
Organizing Electronic Services into Security Taxonomies

Sean W. Smith Paul S. Pedersen

IBM T.J. Watson Research Center Los Alamos National Laboratory
P.O. Box 704 Mail Stop B265

Yorktown Heights, NY 10598 Los Alamos, NM 87545
sean@watson.ibm.com pedersen@lanl.gov

Abstract

With increasing numbers of commercial and government
services being considered for electronic delivery, effec-
tive vulnerability analysis will become increasingly crit-
ical. Organizing sets of proposed electronic services
into security taxonomies will be a key part of this work.
However, brute force enumeration of services and risks
is inefficient, and ad hoc methods require re-invention
with each new set of services. Furthermore, both such
approaches fail to communicate effectively the tradeoffs
between vulnerabilities and features in a set of electronic
services, and fail to scale to large sets of services. From
our experience advising players considering electronic
delivery, we have developed a general, systematic, and
scalable methodology that addresses these concerns. In
this paper, we present this methodology, and apply it
to the example of electronic services offered via kiosks
(since kiosk systems are representative of a wide range
of security issues in electronic commerce).

1. The Problem

As business—commercial services provided to customers
as well as government services provided to citizens—
migrates to electronic settings, the contributions of se-
curity research are many: from developing underlying
technology, to applying this technology to construct par-
ticular methods for secure service delivery, to verifying
(both formally and experimentally) the security of these
methods.

However, between the decision to enter the electronic
marketplace and the decision to deploy a specific service
via a specific delivery method lies a period of exploration.

This research was performed while the first authorwas with Los Alamos
National Laboratory, and this paper is registered as a Los Alamos
Unclassified Release. This research was sponsored in part by the
Department of Energy, under contract number W-7405-ENG-36. The
views and conclusions contained in this document are those of the
authors alone.

We believe research needs to address this gap: how to
illuminate the issues and tradeoffs between variations of
services and delivery technologies. We offer this paper as
an initial contribution: an attempt to extract a systematic
methodology from our work in this area.

In general, vulnerability analysis consists of speci-
fying the vulnerabilities and points of attack to which
a given service is susceptible. However, in practice, we
have found that managers considering electronic delivery
usually provide a large set of related services, and im-
plicitly expect the analysis to communicate the tradeoffs
between vulnerabilities and features. Consequently, the
ability to organize a set of services into a structure that
clearly and concisely expresses their relations and their
security risks is crucial for such an analysis to be effec-
tive. The understanding that an effective vulnerability
analysis provides is, in turn, crucial for the decision on
deploying electronic services to be sound.

The question, then, is how to construct and express
this structure. Brute force enumeration of services and
risks is inefficient and fails to meet the customer’s im-
plicit goals. Ad hoc methods require re-invention with
each new set of services, and can fail to communicate
the tradeoffs effectively. Furthermore, these methods do
not scale to large sets of services—and communicating
anything effectively for a large set requires understanding
and exploiting organization inherent in that set.

On the other hand, a systematic methodology pro-
vides both efficiency for the analyst as well as effective
communication for the customer. Furthermore, a suffi-
ciently general methodology can also apply directly to
organizing points of attack (since these are essentially
just potential services unintentionally offered to the ad-
versary). Additionally, a sufficiently expressive method-
ology can provide an understanding of the structure un-
derlying a given set of services, which in turn can reveal
when that set is incomplete.

From our experience in organizing electronic services
into security taxonomies as part of vulnerability analy-
ses, we have developed a general, systematic methodol-

ogy that uses the structure of a service set to organize
and enumerate the corresponding vulnerability set. This
methodology offers many advantages over ad hoc ap-
proaches, including making it easier to propagate changes
in services to changes in vulnerabilities, to construct a
complete list of vulnerabilities, to construct structured
countermeasures, and to bring conciseness to service and
vulnerability specifications (in some cases, reducing the
length from exponential to polynomial).

Section 2 gives a theoretical presentation of the
methodology. Section 3 applies the methodology to
real-world examples from the domain of kiosk systems.
We chose kiosk systems, since they are representative
of a wide range of security issues in electronic com-
merce, from point-of-sale devices to networks to remote
servers, from tamper-hardened public machines running
dedicated browsers accessing a set of pages residing en-
tirely on local CD-ROM to off-the-shelf private machines
running Web browsers accessing the entire Web.

2. The Methodology

Section 2.1 establishes definitions for the terms we use
in the paper. Section 2.2 considers the challenges of
effectively enumerating sets of implementations and vul-
nerabilities. Section 2.3 presents mathematical struc-
ture organizing services into a partial order, and con-
siders the implications of this order for vulnerability
sets. Section 2.4 uses this structure as a foundation for
a systematic methodology for constructing security tax-
onomies.

2.1. Definitions

In this paper, we build a mathematical structure that mod-
els real-world concepts. Since many such structures are
possible, and since real-world terminology tends to be
inexact anyway, we begin by defining real-world terms
in the context of our model.

Definition 1 An electronic service is an of-
fered action characterized by some specific
goal (which is usually defined loosely and
imprecisely) and carried out via some com-
putational device.

Examples of electronic services include transfer-
ring funds between savings and checking accounts via
Automatic Teller Machines, and filing a 1040 tax form
via the World Wide Web.

Typically, designers characterize a service by explic-
itly listing some correctness properties, but leaving many
others unstated. Usually these properties divide into a

small primary class (characterizing the basic functional-
ity of the service) and a larger secondary class (charac-
terizing all the extra conditions necessary for the service
to be correct, fault-tolerant, secure, etc.). Fully enumer-
ating the correctness properties that a service is implic-
itly expected to satisfy is often a substantial challenge
in security analysis. For example, designers of a cer-
tain Automatic Teller Machine system failed to make
explicit the assumption that no customer would ever ini-
tiate a “withdraw cash” transaction but leave the cash in
the machine [4]. As a consequence, clients engaging in
this unanticipated behavior forced machines into bizarre
failure modes.

Definition 2 An implementation is a col-
lection of hardware and software that real-
izes a particular service. In particular, an
implementation must satisfy the primary cor-
rectness properties of a service. (However,
in order to be fully correct, secure, and
fault-tolerant, an implementation must sat-
isfy all the properties.) For a service s, de-
fine IMP(s) to be the set of implementations
of service s.

We assume that “implementations” are specified with
granularity sufficiently coarse that two services can share
an implementation. For example, if services s1 and s2
truly differ, than their implementations must differ at
some close level of inspection—perhaps the code is not
identical. However, such close scrutiny would prevent
discussion of facts such as “a kiosk with sufficient data-
base access to implement change-of-address can also im-
plement a guide to local stores”—hence our assumption.

Definition 3 Let s be a service. For an
implementation I of this service, a vulner-
ability of I is a potential action that causes
some of the correctness properties of the ser-
vice to fail to hold. A vulnerability of s is the
set of vulnerabilities common to all imple-
mentations of s. Define VULN(I) to be set
of vulnerabilities of implementation I, and
VULN(s) to be the set of vulnerabilities of
service s.

2.2. Concisely Specifying Sets

One of the motivations for building taxonomies is to
increase the effectiveness of communication to the cus-
tomer. However, a simple enumeration of the elements
of a set (especially a large set) is not a good example of
effective communication. Consequently, we need ways
to concisely describe sets such as IMP(s) and VULN(s)
for a specific service s.

Implementations The set of implementations that re-
alize a service is open-ended: if I realizes service s, then
I along with an implementation of a completely unre-
lated service also realizes s. For most services that we
consider, however, the implementations can be character-
ized as all those hardware/software combinations meeting
some minimal set of requirements. Usually these require-
ments are implied by the customer’s specification of the
service: e.g., our customer does not just want to provide
change-of-address, but change-of-address via kiosks. In
these situations, we can describe IMP(s) simply by list-
ing the minimal hardware and software requirements; the
fact that a kiosk with appropriate database privileges and
the ability to play digitized excerpts from the works of
Beethoven comprises an implementation of a change-of-
address service is not only irrelevant, but also directly
implied by saying that a kiosk with appropriate database
privileges comprises an implementation.

Vulnerabilities The structure of the set of vulnerabil-
ities is potentially much more complex. For example,
suppose A and B are both members of some VULN(s)
or some VULN(I).

� Should “A followed by B” also be a member?
What if A is “blow up the kiosk?”

� Should “A and B concurrently” be a member?

� If A0 is not a member, should “A0 followed by B”
be a member? What if A0 enables B?

We provide one sample solution to this problem.
First, we define compound actions.

Definition 4 For actions A and B, define
[A;B] to be the compound action consisting
of doing A first, then doing B.

We now examine when such compound actions can
be vulnerabilities. We consider the system consisting of
implementation plus attacker to be in a particular state.
With each action A we can associate two items:

� A set PREA consisting of all possible states of
the system in which A can be applied. (As with
implementation sets, this set might be expressed
succinctly as a list of conditions which a state must
satisfy.)

� A function FUNA that indicates howA transforms
systems states.

For actions A and B, the compound action [A;B] would
be possible ifB is enabled after performingA, and would
have the result of doing A, then doing B. This allows
us to specify the precondition set and transformation rule
for [A;B]:

� PRE[A;B] � FUN�1
A (PREB)

� FUN[A;B] � FUNB � FUNA

This calculus lets us build a closure rule, specifying
when compound actions can be vulnerabilities:

� Suppose for B 2 VULN(s), action A satisfies
FUN�1

A (PREB) 6= 6
. Then [A;B] 2 VULN(s).

Enumerating some VULN(s) or VULN(I) reduces
to enumerating some small set of atomic attacks, and
then specifying the closure rule or rules which expand
the atomic set into the full set.

This sample solution ignores the challenge of attacks
composed of concurrent actions. Indeed, the problem of
specifying all possible action combinations that comprise
attacks is essentially the same as specifying all possible
behaviors of computational devices (potentially with par-
allelism and randomization) – which is a problem that has
received much attention in its own right (e.g., [8]). This
solution also ignores the challenges raised by complex
correctness properties – e.g., if a service must satisfy “X
or Y ,” then an allowable sequence of two actions that
subvert X and Y respectively may be a vulnerability
(unless the second action re-enables X). Fully exploring
these problems lies beyond the scope of this paper; we
will use our simple solution, but note that a suite of more
advanced solutions may apply.

2.3. Vulnerabilities and the Service Order

2.3.1. The Service Order

We can use the implementation sets to order the services
according to relative power. That is, one service pre-
cedes another when any implementation of the latter also
supports the former; the latter is strictly more powerful.

Definition 5 For services s1 and s2, define
s1 � s2 when IMP(s2) � IMP(s1). Define
s1 < s2 when this containment is proper.

This relation is a partial order: It is irreflexive: for
no service s1 can it be the case that s1 < s1. It is transi-
tive: for services s1; s2; s3, if s1 < s2 and s2 < s3 then
s1 < s3. (Partial orders and lattices show up in previous
security work—e.g., [2, 3, 7]—but in different contexts
from here.)

We can represent this structure by a directed acyclic
graph:

Definition 6 For a finite set S and partial
order <, define G(S;<) to be the directed
graph consisting of:

� for each s 2 S, a nodeNs;

� for all s1; s2 2 S, an edgeNs1�!Ns2

exactly when s1 < s2.

The graph G(S;<) is transitively closed, since the or-
der < is transitive. However, this graph is highly redun-
dant: if edges exist fromNs1 toNs2 and fromNs2 toNs3,
then an edge also exists from Ns1 to Ns3 , even though
the first two edges comprise a path from Ns1 to Ns3 . It
is easily shown that such a graph has a unique transitive
reduction, where all redundant edges – such as the one
in this example from Ns1 to Ns3 – are removed. This
reduced graph still reflects the original order: s1 < s2
exactly when a path exists from Ns1 to Ns2 .

Definition 7 For a finite set S and partial
order <, define bG(S;<) to be the directed
graph consisting of:

� for each s 2 S, a nodeNs;

� for all s1; s2 2 S, an edgeNs1�!Ns2

exactly when

– s1 < s2

– for no s3 2 S does s1 < s3 < s2

The edges that remain in bG(S;<) represent the quan-
tum steps in the service set. We introduce notation for
these steps, and for the differences that separate a weaker
service from a stronger one.

Definition 8 For s1; s2 2 S, define
s1�!s2 when Ns1�!Ns2 in bG(S;<).

Definition 9 For any s1 < s2, define
DIFF(s1; s2) to be the differences between
s2 and s1. If the implementation sets
are specified via a requirement list, then
DIFF(s1; s2) would just be the set differ-
ence between the requirements for IMP(s2)
and those for IMP(s1).

Definition 10 We write s1
�
�! s2 when

s1�!s2 and � = DIFF(s1; s2).

2.3.2. The Structure of the Service Order

Specifying and manipulating the quantum steps that sepa-
rate services depends highly on the context of the particu-
lar service set. However, in each particular context, con-
sidering the differences that characterize quantum steps
raises two questions:

� Are the individual quantum steps indeed quantum?

– Can there exist sub-quanta? If s1
�
�! s2, can

we split � into �1 and �2, and then introduce

a new service s0 with s1
�1�! s0

�2�! s2?

– Is the “quantum” step in fact a continuum? Is
the continuum even a total order?

� Are the quantum steps independent? Suppose:

s1
�1�! s2

�2�! s3

Can there exist services that accumulate these steps
in a different order? For example, consider the
possibility of an s0 such that:

s1
�2�! s0

�1�! s3

In general, should straight lines be lattices? That
is, suppose bG(S;<) has a straight-line structure:

s1
�1�! s2

�2�! :::
�k�! sk+1

Often the rest of the lattice has been overlooked:
the graph should really consist of all sP such that:

– P � f1; :::; kg (with s 6
 = s1 and
sf1;:::;kg = sk+1)

– sP
�i�! sP 0 (when i 62 P and P 0 = P [fig)

2.3.3. Vulnerabilities and Ordering

The ordering on services leads to two rules on vulnera-
bilities. First, vulnerabilities move up in the order:

Theorem 1 Let s1 and s2 be services. If
s1 < s2, then VULN(s1) � VULN(s2).

Second, vulnerabilities—coupled with an attack that
removes the difference between services—move down in
the order:

Theorem 2 Let s1 and s2 be services,
with s1 < s2. If B 2 VULN(s2)
and action A subverts DIFF(s1; s2), then
[A;B] 2 V ULN (S1).

We also note the closure rule from Section 2.2 char-
acterizing an implicit closure property for vulnerability
sets:

Closure Rule If B 2 VULN(s) and
actionA satisfies FUN�1

A (PREB) 6= 6
, then
[A;B] 2 VULN(s).

2.4. A Systematic Methodology

The theoretical structure from Section 2.3.1 provides the
foundation for a systematic approach to organizing ser-
vices into security taxonomies.

We begin with a set S of proposed services. We first
consider construction of the service hierarchy:

� First, specify, for each s 2 S, the hardware and
software configurations characterizing the imple-
mentations IMP(s).

� Use these implementation sets IMP(s) to order the
services (e.g., to construct the transitively closed
directed acyclic graph G(S;<)).

� Reduce G(S;<) to its transitive reduction bG(S;<),
specifying the quantum steps in the service order.

� For each quantum step s1�!s2 in this service or-
der, determine the � that separates s1 from s2.

� Examine these quantum steps for completeness:

– Is the step really quantum? If it can be further
subdivided, then do so. If it is a continuum,
then decide on a discrete approximation – and
explicitly indicate that this is only an approx-
imation.

– Are there sets of independent steps? If so,
complete the lattice by adding any necessary
new services.

Having constructed the service hierarchy, we next
consider the vulnerabilities. We note that bG(S;<) has
minimal services (that is, a service s2 such that no s1
exists with s1 < s2)—these are just the sources of the
directed graph.

� For each minimal service s in bG(S;<), enumerate
the basic vulnerabilities of s.

� Suppose s1
�
�! s2 and we have enumerated the

basic vulnerabilities of s1. We then enumerate the
additional vulnerabilities of s2. (Depending on S
and �, these may be simply be the additional risks
associated with the capabilities enabled by �).

� We then note that the complete set of vulnerabili-
ties VULN(s) consists of the basic vulnerabilities,
along with:

– VULN(s1), for all s1 < s (from Theorem 1)

– [A;B], for all B 2 VULN(s2), s � s2, and
suitable A (from Theorem 2 and the Closure
Rule).

3. Examples

In this section, we apply our methodology to electronic
services provided via kiosks, since kiosk systems are rep-
resentative of a wide range of security issues, from point-
of-sale devices to networks to remote servers. Section 3.1

organizes the space of services and Section 3.2 enumer-
ates the vulnerabilities. Section 3.3 then applies this
methodology to potential points of attack.

We note that, although modified for this presentation,
these examples are not artificial; they not only origi-
nated from customer-directed research (e.g., [1, 5, 6]),
but also demonstrated by their initially unorganized for-
mat the need for a systematic methodology for security
taxonomies.

3.1. Kiosk Services

To quote our earlier work [5], a kiosk is “a computer
unit (usually publicly accessible) that provides informa-
tion and services to authorized clients (usually not expe-
rienced with computers).” For customers interested in
deploying services via kiosks, we undertook to enumer-
ate the potential vulnerabilities of these services, and the
correlation of these vulnerabilities with the power of the
kiosk system configuration.

3.1.1. The Initial Hierarchy

The first step in our work was examining the range of
kiosk systems. We initially saw a progressive hierarchy
of systems and services:

� K0 (standalone): providing public, seldom-
altered information via a standalone kiosk (e.g.,
a kiosk in a public square that shows the location
of stores downtown).

� K1 (networked): providing public, rapidly-
changing information via a networked kiosk sys-
tem (e.g., the above kiosk, modified to also show
the latest specials at the stores).

� K2 (private information): providing private, re-
mote information via a networked kiosk system
(e.g., the above kiosk, modified to allow customers
to make queries about current credit limits and the
status of special orders).

� K3 (transactional): allowing clients to change pri-
vate, remote information via a networked kiosk
system (e.g., the above kiosk, modified to allow
customers to pay bills electronically by transfer-
ring funds from bank accounts to store accounts).

This hierarchy expresses a range of services our cus-
tomers were considering, and demonstrates several prin-
ciples:

� that increasing the power of services requires in-
creasing the power of the supporting kiosk system;

� that increasing power increases the potential vul-
nerabilities and the concomitant security mea-
sures (e.g., K1 requires protecting networks; K2
also requires authenticating clients)—the roots of
Theorem 1;

� that attacks which increase the power of systems
enable attacks that apply to these more powerful
systems (e.g., penetrating user interface barriers
in K2 enables data modification attacks natural to
K3)—the roots of Theorem 2; and

� that an ordering even exists on “power”—the roots
of the service ordering.

3.1.2. Applying the Methodology

Inadequacies of the Initial Hierarchy The structure
from Section 2.3.1 easily applies to this hierarchy to pro-
duce a simple straight-line graph:

K0�!K1�!K2�!K3

Going from K0 to K1 adds a network; from K1 to K2
adds private information and the need for authentica-
tion; from K2 to K3 adds the ability to make permanent
changes.

However, when we follow the methodology from
Section 2.4, we see that this structure is incomplete: the
� that characterize the above steps are not quantum, but
are independent.

� Whether a kiosk is networked is independent
of other service characteristics. Networks add
the ability to interact with remote systems and
databases—to extend in space the reach of the
kiosk. Furthermore, the degree of this extension is
not binary, and indeed not even totally ordered.

� Whether a service involves private information
is independent of other service characteristics.
Furthermore, privacy concerns can be refined to
apply to data provided by the client, data returned
to the client, or both.

� Whether a service involves permanent changes is
independent of other characteristics. Furthermore,
defining what constitutes a “permanent change” is
tricky. In some sense, all services involve perma-
nent changes, since we cannot roll back the user’s
experience. However, if we limit “change” to data-
bases, we may still include simple informational
services that are logged, and we may exclude ser-
vices (such as generating a ticket) that change states
in ways not easily described in terms of database
writes. (We have not even mentioned the ambigu-
ity introduced by re-using the distributed systems
term “transaction.”)

Furthermore, the hierarchy fails entirely to describe pro-
posed services that involve a kiosk session initiating an
action whose duration exceeds that of the session.

Addressing the Inadequacies Following the method-
ology, we address these shortfalls by decomposing the
differences in the hierarchy into six steps that are inde-
pendent, and are closer to being quanta. To simplify the
presentation, we consider these properties to be binary.

This decomposition yields a set of axes that describe
the space of electronic services we had been considering.
(However, this description is not unique, since spaces
can be described by multiple sets of axes.) To keep our
presentation tractable, we use high-level, somewhat sub-
jective criteria.

Three of the six steps characterize the type of activity
in the service:

� Spatial Extension. Does the service’s reach ex-
tend to machines other than the immediate kiosk?

� Temporal Extension. Does the duration of the
electronic actions initiated by a service session ex-
tend beyond the duration of the service session?

� Permanence. Upon successful completion, does
the service make permanent (and significant)
changes to the system?

The other three steps characterize the type of data in
the service:

� Sensitivity. Is it critical that the system provide
correct service?

� Input Privacy. Does the user provide private in-
formation as part of the service session?

� Output Privacy. Does the system provide private
information to the user as part of a service session?

This set induces 26 different service types: a type
KP for each subset P of the six properties. Following
Section 2.3.1, we order these types using a lattice, putting
KP < KP 0 when P � P 0.

We offer examples for a few service types:

� Service Type: 6

Example: K0, a standalone kiosk which a user
queries for inconsequential public data which is
returned immediately.

� Service Type: fsensitivityg

Example: a kiosk like the one above, that instead
provides emergency exit locations.

� Service Type: fspacial extensiong

Example: K1, discussed above.

� Service Type: fspacial extension, input privacyg

Example: K2 above, for special order status,
where users authenticate themselves with pass-
words.

� Service Type: fspacial extension, input privacy,
output privacyg

Example: K2 above, for credit limit information.

� Service Type: fspacial extension, permanence,
input privacy, output privacy, sensitivityg

Example: K4 above.

� Service Type: fsensitivity, input privacyg

Example: a standalone kiosk through which a
user accesses government services by entering pri-
vate information, which the kiosk uses to fill out
and print an application form (which the user then
mails).

� Service Type: fspacial extension, temporal exten-
sion, sensitivity, input privacy, output privacyg

Example: a networked kiosk through which a user
accesses government service by entering private in-
formation, which the kiosk submits electronically.
The response is returned via physical mail later.

We provide a more a thorough enumeration of exam-
ples in Chapter 1 in [5].

3.2. Kiosk Vulnerabilities

In Section 3.1.2 above, we presented 26 different classes
of kiosk service. Enumerating the vulnerabilities associ-
ated with these types of services in a brute force or ad hoc
way would be exhausting, and would also fail to commu-
nicate the tradeoffs between service features and service
risks.

However, Section 3.1.2 presented these 26 classes
by organizing them into a partial order (which in this
case consists of a simple lattice). We can then follow
our methodology by using this structure to clearly and
concisely enumerate the vulnerabilities. In this section,
we illustrate this by a set of quick examples.

Basic Vulnerabilities of the Minimal Service The
minimal kiosk service is subject to physical and elec-
tronic attacks on the machine itself, in order to deny
service or to change the information displayed.

Basic Vulnerabilities of Intermediate Services We
then enumerate the additional vulnerabilities brought on
by moving upward in the lattice. We cite an incomplete
list of examples:

� Spatial Extension. Networked systems are sub-
ject to the vulnerabilities of disruptions, alteration,
or eavesdropping of communications.

� Temporal Extension. Systems that permit users
to initiate services that persist longer than the kiosk
session introduce vulnerabilities associated with
authentication, rights, and ease of launching these
spawned processes. For example, temporal exten-
sion may permit using a brief session to launch at-
tacks consisting of computationally-intensive and
lengthy processes—attacks which temporal con-
tainment would render infeasible by forcing the
perpetrator to remain exposed at the kiosk.

� Permanent Changes. Systems which permit users
to make substantial, permanent changes to system
state are directly subject to violation of integrity
errors.

� Input Privacy Systems that require users to enter
private information are subject to the vulnerability
of exposure or alteration of that information.

� Output Privacy. Similarly, systems that return
private information to the user are also subject to
the vulnerability of exposure or alteration of that
information.

� Spatial Extension and Privacy. A networked
kiosk system which involves private information
risks exposing this information via the network.

� Temporal Extension and Output Privacy. A sys-
tem in which users launch services that later return
private information risks exposing this informa-
tion to unauthorized persons, because user authen-
tication performed for the service session may no
longer apply.

Upward Inheritance Following Theorem 1, a kiosk
system with some set P of the properties from
Section 3.1.2 will be subject to the vulnerabilities from
any P 0 � P in the enumeration of basic vulnerabilities..

Downward Inheritance Following Theorem 2, a
kiosk system with some set P of the properties from
Section 3.1.2 will also be subject to the vulnerabilities
from any P 0 � P , providing an enabling attack exists
that adds the properties DIFF(P 0; P). For example, a
kiosk system consisting of a customized Web browser

may enforce temporal containment through a line of code
that terminates all applets when the user completes his or
her session. An attacker who has access to the internals
of the software might add temporal extension—and thus
enable new forms of attack—by disabling this constraint.

3.3. Kiosk Points of Attack

Another aspect of vulnerability analysis consists of enu-
merating the points of attack in a system (and then con-
sidering how the vulnerabilities of this system can be
realized via threats carried out at these points of attack).

The Points of Attack For example, a networked kiosk
system might consist of the following components:

� a set of kiosks, each of which consists of a physical
shell housing the internal kiosk operating system
and software, accessed via the user interface;

� a network connecting the kiosks to each other and
to the central host; and

� various remote sites, connected to the central host
via remote lines.

Each of these components suggests a point of attack:

� the kiosk user interface;

� the physical environment of the kiosk;

� a fake kiosk;

� the internal kiosk software;

� the network;

� the insider who writes and controls the software at
the kiosks and the central site;

� the remote lines.

An Initial Attempt to Enumerate Threats The next
step is to enumerate the threats possible at each point of
attack. However, we found in our practical work that
using the above set alone leads to a disorganized, awk-
wardly referential presentation. For example, exhaus-
tively enumerating the threats that can be carried out at
the kiosk user interface includes listing threats such as
the following:

� Using a bug or trapdoor to gain access to the oper-
ating system, then adding a Trojan Horse to tamper
with how user data is processed.

� Using a bug or trapdoor to gain access to the op-
erating system, then using this control to penetrate
the software front-end at the main host, and then
plant Trojan Horses there.

Enumerating the threats applicable at the kiosk soft-
ware point of attack, the network point of attack, and
the insider point of attack requires referring back to this
subset of the user interface threats, with implied modifi-
cations.

Exhaustive enumeration leads to an extreme lack of
clarity. Certain points of attack have natural threats. Not
recognizing the inherent structure in the vulnerability set
can result in burying these natural threats in the lists
compound attacks at other points of attack. In the above
example, the natural threats possible at the kiosk operat-
ing system level are never explicitly listed. The reader
would go to the OS row, only to find a pointer back to the
user interface row, where sufficiently close inspection re-
veals the natural OS attacks buried in compound attacks
of the above form.

Not recognizing the inherent structure in the vulner-
ability sets also leads to a lack of flexibility. Suppose
one discovers another attack possible for an adversary
with operating system access. This attack makes new
compound attacks possible. Since no central list exists
of natural OS attacks, one must manually generate and
insert all the new compound attacks throughout the list.
This disorganization introduces many opportunities for
error.

Similarly, suppose one wishes to use the enumeration
of vulnerabilities to consider countermeasure. One can
defend against a compound attack of the above forms by
defending against the natural attack at the OS level, and
also by defending against the enabling attack that granted
access to the OS. Exhaustive enumeration will not make
this defense structure clear—the defenses against the nat-
ural OS attacks will be buried in defenses against com-
pound attacks, scattered throughout the table.

Applying the Methodology Our approach to con-
structing taxonomies of services and vulnerabilities pro-
vides a way to cleanly and concisely enumerate these
threats. This applicability is suggested by the very struc-
ture of the above-quoted threats: “subvert the difference
between the user interface and the kiosk software, then
carry out a kiosk software attack.”

To follow our methodology, we construct the service
order by enumerating the quantum steps:

� The user interface precedes the kiosk software,
since any attack possible via the user interface is
possible by accessing the internal software. A bug
or trapdoor in the user interface is an attack that
subverts the difference.

� The physical kiosk similarly precedes the kiosk
software. Physical penetration is an attack that
subverts the difference.

� A fake kiosk similarly precedes the kiosk software.
Copying software and connecting to a real kiosk (or
its network) are attacks that subvert the difference.

� The kiosk software precedes the insider, since any-
thing that can be done via tampered software can
be done by an insider. Penetration of the software
front-end to provide full system access is a poten-
tial attack subverting the difference.

� The network similarly precedes the insider.
Penetration of the network front end to provide
full system access is a potential attack subverting
the difference.

� The remote line similarly precedes the insider.
Penetration of the front end on this connection is a
potential attack subverting the difference.

We can enumerate the threats possible at these points
of attack simply by:

� moving up the order and enumerating the basic
attacks possible at each point;

� noting that Theorem 1 means that any attack pos-
sible at lower point is possible at a higher point;
and

� noting that Theorem 2 means that attacks at higher
points (e.g., using software access to plant Trojan
Horses) can be carried out at lower points (e.g., the
user interface) by first carrying out an attack sub-
verting the difference (e.g., using a bug or trapdoor
in the user interface).

In Chapter 2 in [5], we use this new approach to provide
a more complete enumeration.

4. Conclusions

Using the inherent organization of a service set to enumer-
ate vulnerabilities removes redundancy and awkwardness
from an ad hoc or brute force approach.

� Collecting in one spot the natural threats for a point
of attack makes it easier to communicate them, and
to add and delete threats.

� Using the structure of a system to bring out the
compound and inherited structure of many threats
makes it easier to produce a complete list, and to
construct structured countermeasures.

� Using the inherent structure of threats to orga-
nize a listing leads to a more concise presentation.
Suppose we have a linear order of n points of at-
tack, each with k natural threats and r subverting

attacks that transform the point of attack to the
next level. A brute force enumeration requires list-
ing
(kn2 + krn) threats.1 Our methodology lets
us specify this complete set with by listing only
O(nk + nr) threats.

As we discussed in Section 1, we offer this work as an
attempt to fill a perceived gap. One area of future work
will lie in refining and validating our proposed method-
ology: not against specific services but against classes of
services. How well does our session security taxonomy
express risks in various approaches to payment over the
Internet, or to the latest Web-based front-ends to existing
information and data services? Other promising areas
may lie in identifying and addressing other gaps.

Acknowledgments

We are grateful to our colleagues Gary Christoph,
Howard Gobioff, Judy Hochberg, Marianna Kantor, Mike
Murphy, Tony Warnock, and Bonnie Yantis for their help-
ful comments and advice.

References

[1] S. Adelson, R. Rivenburgh and S.W. Smith. Enforcing
Closure of Subwebsand ExpansiveWeb Sites. Los Alamos
Unclassified Release LA-UR-95-4410, Los Alamos
National Laboratory. December 1995.

[2] D. Bell and L. LaPadula. Secure Computer Systems:
Mathematical Foundations and Model. Technical Report
M74-244, MITRE Corporation. May 1973.

[3] D.E. Denning. “A Lattice Model of Secure Information
Flow.” Communications of the ACM. 19: 236-243. May
1976.

[4] D. Fiske. “Another ATM Story.” The Risks Digest. Volume
6, Issue 66. 21 April 1988.

[5] J. Hochberg, S.W. Smith, M. Murphy, P. Pedersen,
and B. Yantis. Kiosk Security Handbook. Los Alamos
Unclassified Release LA-UR-95-1657, Los Alamos
National Laboratory. May 1995.

[6] G. Morris, T. Sanders, A. Gilman, S. Adelson, and S.W.
Smith. Kiosks: A Technological Overview. Los Alamos
Unclassified Release LA-UR-95-1672, Los Alamos
National Laboratory. May 1995.

[7] S. W. Smith. Secure Distributed Time for Secure
Distributed Protocols. Ph.D. thesis. Computer Science
Technical Report CMU-CS-94-177, Carnegie Mellon
University. September 1994.

[8] G. Winskel. The Formal Semantics of Programming
Languages: An Introduction. MIT Press, 1993.

1The ith level has k natural threats, k(i � 1) inherited threats, and

k

Pn�i

1
r
j subversion threats. The

P
i
k(i� 1) gives the kn

2 , and

the
P

i

P
j
r
j reduces to

Pn

l=1
lr

n�l which we can bound below

by r
n.

