaying it during recovery.

The message | ogging approach allows states of aprocess
in addition to those saved in a checkpoint to be recovered.
Recovery protocols based instead on checkpointing with-
out messagelogging(e.g., [1, 4, 5, 6, 7, 14, 15, 16, 27]) can
only recover the process states that have been checkpointed,
often forcing processes to roll back further than otherwise
required after afailure. Message logging thus allows each
process to be checkpointed less frequently, and may in gen-
eral reduce failure-free overhead since logging a message
is less expensive than recording a checkpoint. Message
logging aso avoids the need for process synchronization
during checkpointing; protocols using only checkpointing,
on the other hand, either require some form of synchroniza-
tion during checkpointing in order to record a consistent
set of process checkpoints, or cannot guaranteeto avoid the
domino effect during recovery since no consistent set of
checkpoints may exist.

Optimistic message logging protocols (e.g., [11, 12, 13,
19, 23, 26]) buffer received messages in vol atilestorage and
log them to stable storage asynchronously in order to avoid
blocking the process due to logging. Unlike pessimistic
message logging protocols(eg., [2, 3, 8, 10, 20]) whichlog
each message synchronoudly, optimistic protocolswill let a
processreceive amessage and continueexecution beforethe
message is saved to stable storage. Asaresult, afailureat a
processthat has not yet logged some received messages may
create orphans at other processes—since the failed process
may not be able to restore its last state before failure, but
other processes may depend on these lost states. In order to
restore the system to a consistent state, an optimistic recov-
ery protocol must be able to detect and eliminate orphans
throughout the system. Although optimism thus compli-
cates recovery, optimistic rollback protocols are cheaper
during failure-free operation due to their asynchronous op-
eration. By also using asynchronous checkpointing tech-

niques [16, 7], al causes of process blocking due to fault
tolerance during failure-free operation may be avoided.

1.2. AsynchronousRecovery

Existing optimistic rollback protocols have required syn-
chronization between processes during recovery. Thissyn-
chronization has been necessary in order to ensure that the
system recovers to a consistent state, and that the system
state remains consistent in spite of the effects of any orphan
processes or messages remaining after the failure.

Strom and Yemini [26] initiated the area of optimistic
rollback recovery and presented the most asynchronous pro-
tocol prior to the completely asynchronous protocol that we
present in this paper. In the Strom and Yemini protocol,
processes usetimestamp vectorsto track dependency. When
aprocess rollsbhack, it begins a new incarnation and sends
announcements to the other processes. (These announce-
ment messages are not part of the failure-free computation,
and thusdo not carry dependency.) When aprocessreceives
arollback announcement, it usesitstimestamp vector to de-
termineif itscurrent stateisan an orphan; if so, thisprocess
rolls back to its maximal state that it believes is not an
orphan. The process restarts from an old checkpoint and
replays from the log its received messages until it reaches
one known to be an orphan based on the incarnation start
information contained in the rollback announcementsit has
received.

The Strom and Yemini protocol usualy requires no
process synchronization during recovery, but may in some
cases need to block a process. Processes need the incar-
nation start information from rollback announcements in
order to compare timestamp vectors received on messages;
if an announcement is delayed, any processthat has not yet
received the announcement may be forced to block when
it needs to make a timestamp vector comparison. This be-
havior can occur even though the protocol assumes FIFO
message ordering between each pair of processes, since a
timestamp vector entry referring to the new incarnation may
arriveat thisprocessindirectly through achain of messages.

In addition, the asynchrony present in the Strom and
Yemini protocol can permit a single failure at one process
to cause other processes to roll back an exponential num-
ber of times. This behavior occurs because an orphan state
at a surviving process » may depend on the lost compu-
tation at another process through multiple paths: directly
fromthefailed process, and indirectly through intermediate
processes. The protocol may generate rollback announce-
ments in such away that process r rolls back in response
to the rollbacks of intermediate processes, and then in re-
sponseto therollback of thefailed process. Figure 1 shows
asimple scenario in which process » rollsback twicein re-
sponsetoasinglefailureat processp. Sistlaand Welch [23]
claim an upper bound of O(2") rollbacksin the worst case

failure

“I've rolled | |
back G |

Figure 1 The Strom and Yemini protocol may cause sur-
viving processes to roll back multiple times in response to a
single failure. This diagram shows how one failure at process
p causes process r to roll back twice. Process p fails and
rolls back state interval B. (An “X” marks each rolled back
interval.) This failure makes state interval G at process ¢ an
orphan, since GG depends on the lost state interval B. The
failure at p also makes process state interval N at process r
an orphan, since it depends directly on B and indirectly on
B through ¢. When process ¢ receives p’s announcement
about B, g rolls back to its most recent state that does not
depend on B. Unfortunately, ¢'s announcement may arrive
at process r before p's announcement does. When process
r receives g's announcement about G, r rolls back to its
most recent state that does not depend on G, and then pro-
ceeds with its computation. Process r does not know that its
restored state and subsequent states are still orphans until
after the delayed p announcement arrives.

for the Strom and Yemini protocol, where . isthe number of
processes in the system. In [25], we provide a constructive
proof for alower bound of 2% — 1.

1.3. Our Reaults

In this paper, we present a new protocol for optimistic roll-
back recovery. Previous work in optimistic recovery has
modeled the application program with partial order time,
and used the standard technique of timestamp vectors [26,
9, 17] to track causal dependency. Our work exploits the
insight that the transparent recovery protocol itself is aso
an asynchronous distributed computation. This recovery
computation can aso modeled by a partial order—but one
that differs from the partial order for the user application
computation. Our protocol maintainsvector clocksfor both
levels; comparing vectors across timelevel s optimal ly char-
acterizes when a given state is an orphan.

Our new protocol improves on previous optimistic roll-
back protocols by requiring no synchronization during re-
covery. In comparison specifically to the Strom and Yemini
protocol (which otherwise requires the least synchroniza-
tion during recovery), our protocol reduces the worst case

Johnson !
Strom and d Sistlaand Peterson
Yemini an Welch and Kearns
Zwaenepoel
Assumptions FIFO None FIFO None
Asynchronous
recovery? Mostly No No No
Maximum
rollbacks at one o) 1 L)
processfrom
onefailure?
Entriesin
timestamps O(n) o(1) O(n) O(n)

Table 1 Our protocol improves on previous optimistic
message logging protocols by providing completely asyn-
chronous recovery, while also requiring a process to roll
back at most once in response to any failure. The princi-
pal drawback of our protocol is timestamp size, since the
protocol requires vector clocks for two levels of partial order
time.

number of rollbacks per process after any failure from ex-
ponential to one, and requires neither FIFO messages nor
blocking of any process. Our protocol aso does not require
the sending of any messages other than those sent by the
application program. Table 1 compares our protocol to four
principal optimistic message logging protocols (discussed
further in Section 6).

Section 2 of thispaper presents our new recovery proto-
col. Section 3 presents its theoretical basis, and Section 4
uses this basis to establish the properties of our protocol.
Section 5 sketches some data structures for implementa
tion. Section 6 compares this protocol to previous rollback
recovery protocols, and finally, Section 7 presents conclu-
sions. We do not consider theissuesof failuredetection and
reconfiguration after a failure in this paper, as these issues
are largely orthogonal to the recovery protocol used in the
system.

2. TheProtocol
2.1. Definitions

Two Levelsof Computation Besides performing the ap-
plication program, processes also perform recovery. We
formalize thisduality by discussing two distributed compu-
tations:

o the user application computation, and
¢ the system recovery computation.

The system computation consists of the user computation
along with extra management information. The system

state at process p consists of the user state plus some extra
state. All user messages are carried by system messages,
but some messages may be exclusively system-only. The
system process at p implements the user process (but the
system process is transparent to the user process). Only
user messages are logged.

StatelIntervals A stateinterval isaperiod of determinis-
tic execution at a process. In our model, each process has
acurrent system stateinterval a current user stateinterval.
A process beings a new system state interval each time the
system process receives a new system-level message, each
timetheuser processreceives anew user-level message, and
each time the system process rollsback the user process. A
process beings a new user state interval each time the user
processreceives anew user-level message; rollback restores
an old user state interval.

Each stateinterval at aprocess hasastateinterval index.
Weuse capital Roman | ettersto denote stateinterval indices,
and use subscripts to indicate whether the interva is from
the system level or from the user level. For example, Ag
denotesasystem stateinterval index, and By denotesauser
state interval index.

At each process, the system state interval indicesforma
timeline: alinear sequence. The user state interval indices,
on the other hand, form atimetree, since each rollback be-
gins a new branch. Figure 2 illustratesthis branching. We
use <g and <y toindicate comparison on system state
interval indicesand user state interval indices, respectively.

Since(at each process) anew system stateinterval begins
whenever a new user state interval begins, a given system
state interval is associated with exactly one user stateinter-
val. We can use this association to compare system state
interval indicesto user stateinterval indices. Wedenotethis
comparison by =, . For any state interval indices Ay and
Bg,wedefine Ay <. Bgtoholdif andonlyif Ay <y By,
where By istheuser stateinterval index associated with Bg.

Figure 2 Rollback places the user state interval indices at
a process into a timetree. Here, process p executes user
state interval Ay, then By. Process p then rolls back to Ay,
and subsequently executes Cyy. We have Ay <y By and
Av =v Cy. However, we also have both By A, Cy and
Cv 2, Bu.

Vectors of Indices A vector is an array of state interva
indices, onefor each process. For avector X, X|[p] denotes
the process p entry of X. We use the <¢, <y, and
<, comparisons on state interval indices to define entry-
wise comparisons on vectors of state interval indices. We
asousethe <¢ and <y comparisonsto define the entry-
wise vector maximizations MAXs and MAX, respectively.
However, since user state interval indices form atree, itis
possiblethat two user state interval indices at aprocess may
be incomparable. MAX;; is undefined in such situations.

2.2. TheProtocol

This section presents our protocol in terms of system and
user state indices, functions to compare them, and func-
tionsto generate new indices. Section 5 will present some
approaches to implementing these functions.

Overhead Each process maintains timestamp vectors Vs
and Vs for the system and user computations, respectively.
At process p, the p entries of these vectors are its current
state interval indices.

Sending Messages Figure 3 shows how messages are
sent. To send a system-level message, a process p sends
its own name, the message text, and the timestamp vector
of the current system state interval. To send a user-level
message, a process p sends a system-level message whose
text contains two items. the user message text, and the
timestamp vector of the current user stateinterval.

Receiving a System-level Message Figure 4 shows how
processes receive system-level messages.! Process p first

[* process p sendsa system messageto processq */
procedure SEND_SYS (M5, q)
send (p, Ms, Vs) to processg

/* processp sendsa user messageto processg */
procedure SEND_USR (M, ¢)
SEND_SYS((Mv, Vo), q)

Figure 3 When sending a system message, a process in-
cludes the current system timestamp vector. When sending
a user message, a process packages it with the current
user timestamp vector, and sends this package as a system
message.

1The assumption of piecewise determinism requires user-level processes
to perform blocking receives, and for clarity of presentation, we have also
assumed that system-level processes perform blocking receives. However,

[* processp receivesa systemmessage*/
function RECEIVE_SYS
wait until (¢, Ms, Xs) arrives
/* update system timestamp vector */
Vs%MAXs(Vs7 Xs)

/* begin new system state interval */
Vs [p]«~NEW_SYS_INDEX(Vs[p], Vr[p])
asynchronously log Vs to stable storage
[* checkif p isan orphan*/
if Vo £, Vs

then ROLL_BACK

return (g, Ms)

Figure 4 When receiving a system-level message, a
process begins a new system state interval, and rolls back if
the new system timestamp vector indicates that the current
user state is an orphan.

uses thetimestamp vector on the message to update the sys-
tem timestamp vector at p. Process p then begins a new
system state interval and asynchronously logs the times-
tamp vector of the new interval. (Only the maximum sys-
tem timestamp vector from each process need be retained
on stable storage) The updated system timestamp vector
gives process p new information about the recovery activ-
ity of other processes. Process p compares its current user
timestamp vector to its new system timestamp vector to de-
termineif this new information indicates that the user state
at p isnow an orphan. (Section 3 exploresthis comparison
in more detail.) If so, process p calls ROLL_BACK to roll
itself back to itsmost recent non-orphan user state interval.
In any case, RECEIVE_SYSat process p returns the source
of the system message and the message text.

RECEIVE_SYS uses the NEW_SYS_INDEX func-
tion to generate new system state interva indices.
NEW_SYS_INDEX(As, Brr) returns a system state inter-
va index that immediate follows Ag, and whose unique
user stateinterval is By.

Rollback Figure5 showsthe ROLL_BACK procedure, in
which a process p restores its most recent available user
state interva that is not an orphan. |If p hasfailed and lost
volatile storage, then the most recent user state intervals
may not be available.

we could obtain increased performanceby having the system-level process
perform interrupt-driven receives; the system process would maintain a
buffer of messages for the user process, and on each Vs update could
re-examinethe buffer for orphans.

/* processp rolls back to most recent non-orphan*/
procedure ROLL_BACK

/* restoremaximal non-orphan user state */

find most recent checkpoint (C, Xv) with X <« Vs
discard the checkpointsthat follow this one

restore the user stateto C

find first logged message (M, Yvr) following Xv[p]
while Yo j* Vs

replay the receive of message My

VU%YU

get next (My, Yu)

discard remaining logged messages

/* begin new systeminterval */
Vs[p]«~NEW_INCARNATION(Vs [p], Vir[p])
write Vs to stable storage before proceeding

return

Figure 5 A process p rolls back to the most recent
non-orphan user state interval by restoring the most recent
non-orphan checkpoint, and replaying received messages
whose sends are not orphans.

As with RECEIVE_SYS process p determines orphans
by comparing a user timestamp vector to the current sys-
tem timestamp vector. Process p first obtains the most
recent checkpointed user state interval that is not an or-
phan. Process p then replays the received messages logged
after this checkpoint was recorded, until a message is
reached whose send is an orphan. Process p discards any
orphan checkpoints and logged messages, and begins a
new system state interval. The discarding of orphan log
data must be completed before any new data is logged.?
ROLL_BACK also uses the NEW_INCARNATION func-
tion to generate new system state interval indices. The
NEW_INCARNATION(As, By) function returns a system
state index Bs whose user state is Byy. Bs follows Ag
immediately—and also followsall other state intervals that
have already occurred. (Thisis necessary since the process
may have proceeded beyond Ag, but lost this information
dueto failure.)

Recelving a User-level Message Figure 6 shows how
processes receive user-level messages. When receiving a
user-level message, a process p waits for a system-level
message that carries auser-level message whose send isnot
an orphan (according to p’s current information). Process

20ld logged messages and checkpoints may also be discarded when no
longer necessary for recovery from any possible future failure [26, 12].

[* processp receivesa user message*/
function RECEIVE_USR

/* loop until a suitable user messageis available */
DONE«false
while -DONE

(q, Ms)«RECEIVE_SYS

[* if My carriesa user message, processit */
if Mg hasformat (My, Xv)
then
/* checkif the send is an orphan */
if (Xv =«Vs)
then
/* the send is not an orphan */
DONE«true /* we can accept My */
else optionally inform process ¢

[* formally receive user message My */
/* update user timetamp vector */
VU%MAXU()(U7 VU)

/* begin new user and system state intervals */

Vi [p]«~NEW_USR_INDEX(Vs[p], Vi [p])
Vs[p]<~NEW_SYS_INDEX(Vs[p], Vi [p])
asynchronously log (My, Vi) and Vs to stable storage

return (¢, Mv)

Figure 6 To receive a user-level message, a process
waits for a system-level message that contains a user-level
message whose send was not an orphan according to the
process’s current information.

p then usesthe user timestamp vector on the user message to
updatethe user timestamp vector at p. Process p then begins
anew user state interval and anew system state interval.

RECEIVE_USR uses the NEW_USR_INDEX func-
tion to generate new user state interval indices. The
NEW_USR_INDEX(As, Brr) function returns a user state
interval index that immediately follows By, in the context
of the system state interval index Ag.

Recovering from Failure For process p to recover from
itsown failure, it simply rel oads the current system times-
tamp vector from stable storage into Vs, and then calls
ROLL_BACK.

An Example Figures 7 and 8 illustrate how our protocol
avoidsthe multiplerollback problem of Figurel. Thisex-
ample asoillustrates a simple optimization to the protocol :
a process rolling back may optiondly explicitly announce
therollback, in order to reduce thelatency beforewhich any
new orphan processes also roll back. If the announcement
message has not yet been received by some process, the next

failure

Vsat Og

Figure 7 Our protocol avoids the multiple rollbacks that
the Strom and Yemini protocol had in Figure 1. This dia-
gram shows the first step. Here, process p fails, rolls itself
back, and announces this fact to process 4. (Dashed arrows
indicate system-only messages). Process ¢ rolls itself back
and announces this fact to process r. When process r re-
ceives this announcement at state interval Og, its system
timestamp vector has D s as its p entry and /s as its ¢ entry.

Vyatly user version
of Vs at Og

Figure8 This diagram shows the second step of the exam-
ple started in Figure 7. The user timestamp vector of user
state interval Ly at r does not <y -precede the user ver-
sion of the system timestamp vector of system state interval
Os at r. (In particular, precedence fails for the process p
entries.) Thus, when r receives the system-level message
announcing ¢'s rollback, r can determine that Ly is an or-
phan. Unlike the Strom and Yemini protocol, our protocol
causes process r to roll back far enough the first time.

message sent to that process by a process that has heard of
the rollback (such as an announcement of its own rollback,
or even asystem-level messagesending auser-level message
to that process) will cause the process to learn of theroll-
back. For efficiency, this announcement could be sent as
asingle unreliable broadcast system-level message, if sup-
ported by the underlying system; if the broadcast message
is not received by some process, the next message to that

process will also serve to inform it of the rollback. These
announcement messages, though, are only an optimization,
and are not required for correct operation of the protocol.

3. Theoretical Basis

The protocol tests for orphans by comparing timestamp
vectors across two levels of partia order time [24, 25].
Section 3.1 discusses the two levels of time. Section 3.2
shows how this comparison is an optimal test.

3.1. Prdiminaries

State Intervals We have observed that each system state
interval corresponds to exactly one user state interval, but
each user state interval corresponds to at least one system
dtate interval. Let SYS_TO_USR map each system state
interval toitsuser stateinterval, and let USR_TO_SYSmap
each user stateinterval to its set of system state intervals.

Suppose user state interval Ay and system state interval
Bgs both occur a process p. We say that Bs rolls back
Ay when Bg is the state interval that process p started
while executing ROLL _BACK, and Ay was one of the user
gtate intervals that was rolled back as part of that execu-
tion. Since process p can only roll back something that has
aready happened, any As € USR_TO_SYS(Ay) satisfies
As =5 Bs.

Two Partial Orders We build partial order time models
for the two levels of computation in our system. We ob-
tain these partial orders by constructing directed acyclic
graphs whose nodes represent state interval indices and
whose edges represent precedence.

For thesystem computation, we construct anodefor each
system stateinterval index. Let Ag and Bg bedistinct state
interval indices. We draw an edge from Ag to Bg when
Ag <g Bg, or when Ag sends amessage that initiates B .
We say that As precedes Bs in the system partial order
when apath existsfrom A to B¢ inthisgraph. For the user
computation, weconstruct anodefor each user stateinterval
index. Let Ay and By bedistinct state interval indices. We
draw an edge from Ay to By when Ay <y By, or when
Ay sends a message that initiates Byy. We say that Ay
precedes By in the user partial order when a path exists
from Ay to By in this graph. We use — to indicate
precedence in these partial orders, and — to indicate
precedence or equality. Which partial order should be clear
from the subscripts on the variable names.

Thefact that rollback placestheuser stateinterval indices
at aprocessinto atree permits some pathol ogical situations.
To restrict these situations, we say that a user state interval
Ay isvalid when its past in the user partial order touches
only one root-leaf path at any process. That is, if state

intervals By and Cy a process p satisfy By — Ay and
Cy — Ay, then By <v Cy or Cy <v Bu.

Comparing the timestamp vectors for two state inter-
val indices determines their partial order relation. Suppose
system state intervals Ag and Bs have timestamp vectors
Xg and Yg, respectively. Then Ay — Bg if and only if
Xs =g Ys. Similarly, supposevalid user stateintervals Ay
and By have timestamp vectors Xy and Yy, respectively.
Then Ay — By ifandonly if Xy <y Yu.

3.2. The Orphan Comparison

Potential Knowledge Suppose Ay is a user state inter-
va at process p. When can another process potentialy be
aware that Ay is no longer part of the failure-free virtual
computation?

We define apredicate KNOWABLE_ORPHAN (A7, Bg)
that istrue when Ay is an orphan or has been rolled back,
and processq during systemstateinterval Bs can potentially
beaware of thisfact. For the predicateto be defined, process
q must be aware of Ay ; hence we require the precondition
that As — Bs for some As € USR_.TO_SYS(Ay). For
the predicate to betrue, there must exist auser stateinterval
Cy andasystem stateinterval D satisfying theconditions:

[] CU j AU,
e Dg rollsback Cyr, and
[DS f— BS.

The first two conditions are necessary for Ay to no longer
be part of the valid computation. The last condition is nec-
essary for process ¢ to be potentially aware of thisfact at
Bs.

An Optimal Test Comparing timestamp vectors across
the two levels of partial order time exactly captures this
potential knowledge.

Theorem 1 Suppose user state interva Ay
a process p and system dtate interva Bg at
process ¢ satisfy Ag —> Bg, for some Ag in
USR_TO_SYS(Ay). Let Xy be the user times-
tamp vector of Ay, and let Ys bethesystemtimes-
tamp vector of Bg. Then

KNOWABLE_ORPHAN(Ayr, Bs) < Xy £, Xs

Before proving thistheorem, we establish three lemmas.

Lemma 1 Suppose
Bg rollsback Ay. If As € USR.TO_SYS(Ay)
then As <5 Bgs. If Cs satisfies Bs < Cg, then
Av Ay SYS.TO_USR(C's).

Proof Rolled-back states remain rolled-back, and we can
only roll back statesthat have happened. [O

Lemma?2 If Xz isthetimestamp vector for sys-
tem state interval Bg, then a system state interval
Ag ataprocessp satisfies A¢ — Bg if andonly
if As <5 Xgs[p]. Similarly, if Xy is the times
tamp vector for valid user state interval By, then
a user state interval Ay at a process p satisfies
Ay ot By if and only IfAU <v XU[p]

Proof Thisfollowsinductively from the construction and
mai ntenance of timestamp vectors. [

Lemma 3 Suppose user state interval Ay and
system state interval Bg satisfy

Ay = SYS_TO_USR(Bs)

Lete As be the minima interva in
US?_TO_SYS(AU) Then As — Bgs.

Proof We establish this result by induction: If Ay and
SYS_TO_USR(Bg) occur at the same process, thisiseasily
true. If Ay sendsamessagethat beginsSYS_ TO_USR(Bs),
then some interval in USR_.TO_SYS(Ay) precedes Bs
so clealy As must. For more genera prece-
dence paths, choose an intermediate node Cy with
Ay — Cy — SYS_TO_USR(Bs), and choose the min-
imal Cs from USR_.TO_SYS(Cy). Establish the re-
sult for Ay and SYS_.TO_USR(Cs), and for Cy and
SYS. TO_USR(Bs). O

Proof (of Theo-
rem1) Suppose KNOWABLE_ORPHAN(Ay, Bg) holds.
Then at some process r, there existsauser stateinterval Cyy
and system state interval D satisfying the statements: (1)
Cy — Ay, (2) Ds rollsback Cr7, and (3) Ds — Bgs.
Statement (1) implies that Cy <y Xy [r]. Statement (2)
and Lemma 1 imply that Cy £;; SYS.TO_USR(Es) for
any Eg satisfying Ds <g Fs. Statement (3) implies
that Dg <5 Xg[r]. Hence Cy Ay SYS_.TO_USR(Xg[r]).
ThUSXU ﬁ* Xs.

Conversdly, suppose Xp A. Xs. Then there exists
a process r with Xy [r] Ay SYS.TO_USR(Xs[r]). Let
Cy = Xylr]; let Cs be the minima state interva
in USR_.TO_SYS(Cyr). By Lemma 2, Cy — Ayp.
By Lemma 3 and hypothesis, Cs — Bg. Thus
by Lemma 2, (s =<s Xs[r]. Since by hypoth-
esis Cy Ay SYSSTO_USR(Xs[r]) a Dg must ex-
ist such that Cg <¢ Dg <s Xg[r] and Ds rolls
back Cy. Lemma 2 gives Ds — Bs, hence
KNOWABLE_ORPHAN(Ar, Bs). O

How quickly the system recovers from process failure
depends on how quickly the processes whose user statein-
tervals are orphans (or will become orphans) learn of the
failure. Our protocol allows arange of alternatives, from
broadcasting system-only messages, to | etting the news per-
colate viathe system timestamp data on user messages.

Theorem 1 establishes that the MAXy comparison in
RECEIVE_USRisawayswell-defined. Suppose process p
were to accept a user message with user timestamp vector
Xy, and for some ¢, Xy[¢q] and Vi [q] were incomparable
under < . Then either Xy;[¢] had been rolled back by the
time Vs [¢] occurred (so process p would have discarded the
message), or Vi [¢] had been rolled back by the time X/ [¢]
had occurred (so process p would have rolled itself back).

4. Propertiesof the Protocol

Our new protocol isthefirst optimistic rollback protocol to
implement completely asynchronous recovery effectively.
We discuss the advantages.

Suppose a process p fails and rollsitself back. A sur-
viving process ¢ will roll back itsown user state when this
state failsthe <, comparison in RECEIVE_SYS. Hence:

o Complete Asynchrony When a process must roll
back, it can roll back immediately and resume com-
putation without additional synchronization with other
processes.

Theorem 1 tells us that surviving process ¢ will roll back
its user state when this state becomes a knowabl e orphan:
when it depends on a rolled back state, and a knowledge
path exists from the rollback to ¢. Because of optimistic
logging, a surviving process can always restore its maximal
non-orphan state, so the orphanscreated by aprocessfailure
are exactly the state intervals that depend on the computa
tion lost at the failed process. Because processes test user
messages before receiving them, the state at process ¢ never
becomes an orphan dueto the failureat p once aknowledge
pathis established. Hence:

e Maximal Recovery Like other optimistic rollback
protocols, ours guarantees that a stateis rolled back if
and only if it causally depends on the computation lost
at failed processes.

¢ Minimal Rollbacks Our protocol aso guaranteesthat
afailureat process p causes aprocess ¢ to roll back at
most once. Processes that do not depend on thefailure
will not roll back at all.

e Speedy Recovery Suppose process ¢ must roll back
because of a failure a process p. Process ¢ will roll
back as soon as any knowledge path isestablished from
p'srollback.

e Toleration of Network Partitions Another side-
effect of our asynchronous approach is that once
initiated, recovery can proceed despite a partitioned
network. The only processes that need to worry about
recovery are those that may causaly depend on lost
states. Since each such process can recover asyn-
chronously, the processes on the same side of the parti-
tion as the failure can recover immediately. Processes
ontheother sidethat need to recover can do sowhenthe
network isreunited. The remaining processes on either
side may proceed unhindered. (This paper does not ad-
dress the problem of detecting failure in a partitioned
network.)

The preceding discussion considered the failure of asingle
process. Using the <, test alows a surviving process to
roll itself back to themaximal state that isnot an orphan due
to any rollback within the survivor’s knowledge horizon.
Hence our protocol provides:

e Concurrent Recovery Recovery from aprocessfail-
ure occurs as information about the failure propagates.
Basing recovery oninformation flow rather than coordi-
nated rounds directly allows recovery from concurrent
failures to proceed concurrently: the recoveries merge
and the protocol restoresthe maximum recoverablesys-
tem state. (In particular, two processes that each need
to roll back due to two failures do not need to react to
the failuresin the same order.)

5. Implementation Considerations

Our new protocol requires away to represent user and sys
tem stateindices, to comparethese representationsunder the

<v, <s and <. functions, and to generate new indices.
This section provides a sample solution.

System Indices System state intervals are organized into
atimeine. The system indices should reflect this linear
structure—but also take into account the fact that a failed
process may lose all state. The system index should aso
indicate the index of the corresponding user state interval.
Following [26], wesay that each rollback of aprocessbegins
a new incarnation of that process. We represent the index
for system state interval As asatriple (k, m, Ay). Integer
k representsthe incarnation in which Ag occurs; integer m
represents the sequence of As within that incarnation, and
index Ay indicatesthe user interval correspondingto Ag.
This format supports our index generation func-
tions. Let Ag be a system date interva with index
(k,m, Ay). NEW_SYS_INDEX(As, Brr) returnsan index
(k,m + 1, By). NEW_INCARNATION(As, By) returns
(k',0, Byr), where k' is one greater than the incarnation
count at stable storage. This format also directly supports

the <¢ and <, comparisons. For <s , we just lexico-
graphically compare the first two entries in the indices for
twointervals. For <. , weextract thethethird entry of the
systemindex, and use <y (defined below).

User Indices User state intervals are organized into a
timetree. In order to reflect this structure, we can use an in-
dex representation that indicates the position of auser state
interval within the timetree. With every user interval, we
associate two integers: the depth of the interval within the
timetree, and the system incarnation in which thisinterval
first started. (The incarnation changes only when rollback
occurs.) We represent the index of auser state interval Ay
as atriple (¢,4,5). Integer ¢ isthe depth of Ay, integer
j isitsincarnation, and set .S contains integer pairs indi-
cating the depth and incarnation of all By satisfying two
conditions:

1 By v Avu

2. Either By has an incarnation different from its parent
in thetimetree, or By theroot of the timetree.

By specifying each branch, thisset determinesthe path from
theroot of thetimetreeto Ay .

This index format provides straightforward support for
the <y comparison. Suppose user intervals Ay and By
haveindices(ia, ja, Sa)and(ip, jp, Sp), respectively. To
evaluatewhether Ay <y By, wedeterminefirstifiy <ig,
and thenif S4 C Sg.

This index format also provides a straightforward way
to generate new indices. Suppose system state inter-
va Ag has incarnation and sequence numbers k& and m,
respectively; suppose user state interval By has index
(4,7,5). If k = j, NEW_USR_INDEX(As, By) returns
(i + 1,k,5); if k # j, NEW_USR_INDEX(4s, By) re-
tuns(i+1,k, SU{(i+ 1, k)}).

Reducing the Size of User Indices Thesizeof thesetin
theindex of auser interval Ay isproportional to the number
of rollbacks in the path from the root to Ay. If failures
occur, thiswill not be constant; thus, for these indices, the
sizeof user timestamp vectorswill not belinear. Instead, the
size will be proportional to the number of rollbacksin the
system-past of the intervals recorded in the vector entries.
(However, the number of vector entrieswill till be linear.)

We can reduce the amortized length of user indices by
having processes avoid transmitting redundant data. One
approach isto use a simple compression mechanism to ab-
breviate redundant byte sequences in the representation of
timestamp vectors sent on amessage. Another approach is
to specify user index paths from intermediate nodesinstead
of from theroot. Suppose process p wantsto send theindex
of Ay to process ¢. Instead of sending the path from the

root to Ay, process p can send the path from an intermedi-
ateinterval By to Ay . If process ¢ dready knows the path
fromtheroot to By, then process ¢ quickly reconstructsthe
full path. If not, process ¢ recognizesthat it is missing data
and can request it of process p.

One example of this amortization technique is using a
heuristic similar to Strom and Yemini’s approach. Each
time a process rolls back, it broadcasts the path to that roll-
back nodealongwithitsnew incarnation count. Subseguent
user indices consist solely of the system incarnation count
and the position of the user interval within that incarnation.
(This heuristic introduces blocking into our protocol, but
still maintains the at-most-once lower bound on rollbacks
at a process) However, a wide range of other heuristics
exists for thistechnique. At one extreme, process p trans-
mitsonly theend of the path; at the other extreme, process p
mai ntai nsthe most recent system timestamp vector received
from ¢, and uses the ¢ entry as the intermediate node for a
name sent to ¢. Commitment and garbage collection may
integrate nicely with these amortization techniques, since
processes may maintain alog vector of the maximal known
logged nodes at other processes.

6. Comparison to Related Work

Strom and Yemini [26] initiated the area of optimisticroll-
back recovery. They presented optimistic techniques for
surviving processes to ensure compl ete recoverability, and
arollback protocol® that all ows processes to recover mostly
asynchronously, athough delayed transmission of incarna
tion start information may cause blocking. This protocol
implicitly uses partial order time to track dependency on
failed computation (and, to our knowledge, isthe the earli-
est publication of the timestamp vector mechanism).

However, Strom and Yemini did not consider the flow of
knowledge of rollback. They consequently built an orphan
test that is strictly weaker than ours. Their protocol never
fa sely concludesthat anon-orphan stateisan orphan. How-
ever, their protocol will falsely conclude that some orphan
states are not orphans—even when thetesting process could
potentialy know otherwise. These fal se negatives make it
possiblefor asingle failure at one process to cause another
process to roll back an exponential number of times, since
the unfortunate process never rolls back far enough (until
thelast time).

Johnson and Zwaenepoel [11, 12] developed a genera
model for optimisticrollback recovery. They used state lat-
tices from partial order timeto show that a maximal recov-

3In somesense, Merlinand Randell [18] foreshadowed Strom and Yemini’'s
work by presenting a protocol based on a representation similar to Petri
Nets; this protocol could be transformed and optimized into one similar to
Strom and Yemini's.

10

erable system state exists, and presented synchronized pro-
tocolsto recover this state—even without reliable message
delivery. Sistlaand Welch [23] presented two protocol sfor
optimisticrecovery that avoid the exponential worst case by
using synchronization between processes during recovery;
like Strom and Yemini, Sistla and Welch require reliable
FIFO message channels. Peterson and Kearns[19] recently
presented a recovery protocol using vector clocks that syn-
chronizes during recovery by passing tokens. However, we
improve even on the explicit vector time work of Peter-
son and Kearns by truly using the full power of temporal
abstraction.

Recovery protocols based on checkpointing without
message |ogging restore the system to arecovery line com-
posed of loca checkpoints. Organizing recovery lines
into an increasing sequence (e.g., [4, 6]) may alow asyn-
chronous recovery and may tolerate concurrent failures
(sinceonerecovery linewill clearly beearliest). Morecom-
plex structures of recovery lines require more synchroniza-
tion upon recovery, but may alow some surviving processes
to proceed without rolling back. However, unlessfor every
state Ay, themaximal global state containing Ay isarecov-
ery line, checkpointing-based recovery will force surviving
processes to roll back computation that does not depend on
the computation lost dueto failure

7. Conclusion

Optimistic rollback protocols improve on other recovery
methods by requiring little synchronization during failure-
free operation and by requiring only the theoretical mini-
mum amount of computation to be rolled back (since the
only computation that must be rolled back is the computa-
tion that depends on the computation lost due to failure).
Our protocol improves on previous optimistic rollback pro-
tocolsby providing both completely asynchronous recovery
and aworst-case upper bound of at most onerollback at each
process. The key to asynchronous optimistic rollback re-
covery isthereslization that two levels of partial order time
abstraction are relevant: causal dependency on rolled-back
events and potential knowledge of rollbacks. Our protocol
explicitly tracks these two levels of time.

References

[1] B. Bhargavaand S. Lian. “Independent Checkpointing and
Concurrent Rollback Recovery for Distributed Systems—
An Optimistic Approach.” Seventh Symposium on Reliable
Distributed Systems. 3-12. IEEE, 1988.

[2] A. Borg, J. Baumbach and S. Glazer. “A Message System
Supporting Fault Tolerance” Ninth ACM Symposiumon Op-
erating Systems Principles. 90-99. 1983.

(3]

[4]

(5]

(6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle.
“Fault Tolerance Under UNIX.” ACM Transactionson Com-
puter Systems. 7 (1): 1-24. February 19809.

D. Briatico, A. Ciuffoletti, and L. Simoncini. “A Distributed
Domino Effect Free Recovery Algorithm.” |EEE Symposium
on Reliability in Distributed Softwareand Database Systems.
207-215. October 1984.

K. M. Chandy and L. Lamport. “Distributed Snapshots:
Determining Global States of Distributed Systems” ACM
Transactions on Computer Systems. 3: 63-75. February
1985.

A. Ciuffoelleti. “La Coordinazione Delle Attivita Di
Ripristino Nei Sistemi Distribuiti.” A.I.C.A. Annual Confer-
ence Proceedings. October 19809.

E. N. Elnozahy, D. B. Johnson and W. Zwaenepoel. “ The
Performance of Consistent Checkpointing.” Eleventh IEEE
Symposiumon Reliable Distributed Systems. 39-47. October
1992.

E. N. Elnozahy and W. Zwaenepoel. “Manetho: Transparent
Rollback-Recovery with Low Overhead, Limited Rollback
and Fast Output Commit.” |EEE Transactionson Computers.
41 (5): 526-531. May 1992

C. J. Fidge. “ Timestampsin Message-Passing Systems That
Preserve the Partial Ordering.” Eleventh Australian Com-
puter Science Conference. 56—67. February 1988.

D. B. Johnson and W. Zwaenepoel . “ Sender-Based M essage
Logging.” Seventeenth Annual International Symposiumon
Fault-Tolerant Computing. 14-19. 1987.

D. B. Johnson. Distributed System Fault Tolerance Using
Message Logging and Checkpointing. Ph.D. thesis, Rice Uni-
versity, 1989.

D. B. Johnsonand W. Zwaenepoel. “ Recovery in Distributed
Systems Using Optimistic Message Logging and Check-
pointing.” Journal of Algorithms. 11: 462—491. September
1990.

D. B. Johnson. “Efficient Transparent Optimistic Rollback
Recovery for Distributed Application Programs” Twelfth
IEEE Symposium on Reliable Distributed Systems. 86-95.
October 1993.

R. Koo and S. Toueg. “Checkpointing and Rollback-
Recovery for Distributed Systems.” |EEE Transactions on
Software Engineering. 13 (1): 23-31. January 1987.

P. Leu and B. Bhargava. “ Concurrent Robust Checkpointing
and Recovery in Distributed Systems.” Fourth International
Conferenceon Data Engineering. 154—163. 1988.

K. Li, J. F. Naughton and J. S. Plank. “Real-Time, Con-
current Checkpointing for Parallel Programs.” Second ACM
SIGPLAN Symposiumon Principles and Practices of Paral-
lel Programming. 79-88. 1990.

F. Mattern. “Virtual Time and Global States of Distributed
Systems.” In Cosnard, et a, ed., Parallel and Distributed
Algorithms. Amsterdam: North-Holland, 1989. 215-226.
P.M.Merlinand B. Randell. “ State Restoration in Distributed

Systems.” International Symposiumon Fault-Tolerant Com-
puting. June 1978.

11

[19]

[20]

[21]

[22]

[23]

[24]

[29]

[26]

[27]

S. L. Peterson and P. Kearns. “Rollback Based on Vector
Time.” Twelfth IEEE Symposiumon Rdliable Distributed Sys-
tems. 68—77. October 1993.

M. L. Powell and D. L. Presotto. “Publishing: A Reliable
Broadcast Communication Mechanism.” Ninth ACM Sym-
posiumon Operating Systems Principles. 100-109. 1983.

B. Randell. “System Structure for Fault Tolerance” |IEEE
Transactions on Software Engineering. SE-1: 220-232,
1975.

D. L. Russell.“ State Restoration in Systemsof Communicat-
ing Processes.” |EEE Transactionson Software Engineering.
6 (2): 183-194. March 1980.

A. P Sistlaand J. L. Welch. “Efficient Distributed Recovery
Using MessageL ogging.” Eighth ACM Symposiumon Prin-
ciples of Distributed Computing, 223-238. August 1989.

S. W. Smith. A Theory of Distributed Time. Computer Sci-
ence Technical Report CMU-CS-93-231, Carnegie Mellon
University. December 1993.

S. W. Smith. SecureDistributed Time for SecureDistributed
Protocols. Ph.D. thesis. Computer Science Technical Report
CMU-CS-94-177, Carnegie Mellon University. September
1994.

R. Stromand S. Yemini. “ Optimistic Recovery in Distributed
Systems.” ACM Transactionson Computer Systems. 3: 204—
226. August 1985.

Y.-M. Wang and W. K. Fuchs. “Lazy Checkpoint Coordi-
nation for Bounding Rollback Propagation.” Twelfth IEEE
Symposium on Reliable Distributed Systems. 78-85. Octo-
ber 1993.

