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Abstract

Two extensions of the Linial, Mansour, Nisan
AC0 learning algorithm are presented. The LMN
method works when input examples are drawn
uniformly. The new algorithms improve on theirs
by performing well when given inputs drawn
from unknown, mutually independent distribu-
tions. A variant of the one of the algorithms is
conjectured to work in an even broader setting.

1 INTRODUCTION

Linial, Mansour, and Nisan [LMN89] introduced the use
of the Fourier transform to accomplish Boolean function
learning. They showed that AC0 functions are well-
characterized by their low frequency Fourier spectra and
gave an algorithm which approximates such functions rea-
sonably well from uniformly chosen examples. While the
classAC0 is provably weak in that it does not contain modu-
lar counting functions, from a learning theory point of view
it is fairly rich. For example,AC0 contains polynomial-size
DNF and addition. Thus the LMN learning procedure is po-
tentially powerful, but the restriction that their algorithm be
given examples drawn according to a uniform distribution
is particularly limiting.

A further limitation of the LMN algorithm is its running
time. Valiant’s [Val84] learning requirements are widely
accepted as a baseline characterization of feasible learning.
They include that a learning algorithm should be distribu-
tion independent and run in polynomial time. The LMN
algorithm runs in quasi-polynomial (O(2poly log n)) time.

In this paper we develop two extensions of the LMN learn-
ing algorithm which produce good approximating functions
when samples are drawn according to unknown distribu-
tions which assign values to the input variables indepen-
dently. Call such a distribution mutually independent since
it is the joint probability distribution corresponding to a set
of mutually independent random variables [Fel57]. The
running times of the new algorithms are dependent on the
distribution—the farther the distribution is from uniform
the higher the bound—and, as is the case for the LMN
algorithm, the time bounds are quasi-polynomial in n.

A variant of one of our algorithms gives a more general
learning method which we conjecture produces reasonable
approximations ofAC0 functions for a broader class of in-
put distributions. A brief outline of the general algorithm
is presented along with a conjecture about a class of distri-
butions for which it might perform well.

Our two learning methods differ in several ways. The
direct algorithm is very similar to the LMN algorithm and
depends on a substantial generalization of their theory. This
algorithm is straightforward, but our bound on its running
time is very sensitive to the probability distribution on the
inputs. The indirect algorithm, discovered independently
by Umesh Vazirani [Vaz], is more complicated but also
relatively simple to analyze. Its time bound is only mildly
affected by changes in distribution, but for distributions
not too far from uniform it is likely greater than the direct
bound. We suggest a possible hybrid of the two methods
which may have a better running time than either method
alone for certain distributions.

The outline of the paper is as follows. We begin with
definitions and proceed to discuss the key idea behind our
direct extension: we use an appropriate change of basis for
the space of n-bit functions. Next, we prove that under
this change AC0 functions continue to exhibit the low-
order spectral property which the LMN result capitalizes
on. After giving an overview of the direct algorithm and
analyzing its running time, we discuss the indirect approach
and compare it with the first. Finally, we indicate some
directions for further research.

2 DEFINITIONS AND NOTATION

All sets are subsets of f1; . . . ; ng, where as usual n repre-
sents the number of variables in the function to be learned.
Capital letters denote set variables unless otherwise noted.
The complement of a set X is indicated by �X , although we
abuse the concept of complementation somewhat: in cases
where X is specified to be a subset of some other set S,
�X = S �X , otherwise �X = f1; . . . ; ng �X . Strings of

0=1 variables are referred to by barred lower case letters
(e.g. �x) which may be superscripted to indicate one of a
sequence of strings (e.g. �xj). xi refers to the ith variable
in a string �x. Barred constants (e.g. �0, ��) indicate strings of
the given value with length implied by context.



Unless otherwise specified, all functions are assumed to
have as domain the set of strings f0;1gn. The range of
Boolean functions will sometimes be f0,1g, particularly
when we are dealing with circuit models, but will usually be
f1;�1g for reasons that should become clear subsequently.
Frequently we will write sets as arguments where strings
would be expected, e.g. f (X) rather than f (�x) for f a
function on f0;1gn. In such cases f (X) is a shorthand for
f (c(X)) where c(X) is a characteristic function defined
by ci(X) = 0 if i 2 X and 1 otherwise. Note that the
sense of this function is opposite the natural one in which 0
represents set absence.

An AC0 function is a Boolean function which can be com-
puted by a family of acyclic circuits (one circuit for each
number n of inputs) consisting of AND and OR gates plus
negations only on inputs and satisfying two properties:

� The number of gates in each circuit (its size) is bounded
by a fixed polynomial in n.

� The maximum number of gates between an input and
the output (the circuit depth) is a fixed constant.

A random restriction �p;q is a function which given input �x
maps xi to �with fixed probabilityp and assigns 0’s and 1’s
to the other variables according to a probability distribution
q. If �x represents the input to a function f then �p;q induces
another function fd� which has variables corresponding to
the stars and has the other variables of f fixed to 0 or 1.
This is a generalization of the original definition [FSS81]
in which q is the uniform distribution. The subscripts of
� are generally dropped and their values understood from
context.

The function obtained by setting a certain subset S of the
variables of f to the values indicated by the characteristic
function of a subset X � S is denoted by fdS  X or,
when S is implied by context, simply fdX . For example, if
S = f1;3g and X = f3g then fdX is the function f with
variable x1 set to 1 and x3 to 0.

We will use several parameters of the probability distribu-
tion q throughout the sequel. We define �i = Pr[xi = 1],
where the probability is with respect to q. Another param-
eter which we will use frequently is

� = max
i
(1=�i;1=(1� �i)):

We assume that this value is finite, since infinite � implies
some variable is actually a constant and can be ignored by
the learning procedure.

It is convenient to define a set-based notation for proba-
bilities also. For example, if X = f2g and it has been
specified that X � f1;2g then we will write q(X) for
q(x1 = 1 ^ x2 = 0). In general, if X is specified to be
a subset of some set S then q(X) represents the marginal
probability that the variables indicated by S take on the val-
ues specified by c(X), and if S is not specified then q(X)
is just q(c(X)). Thus for mutually independent q,

q(X) =
Y
i2X

(1� �i)
Y
i2 �X

�i:

3 AN ORTHONORMAL BASIS FOR
BOOLEAN FUNCTIONS SAMPLED
UNDER MUTUALLY INDEPENDENT
DISTRIBUTIONS

3.1 RATIONALE

Given some element v of a vector space and a basis for
this space, a discrete Fourier transform expresses v as the
coefficients of the linear combination of basis vectors repre-
senting v. We are interested in learning Boolean functions
on n bits, which can be represented as Boolean vectors of
length 2n. Linial et al. used as the basis for this space the
characters of the group Zn

2 in R. The characters are given
by the 2n functions

�A(X) = �1jA\Xj:

Each �A is simply a polynomial of degree jAj, and f�A jjAj � kg spans the space of polynomials of degree not
more than k. With an inner product defined by

hf; gi = 2�n
X

�x2f0;1gn

f(�x)g(�x)

and norm kfk =phf; f i the characters form an orthonor-
mal basis for the space of real-valued functions on n bits.
The Fourier coefficients of a function f with respect to this
basis are simply f̂A = hf; �Ai, the projections of f on the
basis vectors. Given a sufficient number m of uniformly
selected examples (�xj ; f (�xj)),

Pm
j=1 f (�x

j)�A(�x
j)=m is a

good estimate of f̂A [LMN89].

What happens if the examples are chosen according to some
nonuniform distribution q? If we blindly applied the LMN
learning algorithm we would actually be calculating an
approximation to

P
�x2f0;1gn f (�x)�A(�x)q(�x) for each A.

That is, we would be calculating the expected value of the
product f�A with respect to q rather than with respect to the
uniform distribution. This leads to the following observa-
tion: if we modify the definition of the inner product to be
with respect to the distribution q on the inputs and modify
the basis to be orthonormal under this new inner product
then the estimated coefficients should on average be close
to the appropriate values in this new basis.

More precisely, define the inner product to be

hf; giq =
X

�x2f0;1gn

f (�x)g(�x)q(�x)

and define the norm to be1

kfkq =
q
hf; f iq :

Let the basis vectors  A be defined by orthonormalizing
the �A with respect to this inner product (such a basis will

1Typically, a subscript indicates that the norm is to be consid-
ered one of the Hölder p-norms. We are using the subscript to
mean something different here.



be referred to as orthonormal in the q-norm or orthonormal
with respect to q). Then we expect that if a large enough
number of samples m are drawn according to q,

~fA =
mX
j=1

f (�xj) A(�x
j)=m

is a good approximation to f̂A, the projection of f onto  A.

The main result of Linial et al. [LMN89] is that, for anyAC0

function f , the Fourier coefficients of f with respect to the
�A’s become small for large jAj. Thus the LMN learning
algorithm consists simply of estimating the “low-order”
coefficients. We show that essentially the same property of
AC0 functions also holds for the coefficients of a particular
 basis orthonormal with respect to a mutually independent
q. Thus, as with LMN learning, we can obtain a good
approximation to an AC0 function f by estimating low-
order coefficients of f relative to the transformed basis. Our
learning procedure differs in that the estimated coefficients
are with respect to a basis which must also be estimated.

It will be convenient to have a name for a basis which is
orthonormal with respect to a mutually independent dis-
tribution as opposed to an arbitrary distribution. We will
refer to such a basis as a � basis and reserve  for bases
orthonormal with respect to an arbitrary q. From now on a
Fourier coefficient f̂A will be assumed to be the coefficient
of the basis vector �A unless otherwise noted.

3.2 PROPERTIES OF THE � BASIS

Let �i be the standard deviation of the ith variable xi when
samples are selected according to q and note that �i as
previously defined represents the mean. Let zi = (xi �
�i)=�i; that is, zi is the normalized variable corresponding
to xi. Then, due to the mutual independence of q, one
possible � basis is given by Bahadur [Bah61]:

�A =
Y
i2A

zi:

This basis will be referred to as the � basis; it is the basis
which would be obtained by a Gram-Schmidt orthonormal-
ization (with respect to the q-norm) of the� basis performed
in order of increasing jAj.
The � basis has a number of properties which make our
generalization of the LMN result possible. First, due to the
nature of Gram-Schmidt orthonormalization, f�A j jAj �
kg spans the same space as f�A j jAj � kg, so linear
combinations of such �’s are simply polynomials of degree
not more than k. Also, it follows immediately from the
above representation of �A that for all A;S, and X � �S,
Y � S,

�A(X [ Y ) = �A\ �S(X)�A\S(Y ):

Likewise it follows that for any S and A;B � S,X
X�S

�A(X)�B(X) q(X) =

�
1 if A = B
0 otherwise.

Another useful property is that for all A and B,

�A(B)
p
q(B) = �B(A)

p
q(A):

This follows from the above representation of �A after
noting that �i =

p
�i(1� �i). Finally, Parseval’s identity

gives

kfk2
q =

X
A

f̂A
2

.

4 THE DROPOFF LEMMA

As noted above, Linial et al. have shown that the sum of
squares of coefficients of high-degree terms (the high-order
power spectrum) of AC0 functions becomes exponentially
small as order increases when the coefficients are relative
to the � basis. In this section we show that this also holds
for coefficients relative to the � basis. We do this by gen-
eralizing the series of lemmas used in their proof.

Essentially, we prove that the following facts hold for
Fourier coefficients relative to the � basis:

1. Random restrictions of AC0 functions have small
minterms and maxterms with high probability as long
as the distribution function q is mutually independent.

2. All the high-order Fourier coefficients of a function
with small minterms and maxterms are zero.

3. The coefficients of anAC0 function are closely related
to the coefficients of its restrictions.

4. Probabilistic arguments can be used to tie the above
facts together and show that the high-ordercoefficients
of an AC0 function must be small.

We present the proof of the Dropoff Lemma in this order.

4.1 RANDOM RESTRICTIONS

The linchpin of the Linial et al. result is Hastad’s Switching
Lemma [Has86]. This lemma states that when restriction
�p;q of a suitable CNF function has uniformq then with high
probability the minterms of the restricted function are small;
a similar statement about a DNF function and maxterms
follows immediately. Thus such a randomly restricted CNF
formula can with high probability be rewritten as a DNF
formula having a small number of variables in every term.
We generalize this to a lemma which holds for any mutually
independent q. For uniform q, � = 2 and Lemma 1 reduces
to a restatement of Hastad’s Lemma.

Lemma 1 Let f be a CNF formula with at most t variables
in any clause and let random restriction �p;q have mutu-
ally independent q with parameters �i and � as defined
previously. Then

Pr[fd� has a minterm of size > s] � (�pt= ln�g)
s

where �g = (1 +
p

5)=2, the golden ratio.



Proof Sketch: Our proof involves a lengthy reworking of
the Boppana and Sipser proof of Hastad’s lemma [BS90].
We give here only the details of our extension to a key
inequality in their proof; the remainder of our proof is
straightforward.

Let C be an OR of variables, none of which are negated,
and let Y be a subset of these variables. Let q be a mutually
independent distributionand let �p;q be a random restriction
defined on the variables in C. Then we show that

Pr
h
�(Y ) = �� Cd� 6� 1

i
� (�p)jY j:

Indeed, because q is mutually independent,

Pr
h
�(Y ) = �� Cd� 6� 1

i
=
Y
yi2Y

Pr[�(yi) = �]
Pr[�(yi) 6= 1]

:

From the definition of � it follows that for all i, �i �
(� � 1)=�, so

8i Pr[�(yi) 6= 1] � 1� � � 1
�

(1� p):

Thus, noting that � � 2,

Pr[�(yi) = �]
Pr[�(yi) 6= 1]

� p

1� ��1
� (1� p)

� �p:

2

Because it is also true that for all i, (1� �i) � (� � 1)=�,
an analog to Lemma 1 can easily be proved for the case
where C in the above proof is an AND. This gives:

Lemma 2 Let f be a DNF formula with at most t variables
in any term and let random restriction �p;q have mutually
independent q. Then

Pr[fd� has a maxterm of size > s] � (�pt= ln�g)
s:

Finally we can state the principal result of this section,
which is obtained by successively applying Lemmas 1 and
2 to the lowest levels of a circuit (cf. [BS90, Theorem 3.6]):

Lemma 3 Let f be a Boolean function computed by a cir-
cuit of size M and depth d, and let �p;q have mutually
independent probability distribution q with parameter � as
defined previously. Then

Pr[fd� has a minterm or maxterm of size > s] �M2�s

where Pr[�] = (2�s= ln�g)
�d.

4.2 SMALL MINTERMS AND MAXTERMS MEAN
VANISHING HIGH-ORDER SPECTRUM

Here we begin to relate the above results to the Fourier
spectrum of AC0 functions. We show that if a function
has only small minterms and maxterms then its high-order
Fourier coefficients—even with respect to certain bases—
vanish.

Lemma 4 Let q be any (not necessarily mutually indepen-
dent) probabilitydistribution,let A be a basis orthonormal
in the q-norm such that f A j jAj � kg spans the same
space as f�A j jAj � kg, and let f̂A be the Fourier coef-
ficient of  A. Then if all of the minterms and maxterms of
a Boolean function f have size at most

p
k, f̂A = 0 for all

jAj > k.

Proof: It is not hard to see that if the
p
k condition is met

then f can be computed by a decision tree of depth no more
than k [BI87]. Linial et al. [LMN89] further show that
the Fourier coefficients of the � basis for such an f satisfy
the lemma. This means that f is in the space spanned by
f�A j jAj � kg. Since by definition the low-order A span
the same space, our lemma follows immediately. 2

Finally, note that the � basis meets the criteria of the lemma
due to the nature of the Gram-Schmidt orthonormalization
process which defines it.

4.3 RELATING COEFFICIENTS OF A FUNCTION
AND ITS RESTRICTIONS

Putting together the results thus far, we know that with
high probability the random restrictions of anAC0 function
have zero-valued high-order Fourier coefficients. Now we
show a key relationship between the coefficients of arbitrary
functions and their restrictions when the coefficients are
relative to a � basis.

We begin with a lemma which allows a rewriting of the
definition of a Fourier coefficient and follow with the
coefficient-relating result.

Lemma 5 Let f be any real-valued n-bit function, S any
set, and �A orthonormal with respect to mutually indepen-
dent q. Then for any subset A,

f̂A =
X
X� �S

dfdXA\S�A\ �S(X) q(X)

Proof:

f̂A =
X
Z

f (Z)�A(Z) q(Z)

=
X

X� �S;Y�S

fdX(Y )�A\ �S(X)�A\S(Y )q(X)q(Y )

=
X
X� �S

24X
Y�S

fdX(Y )�A\S(Y ) q(Y )

35 �
�A\�S(X) q(X)

2

Lemma 6 Let f , S and �A be as above. Then for any
B � S, X

C��S

f̂ 2
B[C =

X
X��S

dfdX2

B q(X)



Proof:

X
C��S

f̂ 2
B[C =

X
C��S

24X
X��S

dfdXB�C(X) q(X)

352

=
X

C;X;Y ��S

dfdXB
dfdY B�C(X)�C(Y ) q(X)q(Y )

=
X
X;Y

dfdXB
dfdY B

p
q(X)q(Y ) �

X
C

�C(X)�C(Y )
p
q(X)q(Y )

=
X
X;Y

dfdXB
dfdY B

p
q(X)q(Y ) �

X
C

�X (C)�Y (C) q(C)

from which the Lemma follows by the orthonormality of �
on subsets. 2

4.4 BOUNDING HIGH ORDER POWER
SPECTRUM

We now use a series of probabilistic arguments to tie the
above lemmas together into the desired result. Although
the proofs are very similar to those in [LMN89], we include
them for completeness. We begin with an easily proved
bound on the high-order spectrum of any function.

Lemma 7 Let f be any real-valued n-bit function, p a
real in (0; 1), k an integer, and p and k chosen such that
pk > 8. Let f̂A be a Fourier coefficient with respect to any
orthonormal basis. Then

X
jAj>k

f̂A
2 � 2ES

24 X
jA\Sj>pk=2

f̂A
2

35
where S is a subset chosen at random such that each vari-
able appears in it independently with probability p.

Proof: ClearlyES [jA\ Sj] � pk for every jAj > k. Thus
Chernoff bounds tell us that

Pr
S
[jA \ Sj � pk=2] � e�pk=8

� 1
2 :

Thus for eachA at least half of the S’s will satisfy jA\Sj >
pk=2. 2

To this point we have not been much concerned with the
form of the output of the function f ; in fact, several of the
previous lemmas hold for any real-valued function. For the
sequel, we specify that f is Boolean and, furthermore, maps
to either 1 or �1. It is then the case by Parseval’s identity
that X

A�f1;...;ng

f̂A
2
= 1

and thus that the sum of any subset of the squared coeffi-
cients of such a Boolean function is bounded by unity. With
this fact in hand we can prove the following bound on the
summation of the previous lemma:

Lemma 8 Let f be a function from f0;1gn to f1;�1g, S
any set, t an integer in [0; n], and q a mutually independent
distribution defining the basis for f̂A. ThenX
jA\Sj>t

f̂A
2 �

Pr
X
[fdX has a minterm or maxterm of size >

p
t ]

where X is an assignment to the variables in �S chosen
according to q.

Proof: X
jA\Sj>t

f̂A
2

=
X

B�S;jBj>t

X
C��S

f̂B[C
2

=
X

B�S;jBj>t

EX� �S [
dfdX2

B]

= EX

24X
jBj>t

dfdX2

B

35
where the second line follows from Lemma 6 and expecta-
tion is with respect to q. Now since the terms in the expecta-
tion are never larger than unity, it is clearly bounded above

by the probability that
P

jBj>t
dfdX2

B is nonzero. But then
application of Lemma 4 completes the proof. 2

We can now prove the main result.

Lemma 9 (Dropoff Lemma) Let f be a function from
f0;1gn to f1;�1g computed by a circuit of depth d and
size M , and let k be any integer. ThenX

jAj>k

f̂A
2 �M21�k

1
d+2 =5�:

Proof: From the previous two lemmas,X
jAj>k

f̂A
2 � 2ES Pr

X
[fd �S  X has a minterm or

maxterm of size >
p
pk=2 ]:

But this latter value is just

2 Pr
�
[fd� has a minterm or maxterm of size >

p
pk=2 ]

and by Lemma 3 is bounded above by 2M2�
p
pk=2 as long

as p � (2�
p
pk=2= ln�g)

�d. Some simplifyingarithmetic
gives the result. 2



5 DIRECT LEARNING

As alluded to earlier, our direct learning algorithm, like
that of Linial et al., depends on the spectral property of
AC0 functions proved above. That is, since the high-order
Fourier coefficients relative to a � basis are small, we need
only estimate low-order coefficients in order to derive a
close approximation to the desired function. As shown be-
low, the linear combination of the low-order� basis vectors
defined by these coefficients is a function which is close
to the true function in the sense that the norm of the dif-
ference between the functions is small. Furthermore, the
sign of this approximating function will with high proba-
bility match the true function, where the the probability is
relative to the input distribution q.

Actually, since we assume that only input/output pairs are
given, the distribution q must also be estimated and hence
the function is learned relative to an approximate basis. In
spite of this we are able to prove a bound on the running
time of our algorithm which is similar to the bound on LMN
learning. More specifically, let f4 ~f denote the probability
that f (�x) 6= ~f (�x) when the input �x’s are drawn according
to a mutually independent probability distribution q. Our
algorithm, given parameters � and �, produces an ~f such that
Pr[f4 ~f > �] � � when the algorithm is given access to a
sufficient number of examples of the true function f drawn
according to q. The algorithm runs in time and number of
examples quasi-polynomial inn and 1=�, exponential in the
parameter � of q, and polynomial in log(1=�).

In the sections that follow we first give the algorithm and
then prove the bound on its running time.

5.1 THE DIRECT ALGORITHM

Algorithm 1 Given m examples (�xj; f (�xj)) of a function
f : f0;1gn ! f1;�1g and an integer k � n, determine ~f
as follows:

1. Compute �0i =
1
m

Pm
j=1 x

j
i for 1 � i � n.

2. Define z0i = (xi � �0i)=
p
�0i(1� �0i).

3. Define �0A =
Q

i2A z
0
i.

4. Compute ~f 0A = 1
m

Pm
j=1 f (�x

j)�0A(�x
j) for jAj � k

and 0 otherwise. If j ~f 0Aj > 1 let ~f 0A = sign( ~f 0A), where
sign is the obvious function with range f�1;0;1g.

5. Define g(�x) =
P ~f 0A�

0
A(�x).

6. Define ~f (�x) = sign(g(�x)).

We intend primes (0) to indicate values that are based on
an estimated probability distribution rather than the true
one. A twiddle (~) indicates that the value includes other
estimates. When a Fourier coefficient is based on an esti-
mated distribution it is written with the twiddle replacing

the usual hat (̂ ). Thus ~f 0A rather than ~̂
f 0A is used to represent

an estimate of theAth Fourier coefficient of f relative to the
estimated basis �0A.

Notice that the restriction on the magnitude of ~f 0A can only
bring this estimated coefficient closer to the true coefficient
in the �0 basis, since all of the coefficients of a Boolean
function must be no larger than 1 in magnitude. The re-
striction also plays a helpful role in the lemmas to follow.

5.2 BOUNDS FOR �=� LEARNING

Here we derive upper bounds on the values of m and k
required for the above algorithm to achieve specified error
bounds on an input distribution with a given �. Our first
step is to generalize a lemma of Linial et al. [LMN89] to
the case of arbitrary distributions q.

Lemma 10 Let f be a function mappingf0;1gn tof1;�1g
and g an arbitrary function on the same domain. Let q be an
arbitrary probabilitydistributiononf0;1gn, let the Fourier
coefficients be relative to the basis  A defined by q, and let
probabilities be with respect to q. Then

Pr[f(�x) 6= sign(g(�x))] �
X

(f̂A � ĝA)2:

Proof: Pr[f(�x) 6= sign(g(�x))] � Pr[jf(�x)� g(�x)j > 1] �
E[(f (�x)� g(�x))2] �P(f (�x)� g(�x))2q(�x) = kf � gk2

q
and the lemma follows from Parseval’s identity and the
linearity of the Fourier transform. 2

Now for the remainder of this section let q be a mutually
independent distribution on the inputs to the algorithm and
let unprimed Fourier coefficients be with respect to the �
basis defined by q. Then in the notation of our learning
algorithm, Lemma 10 says that f4 ~f �P(f̂A � ĝA)2. So
our goal becomes finding an m and k such that with prob-
ability at least 1� � the algorithm produces a g satisfyingP
(f̂A � ĝA)2 � �. While the details of this calculation

are a bit messy, the basic idea is not. Allocate half of the
� error to each of two jobs: taking care of the error in the
coefficients corresponding to sets smaller than k and larger
than k. The Dropoff Lemma is used to bound the error in
the latter and will also fix k. Chernoff bound arguments
will give the value of m needed to bound the error due to
estimating the low-order coefficients and basis functions.

Because ~f 0A = 0 for all jAj > k and f�0A j jAj � kg spans
the same space as the corresponding set of �A, ĝA must also
vanish for all jAj > k. Thus the following lemma, which
follows immediately from the Dropoff Lemma, gives the
required bound on

P
jAj>k(f̂A � ĝA)2.

Lemma 11 Let f be a Boolean function with rangef1;�1g
with corresponding f0;1g- valued function computed by a
circuit of depth d and size M . Then

k �
�

5� log2

�
4M
�

��d+2

)
X
jAj>k

f̂A
2 � �

2
:



The bound on the error in low-order coefficients is a bit
more involved. There are really two sources of error: the
estimate of the basis functions and the estimate of the co-
efficients relative to these functions. It seems simplest to
consider these sources of error separately. First, define
~fA =

P
f (�xj)�A(�x

j)=m and, as in the definition of ~f 0A,
restrict the magnitude of this value to 1. That is, ~fA rep-
resents the coefficient which would be estimated if the true
basis function was known. Since there are at most nk low-
order coefficients for n > 1, an m satisfying

Pr

�
9 jAj � k s.t. jf̂A � ~fAj >

r
�

8nk

�
� �

2
(1)

and

Pr

�
9 jAj � k s.t. j ~fA � ĝAj >

r
�

8nk

�
� �

2
; (2)

guarantees that Pr[
P

jAj�k(f̂A � ĝA)2) > �=2] � �. Here

jf̂A� ~fAj represents the error due to estimating the Fourier
coefficients given perfect knowledge of the input distribu-
tion, j ~fA � ĝAj the error due to estimating the distribution.
An inequality of Hoeffding [Hoe63] will be very useful for
finding the required m.

Lemma 12 (Hoeffding) Let Xi be independent random
variables all with mean E[X] such that for all i, a � Xi �
b. Then for any � > 0,

Pr

"����� 1
m

mX
i=1

Xi � E[X]

����� � �
#
� 2e�2�2m=(b�a)2

:

For the moment we remove the unity restriction on ~fA’s
magnitude. Then E[ ~fA] is f̂A, and using Lemma 12 to find
an m satisfying (1) requires only that the bounds on ~fA
be determined. By its definition, the magnitude of ~fA is
bounded by �max = max j�A(�x)j, where the maximum is
over all possible jAj � k and �x. It is not hard to show that
for all i, jzij �

p
� � 1, so �max � (� � 1)k=2. Then by

Lemma 12, m � 16nk(� � 1)k��1 ln(4nk=�) guarantees
that for any given jAj � k, Pr[jf̂A � ~fAj >

p
�=8nk] �

�=2nk. Hence such an m satisfies (1). Note finally that
restricting the magnitude of ~fA can only improve the like-
lihood that ~fA is sufficiently near f̂A, since f̂A 2 [�1;1].

Finding an m satisfying (2) is more involved. First,

rewrite ĝA as
P

jBj�k
~f
0

Bh�A; �0Bi (all inner products
in this section are with respect to q) and let �� =
maxjAj�k;�x j�A(�x) � �0A(�x)j. Then some algebra shows
that for jAj; jBj � k, jh�A; �0Bi � h�A; �Bij � �max ��:
It follows that for all jAj � k
j ~fA � ĝAj � j ~fA � ~f

0

Ah�A; �0Aij+
j

X
jBj�k;B 6=A

~f
0

Bh�A; �0Bij

� j ~fA � ~f
0

Aj+ j ~f
0

A(h�A; �Ai � h�A; �0Ai)j

+(nk � 1)�max��

� ��+ nk�max��:

Actually, careful consideration of the cases A empty and A
nonempty shows that the bound can be tightened to simply
nk�max��:

Clearly the magnitude of �� depends on the error in the
estimate of �0i. Intuitively, by driving the relative error in
�0i small we drive�� small. Thus define c� as the smallest
value such that for all i, j�i��0ij � c� min(�i;1��i); that
is, c� is the least upper bound on the relative error. Then by
considering the cases �i � 1

2 and �i � 1
2 it can be shown

that for all i, both the ratios jz0i=zij and jzi=z0ij are bounded
above by 2c� + 1 as long as c� � 1

2 . Hence the largest
possible value of the ratio�0A=�A for jAj � k is (2c�+1)k,
and thus �� � [(2c� + 1)k � 1]�max. Finally, use of the
identity x � 1=j ) (x + 1)j � 1 � 2jx for j a positive
integer shows that if 2c� � 1=k then �� � 4c�k�max:

Thus c� �
p
�=128k2n3k(� � 1)2k implies that for all

jAj � k, j ~fA�ĝAj �
p
�=8nk. Let cd represent the desired

bound on c�. Then since 1=� = min(�i;1� �i) it follows
that m such that Pr[9 i s.t. j�i � �0ij > cd=�] � �=2 satis-
fies (2). Noting that E[�0i] = �i, that 0 � �0i � 1, and that
there are n different�0i, application of Lemma 12 shows that
the required m is bounded by 64k2n3k�2k+2��1 ln(4n=�).
This is always larger than the value required for (1), so we
have

Theorem 1 For any positive � and � and any mutually in-
dependent distribution on the inputs, Algorithm 1 produces
a function ~f with the property that Pr[f4 ~f > �] � � when-
ever

k �
�

5� log2

�
4M
�

��d+2

;

m � 64k2n3k�2k+2 1
�

ln

�
4n
�

�
:

Thus for fixed �, �, and �, the algorithm requires
O(2poly log n) examples to adequately approximate AC0

functions.

The bounds for LMN learning on uniform distributions are
similar. The LMN k bound is polylogarithmic inM and 1=�
(O(logd+3(M=�))), and the m bound is quasi-polynomial
in n and 1=� (O(n2k=�)) and logarithmic in 1=�.

6 INDIRECT LEARNING

6.1 OVERVIEW

Our approach to learningAC0 functions sampled according
to mutually independent distributions results in a straight-
forward deterministic algorithm, but the analysis is quite
involved. We, and independently Umesh Vazirani [Vaz],
have noticed a clever randomized approach which would be



somewhat more difficult to implement but admits a simpler
analysis. Observe first that for any given value � in (0;1) it
is easy to construct a small fixed-depth circuit which, given
inputs drawn uniformly, produces 1’s with probability ap-
proximately �. Thus for any given mutually independent
probability distribution on n-bit strings a set of n disjoint
circuits can be constructed which given uniform inputs will
produce as output each n-bit string with approximately the
desired probability. Conversely, a randomized inverse of
each of these small circuits can be constructed such that
mutually independent inputs to the inverses will produce a
nearly uniform output.

With this background, the indirect uniform construction ap-
proach falls out naturally. We are given a set of input/output
pairs (�x; f (�x)) where the �x’s are drawn according to a mu-
tually independent distribution q. The unknown function f
is computed by some AC0 circuit F . Also, there exists a
set of disjoint AC0 circuits Ci which, given uniform �y’s,
produce as output �x’s with distribution close to q. Call the
randomized inverses of these circuits C�1

i . Then there is
another AC0 circuit G consisting of the obvious composi-
tion of the Ci’s and F such that, if G computes function g
then for all �x, g(C�1

i (�x)) = f(�x). Since theC�1
i (�x) are al-

most uniformly distributed, a variant of LMN learning can
be used to obtain a good approximation to g and therefore
indirectly to f .

6.2 ANALYSIS OF UNIFORM CONSTRUCTION

Clearly if the circuits Ci produce exactly the desired prob-
ability distribution q on their outputs then the LMN theory
applies immediately to uniform construction, since theC�1

i
will produce an exactly uniform distribution for learning g.
Considering the forms of the bounds on k and m for LMN
learning, the analysis for this case reduces to determining
the size and depth of the circuitG and the length of its input.
This in turn reduces to determining how long the string �y
generated by theC�1

i is and ascertaining the size and depth
of the Ci.

Although many possible forms of the Ci could be con-
sidered, we will assume that simple depth 2 DNF circuits
are used in order to minimize the increase in depth of G
over F . With such circuits any � of the form

Pl
j=1 aj2

�j ,
where aj 2 f0;1g, can be easily constructed using at most
l variables and l + 1 gates. The idea is to create a circuit
with one AND for each j such that aj = 1, to have that
AND produce 1’s with probability 2�j , and to insure that
at most one AND produces a 1 on each input. Such a cir-
cuit is easy to construct; for example, the circuit computing
x1_( �x1^x2)_( �x1^ �x2^x3^x4) has four variables, one OR,
two AND’s, and produces 1’s with probability 13=16.

Thus in the case of exact representation of q by depth 2 Ci
there must be some value l such that for each variable xi,
xi =

Pl
j=1 aj2

�j. Therefore G has at most nl variables
and n(l + 1) more gates than F and has depth d+ 2.

Of course, even if q is known exactly it may not be desirable
or even possible to represent it exactly with the Ci. In this
case the LMN theory must be extended a bit to cover the
case of nearly uniform distributions. Call a distribution
r on �x 
-uniform if for all �x, jU(�x) � r(�x)j � 
=2n,
where U is the uniform distributionU(�x) = 2�n. Then the
probabilities of the occurrence of some event with respect
to these distributions can be related in a simple way. In
particular, for any Boolean f and approximating g,

Pr
r
[f(�x) 6= sign(g(�x))]

� Pr
U
[f(�x) 6= sign(g(�x))](1 + 
):

Also, the expected value of a Fourier coefficient computed
using examples drawn from a 
-uniform rather than truly
uniform distribution will differ from the true coefficient by
no more than 
. Finally, as would be expected, the con-
vergence of the C�1

i to a uniform distribution as variables
are added is extremely rapid once each Ci has at least log�
variables, that is, once the probability of a 1 for each Ci is
in the vicinity of the appropriate value.

Putting these facts together with an analysis similar to that
used in proving Theorem 1 shows that if each of the Ci has
a polylogarithmic number of variables and a similar num-
ber of gates then the distribution r induced by the C�1

i will
be near enough uniform for an adequate g to be learned.
Specifically, let l = 2 max[2k2; log2 �] + 2 be the num-
ber of variables input to each Ci, where k satisfies the
LMN bound modified to reflect the increase of 2 in depth
d and the logarithmic dependence of circuit size M on l.
Then the uniform construction method satisfies specified
�=� bounds as long as the number of examples is at least
64(nl)k22l��1 ln(4nk=�).

7 COMPARISON OF APPROACHES

The primary advantage of our direct approach to learning
AC0 functions is probably its potential application to non-
independent distributions. While it is not at all clear how
a technique like uniform construction could be used on
an arbitrary distribution, our direct algorithm offers the
hope of wider applicability, as discussed in the next section.
Also, the � basis and its properties have proved useful in
extending another learning result from uniform to mutually
independent distributions [Bel91].

Another significant area of difference between the ap-
proaches is the use of randomness. Uniform construction is
a random algorithm in terms of both learning and the func-
tion learned, while our direct algorithm and the function
learned are deterministic.

In terms of expected running times, both algorithms are
quasi-polynomial. Uniform construction would seem to
have a distinct advantage when � for the underlying distri-
bution is large. On the other hand, for moderate � the direct
approach should be faster due to the increase in circuit depth
which uniform construction must contend with.



An interesting implementation possibility is a hybrid of the
two approaches. Variables with means far from uniform
would be handled via uniform construction methods—be
expanded by an appropriate C�1

i —and those closer to uni-
form would be unchanged. Then the direct learning al-
gorithm rather than LMN would be applied to the resulting
strings, which would now be nearly independent rather than
nearly uniform. If only a few variables are far from uniform
then increasing the depth of the circuit at these few points
might not affect overall circuit depth. Thus the hybrid ap-
proach potentially avoids the primary sources of run time
blowup in the individual methods.

8 OPEN QUESTIONS

An averaging argument added to a fundamental idea of
Valiant and Vazirani [VV85] shows that for every AC0

function f and every distribution q on the inputs there is
a low-degree polynomial which is a close approximation
to f with respect to q [BRS90, Tar91]. Unfortunately,
this is only an existence proof which does not give rise
immediately to a computationally feasible algorithm for
finding such polynomials. The obvious question is to find
such an algorithm.

Given an unknown distribution q and examples of a func-
tion f drawn according to q we can use something like
an approximate Gram-Schmidt process to orthogonalize,
relative to q, a low-degree basis. We can then estimate
the low-degree coefficients of function f . We conjecture
that for many natural distributions this will be a good ap-
proximation. For what distributions is this true? It is not
true for all distributions; Smolensky [Smo] has produced a
counterexample.

It is natural to defineAC0 distributions to be those obtained
in the following way. Transform uniformly drawn input
variables �y to new variables �x via an AC0 circuit C. The
induced distributionon the �x is calledAC0. Does the above
variant work for AC0 distributions?
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