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Abstract

Secure coprocessorsenabl e secure distributed applications by providing safe havenswhere an application program
can execute (and accumul ate state), free of observation and interference by an adversary with direct physical accessto
thedevice. However, for these coprocessorsto be effective, participantsin such applicationsmust be ableto verify that
they areinteracting with an authentic program on an authentic, untampered device. Furthermore, secure coprocessors
that support general-purpose computation and will be manufactured and distributed as commercial products must
provide these core sanctuary and authentication properties while also meeting many additional challenges, including:

o theapplications, operating system, and underlying security management may all come from different, mutually
suspicious authorities;

configuration and maintenance must occur in ahostile environment, while minimizing disruption of operations;
¢ the device must be ableto recover from the vulnerabilities that inevitably emerge in complex software;
physical security dictatesthat the deviceitself can never be opened and examined; and

e ever-evolving cryptographic requirementsdictate that hardware accel erators be supported by reloadable on-card
software.

This paper summarizes the hardware, software, and cryptographic architecture we developed to address these prob-
lems. Furthermore, with our colleagues, we have implemented this solution, into a commercially available product.
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1. Introduction

1.1. Secure Coprocessors
Many current and proposed distributed applications face a fundamenta security contradiction:

e computation must occur in remote devices,

e but these devices are vulnerable to physica attack by adversaries who would benefit from subverting this
computation.

If an adversary can attack adevice by atering or copying its algorithmsor stored data, he or she often can subvert an
entire application. The mere potential of such attack may suffice to make a new application too risky to consider.

Secure coprocessors—computational devicesthat can betrusted to executetheir software correctly, despite physical
attack—address these threats. Distributing such trusted sanctuaries throughout a hostile environment enables secure
distributed applications.

Higher-end exampl es of secure coprocessing technology usually incorporate support for high-performancecryptog-
raphy (and, indeed, the need to physically protect the secrets used in acryptographic module motivated FIPS140-1, the
U.S. Government standard [11, 14] used for secure coprocessors). For over fifteen years, our team has explored build-
ing high-end devices: robust, general-purpose computational environments inside secure tamper-responsive physical
packages[15, 22, 23, 24]. Thiswork led to the Abyss, pAbyss, and Citadel prototypes, and contributed to the physical
security design for some of earlier IBM cryptographic accelerators.

However, although our efforts have focused on high-end coprocessors, devices that accept much more limited
computationa power and physical security in exchange for avast decrease in cost—such as IC chip cards, PCMCIA
tokens, and “smart buttons’—might also be considered part of the secure coprocessing family. (As of this writing,
no device has been certified to the tamper-response criteria of Level 4 of the FIPS 140-1 standard; even the touted
Fortezza achieved only Level 2, tamper evident.)

Even though this technology is closely associated with cryptographic accel erators, much of the exciting potentia
of the secure coprocessing model arises from the notion of putting computation as well as cryptographic secrets inside
the secure box. Yee's semina examination of thismodel [26] built on our Citaddl prototype. Follow-up research by
Tygar and Yee [21, 27] and others (e.g., [9, 13, 17]) further explores the potentia applicationsand limits of the secure
coprocessing mode.

1.2. The Challenge

This research introduced the challenge: how do we make this vision real? Widespread development and practical
deployment of secure coprocessing applications requires an infrastructure of secure devices, not just a handful of
laboratory prototypes. Recognizing thisneed, our team hasrecently compl eted aseveral-year research and devel opment
project to design, develop, and distribute such a device—both as a research tool and as a commercial product, which
reached market August 1997.

This project challenged us with several constraints: [20]
¢ the device must offer high-performance computational and cryptographic resources,

o the device must be easily programmable by IBM and non-IBM developers, even in small quantities;

o the device must exist within the manufacturing, distribution, maintenance, and trust confines of a commercial
product (as opposed to an academic prototype) from a private vendor.



However, the projected lifecycle of a high-end secure coprocessor challenged us with security issues:

¢ How doesageneric commercial device end up in ahostile environment, with the proper software and secrets?

e How do participantsin distributed applications distinguish between a properly configured, untampered device,
and a maliciously modified one or a clone?
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Figure 1 Hardware architecture of our high-end secure coprocessor.

1.3. Overview of our Technology

Hardware Design For our product [12], we answered these questions by building on the design philosophy that
evolved in our previous prototypes:

e maximizecomputationa power (e.g., useasbigaCPU asisreasonable, and usegood cryptographicaccel erators');
e support it with ample dynamic RAM (DRAM);
e useasmaller amount of battery-backed RAM (BBRAM) as the non-volatile, secure memory; and

e assemblethison acircuit board with technol ogy to actively sense tamper and near-instantly zeroize the BBRAM.

Figure 1 sketches thisdesign.

Security Design Active tamper response gives a device a lifecycle shown in Figure 2: tamper destroys the
contents of secure memory—in our case, the BBRAM and DRAM. However, one can logicaly extend the secure
storage area beyond the BBRAM devices themselves by storing keysin BBRAM and ciphertext in FLASH,? or even
cryptopaging [26] it onto the host file system.

LOur current hardware features a 66 MHz 486 CPU, and accelerators for DES, modular math (hence RSA and DSA), and noise-based random
number generation.
2FLASH is a non-volatile memory technology similar to EEPROM. FLASH differs significantly from the more familiar RAM mode! in several

ways. FLASH can only be reprogrammed by erasing and then writing an entire sector first; the erase and rewrite cycles take significantly longer
than RAM; and FLASH imposesafinite lifetime (currently, usually 10* or 10%) on the maximum number of erase/rewrite cyclesfor any one sector.



Application Design This design leads to a notion of a high-end secure coprocessor that is substantially more
powerful and secure—albeit larger® and more expensive—than the family’s wesker members, such as chip cards.
(Thelarger physical package and higher cost permit more extensive protections.) This approach shapes the design for
application software:

e protect the critica portion of the application software by having it execute inside the secure coprocessor;
e alow thiscritica portionto be fairly complex;

e then structure this critical software to exploit the tamper protections: tamper destroys only contents of volatile
DRAM and the smaller BBRAM—Dbut not, for example, the contents of FLASH or ROM.

Software Design Making acommercia product support thisapplication design requires giving the device arobust
programming environment, and making it easy for developersto use thisenvironment—even if they do not necessarily
trust IBM or each other. These goalsled to a multi-layer software architecture:

« afoundational Miniboot layer manages security and configuration;

e an operating systemor control programlayer manages computational, storage, and cryptographic resources; and

e an unprivileged application layer that uses these resources to provide services

Figure 3 sketches thisarchitecture.

Currently, Miniboot consists of two components: Miniboot 0, residing in ROM, and Miniboot 1, which resides,
likethe OS and the application, in rewritable non-volatile FLASH memory. However, we are also considering adding
support for various multi-application scenarios, including the simultaneous existence of two or more potentialy
malicious applications in the same device, as well as one “master” application that dynamicaly loads additiona
applicationsat run-time,

1.4. This Paper

Building a high-performance, programmable secure coprocessor as a mass-produced product—and not just as a
laboratory prototype—requires identifying, articulating, and addressing a host of research issues regarding security
and trust. This paper discusses the security architecture we designed and (with our colleagues) implemented.

Section 2 presents the security goals and commercia constraints we faced.

Section 3 introduces our approach to solving them.

Section 4 through Section 8 presents the different interlocking pieces of our solution.

Section 9 and Section 10 summarize how these pieces work together to satisfy the security goals.

Section 11 presents some thoughts for future directions.

3For example, our product is a PCI card, although we see no substantial engineering barriersto repackaging this technology asa PCMCIA card.
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2. Requirements

In order to be effective, our solution must simultaneoudly fulfill two different sets of requirements. The device must
provide the core security properties necessary for secure coprocessing applications. But the device must aso be a
practical, commercial product; thisgod givesriseto many additional constraints, which can interact with the security
propertiesin subtle ways.

2.1. Commercial Requirements

Our device must exist as a programmable, genera -purpose computer—because the fundamental secure coprocessing
model (e.g.,[26, 27]) requires that computation, not just cryptography, reside inside the secure box. This notion—and
previous experience with commercial security hardware (e.g., [1])—givesrise to many constraints.

Development. To begin with, the goa of supporting the widespread development and deployment of applications
implies:

e Thedevice must be easily programmable.

e Thedevice must have a genera -purpose operating system, with debugging support (when appropriate).

¢ The device must support a large population of authorities developing and releasing application and OS code,
deployed in various combinations on different instantiations of the same basic device.

e The device must support vertical partitioning: an application from one vendor, an OS from another, bootstrap
code from athird.

e These vendors may not necessarily trust each other—hence, the architecture should permit no “backdoors.”

Manufacturing. The process of manufacturing and distribution must be as smple as possible:

e We need to minimize the number of variations of the device, as manufactured or shipped (since each new
variation dramatically increases administrative overhead).

e It must be possible to configure the software on the device after shipment, in what we must regard as a hostile
environment.

e We must reduce or eliminate the need to store a large database of records (secret or otherwise) pertaining to
individual devices.

e Asan international corporation based in the United States, we must abide by U.S. export regulations.

Maintenance. The complexity of the proposed software—and the cost of a high-end device—mean that it must be
possibleto update the software already installed in adevice.

e These updates should be safe, easy, and minimize disruption of device operation.

— When possible, the updates should be performed remotely, in the “hostile’ field, without requiring the
presence of atrusted security officer.
— When reasonable, internal application state should persist across updates.

e Particular versions of software may be so defective as to be non-functional or downright malicious. Safe, easy
updates must be possible even then.



e Duetoits complexity and ever-evolving nature, the code supporting high-end cryptography (including public-
key*, hashing, and randomness) must itself be updatable. But repair should be possible even if this softwareis
non-functional.

2.2. Security Requirements

The primary value of a secure coprocessor isits ability to provide a trusted sanctuary in a hostile environment. This
goal leads to two core security requirements:

e The device must really provide a safe haven for application software to execute and accumul ate secrets.

e It must be possible to remotely distinguish between a message from a genuine application on an untampered
device, and a message from a clever adversary.

We consider these requirementsin turn.

2.2.1. Safe Execution

It must be possiblefor the card, placed in a hostile environment, to distingui sh between genuine software updates from
the appropriate trusted sources, and attacks from a clever adversary.

The foundation of secure coprocessing applicationsisthat the coprocessor really provides safe haven. For example,
suppose that we are implementing decentralized electronic cash by having two secure devices shake hands and then
transactionally exchange money (e.g., [27]). Such a cash program may store two critical parameters in BBRAM:
the private key of this wallet, and the current balance of thiswallet. Minimaly, it must be the case that physica
attack redlly destroysthe private key. However, it must also be the case that the stored balance never change except
through appropriate action of the cash program. (For example, the balance should not change due to defective memory
management or lack of fault-tolerancein updates.)

Formalizing this requirement brings out many subtleties, especialy in light of the flexible shipment, loading, and
update scenarios required by Section 2.1 above. For example:

e What if an adversary physically modifies the device before the cash program was installed?
e What if an adversary “updates’ the cash program with amalicious version?
e What if an adversary updates the operating system underneath the cash program with amalicious version?

e What if the adversary aready updated the operating system with a malicious version before the cash program
was installed?

o What if the adversary replaced the public-key cryptography code with one that provides backdoors?

e What if asibling application finds and exploitsa flaw in the protections provided by the underlying operating
system?

After much consideration, we devel oped safe execution criteriathat address the authority in charge of a particular
software layer, and the execution environment—the code and hardware—that has accesses to the secrets belonging to
that layer.

e Control of software. If Authority N has ownership of a particular software layer in a particular device, then
only Authority N, or adesignated superior, can load code into that layer in that device.

e Access to secrets. The secrets belonging to thislayer are accessible only by code that Authority N trusts,
executing on hardware that Authority N trusts, in the appropriate context.

40ur hardware accelerator for RSA and DSA merely does modular arithmetic; hence, additional software support is necessary.



2.2.2. Authenticated Execution

Providing a safe haven for code to run does not do much good, if it is not possible to distinguish this safe haven from
an impostor. It must thus be possible to:

e authenticate an untampered device;
e authenticate its software configuration; and

e do thisremotely, via computational means.

Thefirst requirement isthemost natural. Consider again example of decentralized cash. Anadversary who runsthis
application on an exposed computer but convinces the world it is really running on a secure device has compromised
the entire cash system—since he or she can freely counterfeit money by incrementing the stored balance.

The second requirement—authenti cating the software configuration—is often overlooked but equally important.
In the cash example, running a maliciously modified wallet application on a secure device also gives an adversary the
ability to counterfeit money. For another example, running a Certificate Authority on a physically secure machine
without knowing for certain what key generation softwareisreally installed |eaves one open to attack [28].

The third requirement—remote verification—isdriven by two main concerns. First, inthemost general distributed
application scenarios, participants may be separated by great physical distance, and have no trusted witnesses at each
other’'ssite. Physical inspection is not possible, and even the strongest tamper-evidence technology is not effective
without a good audit procedure.

Furthermore, we are reluctant to trust the effectiveness of commercialy feasible tamper-evidence technology
against the dedicated adversaries that might target a high-end device. (Tamper-evidence technology only attempts to
ensure that tampering leaves clear visual signs.) We are afraid that a device that is opened, modified and reassembled
may appear perfect enough to fool even trained analysts.

This potentia for perfect reassembly raises the serious possibility of attack during distribution and configuration.
In many deployment scenarios, no one will have both the skillsand the motivation to detect physical tamper. The user
who takes the device out of its shipping carton will probably not have the ability to carry out the forensic physical
analysis necessary to detect a sophisticated attack with high assurance. Furthermore, the users may be the adversary—
who probably should not be trusted to report whether or not his or her device shows signs of the physical attack he or
shejust attempted. Those parties (such as, perhaps, the manufacturer) with both the skillsand the motivation to detect
tamper may be reluctant to accept the potentia liability of a“fase negative’ tamper evaluation.

For all these reasons, our tamper-protection approach does not rely on tamper-evidence a one—see Section 4.



3. Overview of Our Architecture

In order to meet the requirements of Section 2, our architecture must ensure secure loading and execution of code,
while al so accommodating the flexibility and trust scenarios dictated by commercia constraints.

3.1. Secrets

Discussions of secure coprocessor technology usualy begin with “physical attack zeroizes secrets.” Our security
architecture must begin by ensuring that tamper actually destroys secrets that actually meant something. We do this
with three main techniques:

e The secrets go away with physical attack. Section 4 presents our tamper-detection circuitry and protocol
techniques. These ensure that physical attack resultsin the actual zeroization of sensitive memory.

e The secrets started out secret. Section 5 presents our factory initializationand regeneration/recertification
protocols. These ensure that the secrets, when first established, were neither known nor predictable outside the
card, and do not require assumptions of indefinite security of any given keypair.

e The secrets stayed secret despite software attack. Section 6 presents our hardware ratchet lock
techniques. These techniquesensurethat, despite arbitrarily bad compromise of rewritable software, sufficiently
many secrets remain to enable recovery of the device.

3.2. Code

Second, we must ensure that code isloaded and updated in asafeway. Discussionsof code-downloading usualy begin
with “just sign the code.” However, focusing on code-signing alone neglects several additional subtleties that this
security architecture must address. Further complications arise from the commercia requirement that thisarchitecture

accommodate a pool of mutually suspicious developers, who produce code that is loaded and updated in the hostile
field, with no trusted couriers.

e Code loads and updates. We must have techniques that address questions such as:

— What about updates to the code that checks the signatures for updates?

— Against whose public key should we check the signature?

— Does code end up installed in the correct place?

— What happens when another authority updates alayer on which one's code depends?

e Code integrity. For the code loading techniques to be effective, we must also address i ssues such as:

— What about theintegrity of the code that checks the signature?
— Can adversarial code rewrite other layers?

Section 7 presentsour techniquesfor codeintegrity, and Section 8 presentsour protocolsfor codeloading. Together,
these ensure that the code in alayer is changed and executed only in an environment trusted by the appropriate code
authority.

3.3. Achieving the Security Requirements

Our full architecture carefully combines the building blocks described in Section 4 through Section 8 to achieve the
required security properties:



e Code executes in a secure environment. Section 9 presents how our secrecy management and code
integrity techniques interact to achieve the requirements of Section 2.2.1: software loaded onto the card can
execute and accumul ate state in a continuoudly trusted environment, despite the risks introduced by dependency
on underlying software controlled by a potentialy hostile authority.

e Participants can remotely authenticate real code on a real device. Section 10 presents how our
secrecy management and code integrity techniques interact to achieve the requirement of Section 2.2.2: any
third party can distinguish between a message from a particular program in a particular configuration of an
untampered device, and amessage from a clever adversary.



4. Defending against Physical Threats

The main goal of physica security isto ensure that the hardware can know if it remainsin an unmolested state—and
if so, that it continues to work in the way it was intended to work. To achieve physical security, we start with our
basic computational/crypto device and add additional circuitry and componentsto detect tampering by direct physical
penetration or by unusual operating conditions. If the circuit a condition that would compromise correct operation,
the circuit respondsin a manner to prevent theft of secrets or misuse of the secure coprocessor.

4.1. Overview

Traditionally, physical security design has taken several approaches:

tamper evidence, where packaging forces tamper to leave indelible physical changes;

tamper resistance, where the device packaging makes tamper difficult;

tamper detection, where the device actually is aware of tamper; and

tamper response, where the device actively takes countermeasures upon tamper.

Wefeel that commercialy feasibletamper-evidence technol ogy and tamper-resi stance technol ogy cannot withstand
the dedicated attacks that a high-performance, multi-chip coprocessor might face. Consequently, our design incorpo-
rates an interleaving of resistance and detection/response techniques, so that penetrations are sufficiently difficult to
trigger device response.

e Section 4.2 will discuss our techniques to detect penetration attacks.
e Section 4.3 will discuss how our device responds once tamper is detected.

e Section4.4will discussestheadditional stepswetaketo ensurethat tamper responseiseffectiveand meaningful—
particularly against physica attacks other than penetration.

Historically, work in thisarea placed the largest effort on physical penetration [8, 22, 23]. Preventing an adversary
from penetrating the secure coprocessor and probing the circuit to discover the contained secretsisstill thefirst stepin
a physical security design. Although some standards have emerged as groundwork and guidelines[14, 24, 25], exact
techniques are till evolving.

A significant amount of recent work examines effortsto cause incorrect device operation, and thus alow bypass of
security functions[2, 3]. Other recent work capitalizes on small induced failuresin cryptographic agorithmsto make
discovery of keys easier [6, 7]. Conseguently, as feasible tampering attacks have become more sophisticated through
time and practice, it has become necessary to improve all aspects of a physical security system. Over the years many
techniques have been devel oped, but they all face the same problem: no provably tamper-proof system exists. Designs
get better and better, but so do the adversary’s skill and tools. Asaresult, physical security is, and will remain, arace
between the defender and the attacker. (To date, we have not been able to compromise our own security, which isalso
under evaluation by an independent laboratory against the FIPS 140-1 Level 4 criteria. [11, 14])

The economic challenge of producing a physically secure but usable system at a reasonable cost is difficult.

4.2. Detecting Penetration

We have taken the approach of making incremental improvements on well-known technology, and layering these
techniques. Thisway, the attacker hasto repeat, at each layer, work that has alow probability of success; furthermore,
the attacker must work through the layers that have already been passed (and may still be active). The basic el ement
isagrid of conductorswhich is monitored by circuitry that can detect changes in the properties (open, shorts, changes
in conductivity) of the conductors. The conductors themselves are non-metallic and closely resemble the material in
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which they are embedded—making discovery, isolation, and manipulation more difficult. These grids are arranged
in several layers and the sensing circuitry can detect accidental connection between layers as well as changes in an
individual layer.

The sensing grids are made of flexible material and are wrapped around and attached to the secure coprocessor
package as if it were being gift-wrapped. Connectionsto and from the secure coprocessor are made viaathin flexible
cable which is brought out between the foldsin the sensing grids so that no openings are left in the package. (Using a
standard connector would leave such openings.)

After wewrap the package, we embed it in apotting material. Asmentioned above, thismateria closely resembles
the material of the conductors in the sensing grids. Besides making it harder to find the conductors, this physica
and chemical resemblance makes it nearly impossible for an attacker to penetrate the potting without also affecting
the conductors. Then we enclose the entire package in a grounded shield to reduce susceptibility to el ectromagnetic
interference, and to reduce detectable electromagnetic emanations.

4.3. Responding to Tamper

The most natural tamper response in a secure coprocessor is to erase secrets that are contained in the unit, usualy
by erasing (zeroizing) an Static Random Access Memory (SRAM) that contains the secrets, then erasing the operating
memory and ceasing operation. An SRAM can be made persistent withasmall battery, and can, under many conditions,
be easily erased.

Thisiswhat we doin our device: battery-backed SRAM (BBRAM) exists as storage for secrets. Upon detection of
tamper, we zeroize the BBRAM and disable therest of the device by holdingit in reset. The tamper detection/response
circuitry isactive at all times whether the coprocessor is powered or not—the detecti on/response circuitry runs on the
same battery that maintains the BBRAM when the unit is unpowered.

Tamper can happen quickly. In order to erase quickly, we crowbar the SRAM by switching its power connection
to ground. At the same time, we force all data, address and control linesto a high impedance state, in order to prevent
back-powering of the SRAM viathose lines. This technique is employed because it is simple, effective, and it does
not depend on the CPU being sufficiently operational for sufficiently long to overwrite the contents of the SRAM on
tamper.

4.4. Detecting other Physical Attacks

To prevent attacks based on manipulating the operating conditions, including those that would make it difficult to
respond to tamper and erase the secretsin SRAM, severa additional sensors have been added to the security circuitry
to detect and respond to changes in operating conditions.

Attacks on Zeroization. For zeroization to be effective, certain environmenta conditions must be met. For
example, low temperatures will allow an SRAM to retain its data even with the power connection shorted to ground.
To prevent this, atemperature sensor inour devicewill cause the protection circuit to erase the SRAM if thetemperature
goes below a preset level.

lonizing radiation will also cause an SRAM to retain its data, and may disrupt circuit operation. For thisreason,
our device also detects significant amounts of ionizing radiation and triggers the tamper response if detected.

Storing the same value in a bit in SRAM over long periods can aso cause that value to imprint. Our software
protocolstake thisthreat into account, by periodically inverting this data.

Other Attacks. An adversary might also compromise security by causing incorrect operation through careful
manipulation of various environmental parameters. As a conseguence, a device needs to detect and defend against
such attacks.

One such environmental parameter is supply voltage, which has to be monitored for several thresholds. For
example, at each power-down, the voltagewill go from an acceptable level to alow voltage, then to no supply voltage.

11



But the detection and response circuitry needs to be always active—so at some point, it has to switch over to battery
operation. A symmetric transition occurs at power-up.

Whenever the voltage goes below the acceptable operating level of the CPU and its associated circuitry, these
components are al held in areset state until the voltage reaches the operating point. When the voltage reaches the
operating point, the circuitry is allowed to run. If the voltage exceeds the specified upper limit for guaranteed correct
operation, it is considered a tamper, and the tamper circuitry is activated.

Another method by which correct operation can be compromised is by manipulating the clock signalsthat go to
the coprocessor. To defend against these sorts of problems, we use phase locked 1oops and independently generated
internal clocks to prevent clock signalswith missing or extrapulses, or onesthat are either too fast or slow.

High temperatures can cause improper operation of the device CPU, and even damage it. So, high temperatures
cause the device to be held in reset from the operational limit to the storage limit. Detection of temperature above the
storage limit is treated as atamper event.

12



5. Device Initialization

Section 4 discussed how we erase device secrets upon tamper. One might deduce that a natural consequence would be
that “knowledge of secrets’ implies“device isreal and untampered.” But for this conclusion to hold, we need more
premises:

o the secrets were secret when they were first established,;
o thedevice wasreal and untampered when its secrets were established;
o weakening of cryptography does not compromise the secrets;

e operation of the device has not caused the secrets to be exposed.

This section discusses how we providethe first three properties; Section 6 will discuss how we providethe fourth.

5.1. Factory Initialization

As one might naturally suspect, an untampered device authenticates itself as such using cryptographic secrets stored
in secure memory. The primary secret is the private half of an RSA or DSA keypair. Section 10 elaborates on the
use of this private key. Some symmetric-key secrets are aso necessary for some specia cases (as Section 5.2.3 and
Section 8.3 will discuss).

The device keypair is generated at device initialization. To minimize risk of exposure, a device generatesits own
keypair internally, within the tamper-protected and using seeds produced from the interna hardware random number
generator. The device holdsits private key in secure BBRAM, but exports its public key. An externa Certification
Authority (CA) adds identifying information about the device and its software configuration, signs a certificate for this
device, and returns the certificate to the device.

(The device-specific symmetric keys are a so generated internally at initialization—see Section 8.3.)

Clearly, the CA must have some reason to believe that the device in question redlly is an authentic, untampered
device. To addressthisquestion—andavoid therisksof undetectable physical modification (Section4.1)—weinitialize
the cards in the factory, as the last step of manufacturing.

Although factory initialization removes the risks associated with insecure shipping and storage, it does introduce
one substantial drawback: the device must remain within the safe storage temperature range (Section 4.4). But when
considering the point of initialization, a manufacturer faces a tradeoff between ease of distribution and security; we
have chosen security.

5.2. Field Operations
5.2.1. Regeneration

An initialized device has the ability to regenerate its keypair. Regeneration frees a device from depending forever on
one keypair, or key length, or even cryptosystem. Performing regeneration atomically® with other actions, such as
reloading the crypto code (Section 8), aso proves useful (as Section 10 will discuss). For stronger forward integrity,
implementations could combine this technique with expiration dates.

To regenerate its keypair, a device does the following:

e create anew keypair from interna randomness,

5 An atomic change is one that happens entirely, or not at all—despite failures and interruptions. Atomicity for complex configuration-changing
operationsisin an important property.
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e usetheold private key to sign atransition certificate for the new public key, including data such as the reason
for the change, and

e atomically completethe change, by deletingtheold private key and making the new pair and certificate“officia .”

The current list of transition certificates, combined withtheinitial device certificate, certifiesthe current device private
key. Figure4 illustratesthis process.

Signing Tool at Factory
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;
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that verify against that verify against
DEVICE_PUBLIC_KEY_1 ) DEVICE_PUBLIC_KEY_2
then it's a real, signs then it's a real,
untampered device" poomme +| untampered device"
'
Device Certificate ! Transition Certificate

'
certifies ' certifies

i
;
)
DEVICE_PRIVATE KEY_1 | |™ 77777777 ‘ DEVICE_PRIVATE_KEY_2

REGENERATION
OF

Device's Secure Memory Device's Secure Memory

DEVICE KEY

Figure 4 The device may regenerate its internal keypair, and atomically create a
transition certificate for the new public key signed with the old private key.

5.2.2. Recertification

The CA for devices can a so recertify the device, by atomically replacing the old certificate and (possibly empty) chain
of transition certificates with a single new certificate. Figure5 illustrates this process. (Clearly, it would be a good
ideafor the CA to verify that the claimed public key redly is the current public key of an untampered device in the
appropriate family.)

Thistechnique can a so freesthe CA from depending forever on asinglekeypair, key length, or even cryptosystem.
Figure6illustratesthisvariation. Again, for stronger forward integrity, implementations could combine thistechnique
with expiration dates.
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Figure 5 The CA can recertify a device, by replacing its current device certificate and transition
certificate sequence with a new device certificate, certifying the latest public key.
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Figure 6 The CA can use device recertification in order to
avoid depending forever on the same keypair.
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5.2.3. Revival

Scenarios arise where the tamper detection circuitry in a device has zeroized its secrets, but the device is other-
wise untampered. As Section 4 discusses, certain environmental changes—such as cold storage or bungled battery
removal—trigger tamper responsein our design, since otherwisethese changeswould providean avenue for undetected
tamper. Such scenarios are arguably inevitable in many tamper-response designs—since a device cannot easily wait
to seeif atamper attempt is successful before responding.

Satisfying an initid commercid constraint of “save hardware whenever possible” requires away of reviving such
azeroized but otherwise untampered device. However, such arevival procedure introduces a significant vulnerability:
how do we distinguish between zeroized but untampered device, and a tampered device? Figure 7 illustrates this
problem.

CORRECT REVIVAL

ZEROIZED
UNTAMPERED
device

device

Device

RESPONDS
SECRETS to tamper

Secure Memory

ZEROIZED,
MODIFIED
device

(nothing)
INITIALIZED, Secure Memory
UNTAMPERED

(nothing)

Secure Memory

INCORRECT REVIVAL

Figure 7 Tamper response zeroizes the secrets in an initialized device, and leaves either an
untampered but zeroized device, or a tampered device. A procedure to revive a zeroized device
must be able distinguish between the two, or else risk introducing tampered devices back into the
pool of allegedly untampered ones.

How do we perform this authentication?

As discussed earlier, we cannot rely on physical evidence to determine whether a given card is untampered—
since we fear that a dedicated, well-funded adversary could modify a device (e.g., by changing the internal FLASH
components) and then re-assemble it sufficiently well that it passes direct physical inspection. Indeed, the need for
factory-initialization was driven by this concern:

Wecan only rely on secretsin tamper-protected secure memory to distinguishareal devicefrom atampered
device.

Indeed, the problem isbasicaly unsolvable—how can we distinguish an untampered but zeroized card from atampered
reconstruction, when, by definition, every aspect of the untampered card is visibleto a dedicated adversary?

To accommodate both the commercia and security constraints, our architecture compromises:

e Revival is Possible. We provide a way for a trusted authority to revive an alegedly untampered but
zeroized card, based on authentication via non-volatile, non-zeroizable “secrets’ stored inside a particular
device component.
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Clearly, thistechniqueis risky, since a dedicated adversary can obtain a device's revival secrets via destructive
analysis of the device, and then build a fake device that can spoof the revival authority.

e Revival is Safe. To accommodate thisrisk, we force revival to atomically destroy all secrets withinadevice,
and to leave it without a certified private key. A trusted CA must then re-initializethe device, before the device
can “prove’ itsdf genuine. This initialization requires the creation of a new device certificate, which provides
the CA with an avenue to explicitly indicate the card has been revived (e.g., “if it produces signaturesthat verify
against Device Public Key N, then it is allegedly a real, untampered device that has undergone reviva—so
beware’).

Thus, we prevent a device that has undergone this risky procedure from impersonating an untampered device
that has never been zeroized and revived.

Furthermore, given the difficulty of effectively authenticating an untampered but zeroized card, and the potential
risks of amistake, the support team for the commercial product has decided not to support this optionin practice.

5.3. Trusting the Manufacturer

A discussion of untamperedness leads to the question: why should the user trust the manufacturer of the device?
Considering this question gives rise to three sets of issues.

e Contents. Does the black box really contain the advertised circuits and firmware? The paranoid user can
verify this probabilisticaly by physically opening and examining a number of devices. (The necessary design
criteriaand object code listings could be made available to customers under specid contract.)

e CA Private Key. Doesthe factory CA ever certify bogus devices? Such abuse isarisk with any public-key
hierarchy. But, the paranoid user can aways establish their own key hierarchy, and then design applicationsthat
accept as genuine only those devices with a secondary certificate from this aternate authority.

¢ Initialization. Was the device actually initialized in the advertised manner? Given the control a manufacturer
might have, it is hard to see how we can conclusively establish that the initialization secretsin acard areindeed
relics of the execution of the correct code. However, the cut-and-examine approach above can convince a
paranoid user that the key creation and management software in an aready initialized device is genuine. This
assurance, coupled with the regeneration technique of Section 5.2.1 above, provides a solution for the paranoid
user: causing their device to regenerate after shipment givesit a new private key that must have been produced
in the advertised safe fashion.
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6. Defending against Software Threats

6.1. Motivation

Section 4 discussed how we ensure that the core secrets are zeroized upon physical attack, and Section 5 discussed
how we ensure that they were secret to begin with. However, these techniques till leave an exposure: did the device
secrets remain secret throughout operation?

For example, suppose afew months after rel ease, some penetration speciaistsdiscover aholein the OS that allows
untrusted user code to execute with full supervisor privilege. Our code loading protocol (Section 8) allows us to ship
out a patch, and a device installing this patch can sign a receipt with its private key.

One might suspect verifying this signature would imply the hole has been patched in that device. Unfortunately,
this conclusion would be wrong: a hole that alows untrusted code full privileges would aso grant it access to the
private key—that is, without additional hardware countermeasures. This section discusses the countermeasures we
use.

6.2. Software Threat Model

This risk is particularly dire in light of the commercial constraints of multiple layers of complex software, from
multipleauthorities, remotely installed and updated in hostile environments. History showsthat complex systems are,
quite often, permeable. Consequently, we address thisrisk by assuming that all rewritable software in the device may
behave arbitrarily badly.

Drawing our defense boundary here frees us from the quagmire® of having low-level miniboot code evaluate
incoming code for safety. It al so accommodates the wishes of system software designers who want full access to “Ring
0" inthe underlying Intel x86 CPU architecture.

Declaring this assumption often raises objections from systems programmers. We pro-actively raise some coun-
terarguments. First, although all code loaded into the device is somehow “controlled,” we need to accommodate the
pessimistic view that “controlled software’” means, at best, good intentions. Second, athough an OS might provide
two levels of privilege, history” isfull of examples where low-level programs usurp higher-level privileges. Finally,
as implementers ourselves, we need to acknowledge the very real possibility of error and accommodate mistakes as
well as malice.

6.3. Hardware Access Locks

In order to limit the abilities of rogue but privileged software, we use hardware locks: independent circuitry that
restricts the activities of code executing on the main CPU. We chose to use a smple hardware approach for severa
reasons, including:

e We cannot rely on the device operating system, since we do not know what it will be—and a corrupt or faulty
OS might be what we need to defend against.

e We cannot rely on the protection rings of the device CPU, because the rewritable OS and Miniboot layersrequire
maximal CPU privilege.

Figure 1 shows how the hardware locks fit into the overall design: the locks are independent devices that can
interact with the main CPU, but control access to the FLASH and to BBRAM.

8With the advent of Java, preventing hostile downloaded code from damaging a system has (again) become a popular topic. Our architecture
respondsto this challenge by allowing “applets’ to do whatever they want—except they can neither access critical authentication secrets, nor alter
critical code (which includes the code that can access these secrets). Furthermore, these restrictions are enforced by hardware, independent of the
OS and CPU.

7 For examples, consult the on-line archives of the Computer Emergency Response Team at Carnegie Mellon University.
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However, this approach raises a problem. Critical memory needs protection from bad code. How can our simple
hardware di stinguish between good code and bad code?

We considered and discarded two options:

e False Start: Good code could write a password to the lock. Although this approach simplifies the necessary
circuitry, we had doubts about effectively hiding the passwords from rogue software.

e False Sart: Thelock determines when good code is executing by monitoring the address bus duringinstruction
fetches.

This approach greatly complicates the circuitry. We felt that correct implementation would be difficult, given
the complexities of instruction fetching in modern CPUs, and the subtleties involved in detecting not just the
address of an instruction, but the context in which it is executed. For example, it is not sufficient merely to
recognize that a sequence of instructions came from the address range for privileged code; the lockswould have
to further distinguish between

— theseinstructions, executing as privileged code;
— theseinstructions, executing as a subroutine; called by unprivileged code;
— theseinstructions, executing as privileged code, but with a sabotaged interrupt table.

Ratchet 0 Ratchet 1 Ratchet 2 Ratchet 3 Ratchet 4
Trust S ——— i ——mmmmmmmm o B — - — - ———m - - = S i - - — - mm—m - - - -
Ratchet ; ; ; ;
- o Operating Application Application
code Miniboot 0 Miniboot 1 System Start-u
start-up p
-
TIME
Hardware
Resert

Figure 8 Hardware reset forces the CPU to begin executing Miniboot 0 out of ROM; execution
then proceeds through a non-repeating sequence of phases, determined by code and context.
Hardware reset also forces the trust ratchet to zero; each block of code advance the ratchet before
passing control to the next block in the sequence. However, no code block can decrement the
ratchet.

Solution: Time-based Ratchet. We finaly developed alock approach based on the observation that reset (a
hardware signal that causes al device circuitry return to aknown state) forces the device CPU to begin execution from
afixed addressin ROM: known, trusted, permanent code. As execution proceeds, it passes through a non-repeating
sequence of code blockswith different level s of trust, permanence, and privilegerequirements. Figure8illustratesthis
sequence:

o Reset starts Miniboot O, from ROM;

Miniboot 0 passes control to Miniboot 1, and never executes again.

Miniboot 1 passes control to the OS, and never executes again.

The OS may perform some start-up code.

While retaining supervisor control, the OS may then execute application code.
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e The application (executing under control of the OS) may itself do some start-up work, then (potentialy) incur
dependence on less trusted code or input.

Our lock design model s thissequence with atrust ratchet, currently represented as a nonnegative integer. A small
microcontroller storesthetheratchet valuein aregister. Upon hardware reset, the microcontroller resets the ratchet to
0; through interaction with the device CPU, the microcontroller can advance the ratchet—but can never turn it back.
As each block finishes its execution, it advances the ratchet to the next appropriate value. (Our implementation also
enforces a maximum ratchet value, and ensures that ratchet cannot be advanced beyond this value) Figure 8 also
illustrates how thistrust ratchet model s the execution sequence.

The microcontroller then grants or refuses memory accesses, depending on the current ratchet value.

Decreasing Trust. The effectiveness of thistrust ratchet critically depends on two facts:

¢ The code blocks can be organized into a hierarchy of decreasing privilege levels (e.g., like classical work in
protection rings[16] or |attice models of information flow [5, 10]).

¢ Inour software architecture, these privilegelevels strictly decreasein real timel

Thistime sequencing, coupled with theindependence of thelock hardware from the CPU and thefact that the hardware
design (and its physical encapsulation) forces any reset of the locksto also reset the CPU, give theratchet its power:

¢ Theonly way to get the most-privileged level (“Ratchet 0”) isto force ahardware reset of the entire system, and
begin executing Miniboot 0 from a hardwired addressin ROM, in a known state.

e The only way to get a non-maximal privilege level (“Ratchet N,” for N > 0) isto be passed control by code
executing at a an earlier, higher-privileged ratchet level.

o Neither rogue software (nor any other software) can turn the ratchet back to an earlier, higher-privileged level —
short of resetting the entire system.

The only avenue for rogue software at Ratchet N to steal the privilegesof ratchet K < N would be to somehow alter
the software that executes at rachet K or earlier. (However, as Section 7.2 will show, we use the ratchet to prevent
these attacks as well.)

Generalizations. Although this discussion used a smple total order on ratchet values, nothing prevents using a
partia order. Indeed, as Section 7.2 discusses, our initial implementation of the microcontroller firmware does just
that, in order to allow for some avenues for future expansion.

6.4. Privacy and Integrity of Secrets

The hardware locks enable us to address the challenge of Section 6.1: how do we keep rogue software from stealing
or modifying critical authentication secrets? We do this by establishing protected pages. regions® of battery-backed
RAM which are locked once theratchet advances beyond a certain level. The hardware locks can then permit or deny
write access to each of these pages—rogue code might till issue aread or write to that address, but the memory device
itself will never seeit.

Table 1 illustrates the access policy we chose: each Ratchet level R (for 0 < R < 3) hasits own protected page,
with the property that Page P can only be read or writtenin ratchet level R < P.

We uselockable BBRAM (LBBRAM) to refer to the portion of BBRAM consisting of the protected pages. (Aswith
all BBRAM in the device, these regions preserve their contents across periods of no power, but zeroize their contents

8The term “page” here refers solely to aparticular region of BBRAM—and not to special componentsof any particular CPU memory architecture.
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upon tamper.) Currently, these pages are used for outgoing authentication (Section 10); Page 0 a so holds some secrets
used for ROM-based |oading (Section 8).

We partition the remainder of BBRAM into two regions. one belonging to the OS exclusively, and one belonging
to the application. Withinthisnon-lockable BBRAM, we expect the OS to protect its own data from the application’s.

Ratchet 0 Ratchet 1 Ratchet 2 Ratchet 3 Ratchet 4
(Miniboot 0) | (Miniboot 1) (os (Application | (Application)
start-up) start-up)

Protected Page 0
NO ACCESS

Protected Page 1

Protected Page 2 READ, WRITE ALLOWED

Protected Page 3

Table 1 Hardware locks protect the privacy and integrity of critical secrets.
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7. Code Integrity

The previous sections presented how our architecture ensures that secrets remain accessible only to allegedly trusted
code, executing on an untampered device. To be effective, our architecture must integrate these defenses with
techniques to ensure that this executing code really is trusted.

This section presents how we address the problem of code integrity:

e Section 7.1 and Section 7.2 describe how we defend against code from being formally modified, except through
the official code |oading procedure.

e Section 7.3 and Section 7.4 describes how we defend against modifications due to other types of failures.

e Section 7.5 summarizes how we knit these techniques together to ensure the device securely boots.

Note that although our long-term vision of the software architecture (Figure 3) includes simultaneously resident
sibling applications and dynamically-loaded applications, this section confinesitself to our current implementation, of
one application, resident in FLASH.

7.1. Loading and Cryptography

We confine the tasks of deciding and carrying out ateration of code layers to Miniboot. Although previous work
considered a hierarchical approach to loading, our commercia requirements (multiple-layer software, controlled by
mutually suspicious authorities, updated in the hostile field, while sometimes preserving state) led to trust scenarios
that were simplified by centralizing trust management.

Miniboot 1 (in rewritable FLASH) contains code to support public-key cryptography and hashing, and carries out
the primary code installation and update tasks—which include updating itself.

Miniboot O (in boot-block ROM) contains primitive code to perform DES using the DES-support hardware, and
uses secret-key authentication[19] to perform the emergency operations necessary to repair adevice whose Miniboot 1
does not function.

(Section 8 will discuss the protocols Miniboot uses.)

7.2. Protection against Malice

As experience in vulnerability analysis often reveals, practice often deviates from policy. Without additional counter-
mesasures, the policy of “Miniboot isin charge of installing and updating al code layers’ does not necessarily imply
that “the contents of code layers are always changed in accordance with the design of Miniboot, as instaled.” For
example:

o Without sufficient countermeasures, malicious code might itself rewrite code layers.

o Without sufficient countermeasures, malicious code might rewrite the Miniboot 1 code layer, and cause Miniboot
toincorrectly “maintain” other layers.

To ensure that practice meets policy, we use the trust ratchet (Section 6) to guard rewriting of the code layersin
rewritable FLASH. We group sets of FLASH sectors into protected segments, one® for each rewritable layer of code.
The hardware locks can then permit or deny write access to each of these segments—rogue code might still issue a
write to that address, but the memory deviceitself will never seeiit.

®Again, the term “segment” is used here solely to denote to these sets of FLASH sectors—and not to special components of a CPU memory
architecture.
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Table 2 illustrates the write policy we chose for protected FLASH. We could have limited Ratchet 0 write-access
to Segment 1 aone (since in practice, Miniboot 0 only writes Miniboot 1). However, it makes little security sense
to withhold privileges from earlier, higher-trust ratchet levels—since the earlier-level code could always usurp these
privileges by advancing the ratchet without passing control.

As a consequence of applying hardware locks to FLASH, malicious code cannot rewrite code layers unless it
modifies Miniboot 1. But thisis not possible—in order to modify Miniboot 1, an adversary has to either alter ROM,
or dready have atered Miniboot 1. (Note these safeguards apply only in the realm of attacks that do not result in
zeroizing the device. An attacker could bypass al these defenses by opening the device and replacing the FLASH
components—but we assume that the defenses of Section 4 would ensure that such an attack would trigger tamper
detection and response.)

In order to permit changing to a hierarchica approach without changing the hardware design, the currently
implemented lock firmware permits Ratchet 1 to advance instead to a Ratchet 2/, that acts like Ratchet 2, but permits
rewriting of Segment 3. Essentially, our trust ratchet, asimplemented, is aready ranging over anon-total partial order.

Ratchet 0 Ratchet 1 Ratchet 2 Ratchet 3 Ratchet 4
(Miniboot 0) | (Miniboot 1) (0s (Application | (Application)
start-up) start-up)

Protected Segment 1

(Miniboot 1)

Protecte_d Segment 2 READ, WRITE ALLOWED READ ALLOWED,

(Operating System/ WRITE PROHIBITED

Control Program)

Protected Segment 3

(Application)

Table 2 The hardware locks protect the integrity of critical FLASH segments.

7.3. Protection against Reburn Failure

In our current hardware implementation, multiple FLASH sectors make up one protected segment. Nevertheless, we
erase and rewrite each segment as awhole, in order to simplify data structures and to accommodate future hardware
with larger sectors.

This decision leaves us open to a significant risk: afailure or power-down might occur during the non-zero time
interval between thetime Miniboot startserasing acode layer to be rewritten, and thetimethat the rewrite successfully
completes. This risk gets even more interesting, in light of the fact that rewrite of a code layer may aso involve
changes to other state variables and LBBRAM fields.

When crafting the design and implementation, we followed the rule that the system must remain in a safe state no
matter what interruptions occur during operations. This principleis especialy relevant to the process of erasing and
reburning software resident in FLASH.

e Since Miniboot 1 carries out loading and contains the public-key crypto support, we dlocate two regionsfor itin
FLASH Segment 1, so that theold copy existsand isusable up until thenew copy has been successfully installed.
This approach permitsusing Miniboot 1 for public-key-based recovery from failuresduring Miniboot 1 updates.

¢ When reburning the OS or an application, we temporarily demote its state, so that on the next reset after afailed
reburn, Miniboot recognizes that the FLASH layer is now unreliable, and cleans up appropriately.

For more complex transitions, we extend this approach: all changes atomically succeed together, or fail either back to
the origina state, or to a safe intermediate failure state.
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7.4. Protection against Storage Errors

Hardware lockson FLASH protect the code layers from being rewritten maliciously. However, bitsin FLASH devices
(even in boot block ROM) can change without being formally rewritten—dueto the effects of random hardware errors
in these bits themselves.

To protect against spurious errors, we include a 64-bit DES-based MAC with each code layer. Miniboot O checks
itself before proceeding; Miniboot O checks Miniboot 1 before passing control; Miniboot 1 checks the remaining
segments. The use of a 64-bit MAC from CBC-DES was chosen purely for engineering reasons. it gave a better
chance at detecting errors over datasets the size of the protected segments than a single 32-bit CRC, and was easier to
implement (even in ROM, given the presence of DES hardware) than more complex CRC schemes.

We reiterate that we do not rely solely on single-DES to protect code integrity. Rather, our use of DES as a
checksum is solely to protect against random storage errorsin awrite-protected FLASH segment. An adversary might
exhaustively find other executables that a so match the DES MAC of the correct code; but in order to do anything with
these executables, the adversary must get write-access to that FLASH segment—in which case, the adversary also has
write-access to the checksum, so his exhaustive search was unnecessary.

7.5. Secure Bootstrapping

To ensure secure bootstrapping, we use severa techniques together:

e The hardware locks on FLASH keep rogue code from altering Miniboot or other code layers.
e Theloading protocols (Section 8) keep Miniboot from burning adversary code into FLASH.

e The checksums keep the device from executing code that has randomly changed.

If an adversary can cause (e.g., through radiation) extensive, deliberate changes to a FLASH layer so that it till
satisfies the checksum it stores, then he can defeat these countermeasures. However, we believe that the physica
defenses of Section 4 would keep such an attack from being successful:

e Thephysical shieldinginthedevicewould makeit nearly impossibleto produce such carefully focused radiation.
o Radiation sufficiently strong to alter bits should a so trigger tamper response.

Consequently, securely bootstrapping a custom-designed, tamper-protected device is easier than the general problem
of securely bootstrapping a general-purpose, exposed machine (e.g., [4, 9, 26]).

Execution Sequence Our boot sequence follows from a common-sense assembly of our basic techniques.
Hardware reset forces execution to begin in Miniboot 0 in ROM. Miniboot O begins with Power-on Saf Test O
(POSTO), which evaluates the hardware required for the rest of Miniboot 0 to execute. Miniboot O verifiesthe MACs
for itself and Miniboot 1. If an external party presents an alleged command for Miniboot O (e.g., to repair Miniboot 1
(Section 8), Miniboot 0 will evaluate and respond to the request, then hat. Otherwise Miniboot 0 advances the trust
ratchet to 1, and (if Layer 1 isrdiable) jumpsto Miniboot 1.

Except for some minor, non-secret device-driver parameters, no DRAM dtate is saved across the Miniboot 0 to
Miniboot 1 transition. (In either Miniboot, any error or stateful change causes it to halt, in order to smplify anaysis.
Interrupts are disabled.)

Miniboot 1 beginswith POST1, which eval uates the remainder of the hardware. Miniboot 1 also verifiesMACsfor
Layers 2 and 3. If an external party presents an aleged command for Miniboot 1 (e.g., toreload Layer 2), Miniboot 1
will evaluate and respond to the request, then halt. Otherwise Miniboot 1 advances thetrust ratchet to 2, and (if Layer
2isreliable) jumpsto the Layer 2, the OS.

The OS then proceeds with its bootstrap. If the OS needs to protect data from an application that may find holesin
the OS, the OS can advance thetrust ratchet to 3 before invoking Layer 3 code. Similarly, the application can advance
the ratchet further, if it needs to protect its private data.
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8. Code Loading

8.1. Overview

One of the last remaining pieces of our architecture isthe secure installation and update of trusted code.

In order to accommodate our overall goa of enabling widespread development and deployment of secure coproces-
sor applications, we need to consider the practical aspects of this process. We review the principa constraints:

e Shipped empty. Inorder to minimize variationsof the hardware and to accommodate U.S. export regul ations,
it was decided that all deviceswould leave thefactory with only theminimal software configuration'® (Miniboot
only). The manufacturer does not know at ship time (and may perhaps never know later) where a particular
deviceis going, and what OS and application software will be installed on it.

e Impersonal broadcast. To simplify the process of distributing code, the code-loading protocol should permit
the process to be one-round (from authority to device), beimpersonal (the authority does not need to customize
theload for each device), and have the ability to be carried out on a public network.

e Updatable. Asdiscussed in Section 2.1, we need to be able to update code aready instaled in devices.

e Minimal disruption. An emphatic customer requirement was that, whenever reasonable and desired, applica
tion state be preserved across updates.

e Recoverable. We need to be able to recover an untampered device from faluresin its rewritable software—
which may include malicious or accidental bugsin the code, as well as failuresin the FLASH storage of the
code, or interruption of an update.

e Loss of Cryptography. The complexity of public-key cryptography and hashing code forced it to reside
in arewritable FLASH layer—so the recoverability constraint aso implies secure recoverability without these
abilities.

e Mutually Suspicious, Independent Authorities. In any particular device, the software layers may be
controlled by different authoritieswho may not trust each other, and may have different opinionsand strategies
for software update.

e Hostile environments. We can make no assumptionsabout the user machineitself, or the existence of trusted
couriersor trusted security officers.

To address these constraints, we developed and followed some guidelines:

o We make sure that Miniboot keeps itsintegrity, and that only Miniboot can change the other layers.

e \We ensure that the appropriate authorities can obtain and retain control over their layers—despite changes to
underlying, higher-trust layers.

e We use public-key cryptography whenever possible.

Section 8.2 below outlines who can be in charge of installing and changing code. Section 8.3 discusses how a
device can authenticate them. Section 8.4 discusses how an “empty” card inthe hostilefield can learn who isin charge
of itscode layers. Section 8.5 and Section 8.6 discuss how the appropriate authorities can authorize code installations
and updates. Section 8.7 summarizes software configuration management for devices. Section 8.8 illustrates the
devel opment process with a simple example.

10 Our design and implementation actually accommodatesany level of pre-shipment configuration, should this decision change.
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Authority over ‘
Layer 0: IBM Miniboot 0 Officer

Figure 9 Authorities over software segments are organized into a tree.

8.2. Authorities

AsFigure 9 illustrates, we organi ze software authorities—partieswho might authorize the | oading of new software—
into atree. The root is the sole owner of Miniboot; the next generation are the authorities of different operating
systems; the next are the authoritiesover the various applicationsthat run on top of these operating systems. We stress
that these parties are external entities, and apply to the entire family of devices, not just one.

Hierarchy in software architecture implies dependence of software. The correctness and security of the application
layer depends on the correctness and security of the operating system, which in turn depends on Miniboot 1, whichin
turn depends on Miniboot 0. (Thisrelation was implied by the decreasing privileges of the trust ratchet.)

Similarly, hierarchy in the authority tree implies dominance: the authority over Miniboot dominates al operating
system authorities; the authority over a particular operating system dominates the authorities over al applications for
that operating system.

Public Key
Code of Authority Other DES-MAC of
(e.g., who identifying segment contents
controls this parameters
code?)
Provided by external Code Authority Added by device, during

FLASH rewrite

Figure 10 Sketch of the contents of code layer.

8.3. Authenticating the Authorities

Public-Key Authentication. Wherever possible, a device uses a public-key signature to authenticate a message
allegedly from one of itscode authorities. The publickey against which thismessage isverified isstored inthe FLASH
segment for that code layer, along with the code and other parameters (see Figure 10).

Using public-key signatures makes it possible to accommodate the “impersonal broadcast” constraint. Storing
an authority’s public key aong with the code, in the FLASH layer owned by that authority, enables the authority to
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changeitskeypair over time, at itsown discretion. (Adding expiration dates and revocation listswould provide greater
forward integrity.)

However, effectively verifying such asignature requires two things:

e the code layer isalready loaded and and till has integrity (so the device actually knows the public key to use);
and

e Miniboot 1 still functions(so the device knows what to do with this pubic key).
These facts create the need for two styles of loading:

¢ ordinary loading, when these conditions both hold; and

e emergency loading, when at least onefails.

Secret-Key Authentication. Thelack of public-key cryptography forcesthe deviceto use asecret-key handshake
to authenti cate communications from the Miniboot O authority. The shared secrets are stored in Protected Page 0, in
LBBRAM. Such a scheme requires that the authority share these secrets. Our scheme [19] reconciles this need with
the no-databases requirement by having the device itself store asigned, encrypted message from the authority to itself.
During factory initidization, the device itself generates the secrets and encrypts this message; the authority signsthe
message and returns it to the device for safekeeping. During authentication, the device returns the message to the
authority.

UNOWNED OWNED

RELIABLE

RUNNABLE

Figure 11 State space of the OS and application code layers.

8.4. Ownership

Clearly, our architecture has to accommodate the fact that each rewritable code layer may have contentsthat are either
reliable or unreliable. However, in order to provided the necessary configuration flexibility, the OS and application
layers each have additional parameters, reflecting which external authority isin charge of them.

Our architecture addresses thisneed by giving each of these layers the state space sketched in Figure 11:

e The code layer may be owned or unowned.

e Thecontentsof an owned codelayer may bereliable. However, some owned layers—and all unowned ones—are
unreliable.

e A reliable code layer may actualy be runnable. However, some reliablelayers—and al unreliable ones— may
be unrunnable.

This code stateis stored in EEPROM fields in the hardware lock, write-protected beyond Ratchet 1.

For 0 < N < 3, theauthority over Layer N in adevice can issue a Miniboot command giving an unowned Layer
N + 1 to a particular authority. For 2 < N < 3, the authority over Layer N can issue a command surrendering
ownership—nbut the device can evaluate this command only if Layer N is currently reliable. (Otherwise, the device
does not know the necessary public key.)

27



8.5. Ordinary Loading

General Scheme. CodelLayer N,for1l < N < 3,isrewritable. Under ordinary circumstances, the authority over
layer N can update the code in that layer by issuing an update command signed by that authority’s private key. This
command includesthe new code, anew public key for that authority (which could be the same as the old one, per that
authority’s key policy), and target information to identify the devices for which this command is valid. The device
(using Miniboot 1) then verifies this signature directly against the public key currently stored in that layer.

Figure 12 sketches this structure.

" . . NEW For
Roerlcoiggrgf N" '(Ij‘:trgettmg Code Public Key of | 1<=K <N,
Authority N TRUST
updates of K?
Command packaging New Contents for Layer N

'

Signature by
Authority N

Figure 12 An ordinary load command for Layer N consists of the new code, new public key, and
trust parameters, signed by the authority over that layer; this signature is evaluated against the
public key currently stored in that layer.

Target. The target data included with all command signatures allows an authority to ensure that their command
appliesonly in an appropriate trusted environment. An untampered device will accept the signatureasvalid only if the
deviceisamember of thisset. (The authority can verify that theload “took” viaasigned receipt from Miniboot—see
Section 10.)

For example, suppose an application devel oper determinesthat version 2 of a particular OS has a serious security
vulnerability. Target datapermitsthisdevel oper to ensurethat their applicationisloadable only on deviceswith version
3 or grester of that operating system.

Underlying Updates. The OS has complete control over the application, and complete access to its secrets;
Miniboot has complete control over both the OS and the application. This control creates the potential for serious
backdoors. For example, can the OS authority trust that the Miniboot authority will always ship updates that are both
secure and compatible? Can the applicationauthority trust that the OS authority uses appropriate safeguards and policy
to protect the private key he or she uses to authorize software upgrades?

To address these risks, we permit Authority N to include, when loading its code, trust parameters expressing how
it feels about future changes to each rewritable layer K < N. For now, these parameters have three values. always
trust, never trust, or trust only if the update command for K iscountersigned by N.

Asaconsequence, an ordinary load of Layer N can be accompanied by, for N < M < 3, acountersignaturefrom
Authority M, expressing compatibility. Figure 13 sketches this structure.
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Command packaging Command being countersigned

'

Signature by
Authority M

Figure 13 An ordinary load command for Layer N can include an optional countersignature by
the authority over a dependent Layer M. This countersignature is evaluated against the public key
currently stored in layer M.

Update Policy Trust parameters and countersignatures help us balance the requirements to support hot updates,
against the risks of dominant authorities replacing underlying code.

An ordinary reload of Layer N, if successful, preserves the current secrets of Layer N, and leaves Layer N
runnable.

For N < M < 3, an ordinary reload of Layer N, if successful, preserves the current secrets of Layer M if and
only if Layer M had been reliable, and either:

e itstrust parameter for N was always, or

e itstrust parameter for N was countersigned, and a valid countersignaturefrom M was included.

Otherwise, the secrets of M are atomically destroyed with the update.

An ordinary load of alayer dways preserves that layer’s secrets, because presumably an authority can trust their
own private key.

8.6. Emergency Loading

As Section 8.4 observes, evaluating Authority N's signature on a command to update Layer N requiresthat Layer N
have reliable contents. Many scenarios arise where Layer N will not be reliable—including theinitial load of the OS
and application in newly shipped cards, and repair of these layers after an interruption during reburn.

Consequently, we require an emergency method to load code into a layer without using the contents of that layer.
As Figure 14 shows, an emergency load command for Layer N must be authenticated by Layer N — 1. (Asdiscussed
below, our architecture includes countermeasures to eliminate the potential backdoors thisindirection introduces.)

OS, Application Layers. To emergency load the OS or Application layers, the authority signsa command similar
totheordinary load, but the authority underneath them signsa statement attestingto the publickey. Figure15illustrates
this. The device evaluates the signature on thisemergency certificate against the public key in the underlying segment,
then evaluates the main signature against the public key in the certificate.

This two-step process facilitates software distribution: the emergency authority can sign such a certificate once,
when the next-level authority first joins the tree. This process also isolates the code and activities of the next-level
authority from the underlying authority.
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Authority over the Application | - - - - __ » Application code layer

Authority over the OS Lo >
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Authority over Miniboot 1~ | oo oo [N

/ Miniboot 1 code layer
Authority over Miniboot 0 Miniboot 0 code layer

(ROM: not updatable)

Figure 14 Ordinary loading of code into a layer is directly authenticated by the authority over that
layer (dashed arrows); emergency loading is directly authenticated by the authority underlying that
layer (solid arrows).

; . NEW For
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Signature by
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Figure 15 An emergency load command (for N = 2, 3) consists of the new code, new public key,
and trust parameters, signed by the authority over that layer; and an emergency certificate signed
by the authority over the underlying layer. The main signature is evaluated against the public key
in the certificate; the certificate signature is evaluated against the public key stored in the
underlying layer.
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Risks of Siblings. Burningasegment without using the contents of that segment introducesa problem: keeping an
emergency load of one authority’s software from overwriting installed software from a sibling authority. We address
thisrisk by giving each authority an ownerID, assigned by the N — 1 authority when establishing ownership for N
(Section 8.4), and stored outside the code layer. The public-key certificate later used in the emergency load of N
specifies the particular owner1D, which the device checks.

Emergency Reloading of Miniboot. Even though we mirror Miniboot 1, recoverability still required that we
have away of burning it without using it, in order to recover from emergencies when the Miniboot 1 code layer does
not function. Since we must use ROM only (and not Miniboot 1), we cannot use public-key cryptography, but instead
use mutual authentication between the device and the Miniboot 0 authority, based on device-specific secret keys—see
Section 8.3.

Backdoors. Emergency loading introduces the potentia for backdoors, since reloading Layer N does not require
the participation of the authority over that segment. For example, an OS authority could, by malice or error, put
anyone's public key in the emergency certificate for a particular application authority.

Closing the Backdoors. Since the device cannot really be sure that an emergency load for Layer NV redly came
from the genuine Authority N, Miniboot enforces two precautions:

e It erases the current Layer N secrets but leaves the segment runnable from this clean start (since the alleged
owner trustsit).

e It erases all secrets belonging to later layers, and leaves them unrunnable (since their owners cannot directly
express trust of thisnew |oad—see Section 9).

These actionstake place atomically, as part of a successful emergency load.

8.7. Summary

This architecture establishes individual commands for Authority N to:

e establish owner of Layer N + 1
e attest tothe publickey of Layer N + 1
¢ ingtall and update codein Layer N

e express opinions about the trustworthiness of future changesto Layer K < N.

Except for emergency repairsto Miniboot 1, all these commands are authenticated via public-key signatures, can occur
over a public network, and can be restricted to particular devices in particular configurations.

Depending on how an authority chooses to control its keypairs and target its commands, these commands can be
assembled into sequences that meet the criteria of Section 2.1. A separate report [20] explores some of the scenarios
thisflexibility enables.

8.8. Example Code Development Scenario

We illustrate how this architecture supports flexible code devel opment with a simple example.

Suppose Alice isin charge of Miniboot 1, and Bob wants to become a Layer 2 owner, in order to develop and
release Layer 2 software on some cards.

Bob generates his keypair, and gives a copy of hispublic key to Alice. Alicethen doesthree thingsfor Bob:
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e She assigns Bob a 2-byte ownerI D value that distinguishes him among all the other children of Alice. (Recall
Figure9.)

e Shesignsan “Establish Owner 2" command for Bob.

e Shesignsan “Emergency Signature’ for an “Emergency Burn 2" saying that Owner 2 Bob has that public key.
(Recall Figure 15.)

Bob then goes away, writes his code, prepares the remainder of his“Emergency Burn 2” command, and attaches
the signature from Alice.

Now, suppose customer Carol wantsto load Bob'sprogram into Layer 2 on her card. Shefirst buysavirgin device
(which has an unowned Layer 2, but has Miniboot 1 and Alice's public key in Layer 1). Carol gets from Bob his
“Establish Owner 2" and “Emergency Burn 2" command, and playsthem into her virgin card viaMiniboot 1. It verifies
Alice's signatures and accepts them. Layer 2 in Carol’s card is now owned by Baob, and contains Bob's Program and
Bob’s Public key.

If Bob wantsto update his code and/or keypair, he simply prepares an “Ordinary Burn 2" command, and transmits
it to Carol’scard. Carol’s card checks his signature on the update against the public key it has already stored for him.

Note that Bob never exposes to Alice his private key, his code, his pattern of updates, or the identity of his
customers. Furthermore, if Bonnie is another Layer 2 developer, she shares no secrets with Bob, and updates for
Bonnie's software will not be accepted by cards owned by Bob's.

The architecture aso support other variations in the installation/development process; for example, maybe Bob
buys the cards himself, configures them, then ships them to Carol.

(The case for Layer 3 developersissimilar.)
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9. Securing the Execution

This section summarizes how our architecture build on the above techniques to satisfy the security requirements of
Section 2.2.1. (Althoughaformal proof isbeyond the scope of thispaper, we have completed aside-project toformally

specify these properties, formally model the behavior of the system, and mechanically verify that the system preserves
these properties[18].)

9.1. Control of Software

Loading softwarein code Layer NV inaparticular device requires the cooperation of at least one current authority, over
somel < K < N.

e From the code integrity protections of Section 8, the only way to change the software is through Miniboot.

e From the authentication requirements for software loading and installation (which Table 3 summarizes), any
path to changing Layer NV in the future requires an authenticated command from some K < N now.

e From the hardware locks protecting Page 0 (and the intractability assumptions underlying cryptography), the
only way to produce this command isto access the private key store of that authority.

Miniboot Command Authentication
Required
Establish Owner of layer N Authority N-1
Surrender Owner of layer N Authority N
of layer N ity N=1
Emergency Load Y Authority
of layer K<N Authority K-1
Ordinary Load of layer N Authority N
of layer K< N Trusted by Auth N _
Y Authority K
Untrusted by Auth N (trust from

Authority N)

Table 3 Summary of authentication requirements for Miniboot commands affecting Layer N.

9.2. Access to Secrets

9.2.1. Policy

The multiple levels of software in the device are hierarchically dependent: the correct execution of the application
depends on the correct execution of the operating system, which in turn depends on the correct execution of Miniboot.
However, when considered a ong the fact that these levels of software might beindependently configured and updated
by authoritieswho may not necessarily trust each other, this dependence gives rise to many risks.

We addressed these risks by formulating and enforcing a policy for secure execution:

A program can run and accumulate state only while the device can continuously maintain a trusted
execution environment for that program.
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The execution environment includes both underlying untampered device, as well as the code in thisand underlying
layers. The secrets of acode layer are the contents of its portion of BBRAM.

The authority responsiblefor alayer must do the trusting of that layer’s environment—>but the device itself has to
verify that trust. To simplify implementation, we decided that changes to a layer’s environment must be verified as
trusted before the change takes effect, and that the device must be able to verify the expression of trust directly against
that authority’spublic key.

9.2.2. Correctness

Induction establishes that our architecture meets the policy. Let us consider Layer N; the inductive assumption isthe
device can directly verify that Authority N truststhe execution environment for Layer N.

Initial State. A successful emergency load of layer N leaves N in a runnable state, with cleared secrets. This
load establishes arel ationship between the device and a particular Authority N. The device can subsequently directly
authenticate commands from this authority, sinceit now knowsthe public key.

This load can only succeed if the execution environment is deemed trustworthy, as expressed by the target infor-
mation in Authority N'ssignature.

Run-time. During ordinary execution, secure bootstrapping (Section 7) and the hardware locks on LBBRAM
(Section 6) ensure that only code currently in the execution environment can directly access Layer N's secrets—and
by inductive assumption, Authority N truststhis software not to compromise these secrets.

Changes. The execution environment for Layer N can change due to reloads, to tamper, and to other failure
scenarios. Our architecture preserves the Layer N secrets if and only if the change preserves the trust invariant.
Table 4 summarizes how these changes affect the state of Layer N; Table 5 summarize how the new state of Layer N
affects the secrets of Layer N.

A runnableLayer N stopsbeing runnableif the change in execution environment causes the inductive assumption
to fail—unless this change was an emergency load of Layer N, in which case the Layer N secrets are cleared back to
aninitia state.

e Layer N becomes unowned if the environment changes in way that makes it impossible for Authority N
to express trust again: the device is tampered, or if Layer 1 (the public key code) becomes untrusted, or if
Layer N — 1 becomes unowned (so the ownerID is no longer uniquely defined).

e Layer N aso becomes unowned if Authority N has explicitly surrendered ownership.

e Layer N becomes unreliableif itsintegrity fails. (Authority N can still express trust, but only indirectly, with
the assistance of Authority N — 1.)

e Otherwise, Layer N stopsbeing runnableif an untrusted change occurred.
Layer N stays runnableonly for three changes:

e Anemergency load of Layer N.
e Anordinary reload of Layer N.

e Anordinary reload of Layer K < N, for which Authority NV directly expressed trust by either signingan “aways
trust K” trust parameter at last load of Layer N, or by signing an “trust K if countersigned” at last load of IV,
and signing a countersignature now.

Only the latter two changes preserve the trust invariant—and, as Table 5 shows, only these preserve the Layer N
Secrets.
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Implementation. Codethat isalready part of the trusted environment carries out the erasure of secrets and other
state changes. In particular, the combined efforts of Miniboot O (permanently in ROM) and the Miniboot 1 currently
in Layer 1 (hence aready trusted) take care of the clean-up required by an authority that does not trust a new
Miniboot 1—despite failures during the load process.

Transformation of

Action Layer N state
RELIABLE Layer N fails checksum NOT RELIABLE
Laver 2<N is OWNED but NOT RUNNABLE NOT RUNNABLE
Laver 2<N is UNOWNED UNOWNED
Layer 1 is NOT RELIABLE
Device is ZEROIZED

Establish Owner of layer N OWNED

Surrender Owner of layer N UNOWNED

of layer N RUNNABLE
Emergency Load
of layer K< N K=o NOT RUNNABLE
-1 UNOWNED
Ordinary Load of layer N RUNNABLE
of layer K < N Trusted by Auth N no change
K=o NOT RUNNABLE
Untrusted by Auth N =
K=1 |UNOWNED

Table 4 Summary of how the state of Layer N changes
with changes to its execution environment.

Action Transformation of

Layer N secrets
Layer N is NOT RUNNABLE ZEROIZED
- Cleared to
Layer N is RUNNABLE Emergency Load of Layer N Initial State
Otherwise PRESERVED

Table 5 Summary of how changes to the state of Layer N changes its secrets.
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10. Authenticating the Execution

10.1. The Problem

The final piece of our security strategy involves the requirement of Section 2.2.2: how to authenticate computation
allegedly occurring on an untampered device with a particular software configuration. (Section 8.3 explained how the
device can authenticate the externa world; this section explains how the external world can authenticate the device.)

It must be possible for a remote participant to distinguish between a message from the real thing, and a message
from a clever adversary. This authentication is clearly required for distributed applications using coprocessors. As
noted earlier, thee-wallet example of Yee [26] only worksif it'sthereal wallet on areal device. But thisauthentication
isaso required even for more pedestrian coprocessor applications, such as physically secure high-end cryptographic
modules. For example, a sloppy definition of “secure’ software update on crypto modules may require only that the
appropriate authority be able to update the code in an untampered device. If a security officer has two devices, one
genuine and one evilly modified, but can never distinguish between them, then it does not matter if the genuine one
can be genuinely updated. This problem gets even worse if updates all occur remotely, on devices deployed in hostile
environments.

10.2. Risks

Perhaps the most natural solution to authentication isto sign messages with the device private key that is established
ininitialization (Section 5) and erased upon tamper. However, this approach, on its own, does not address the threats
introduced by the multi-level, updated, software structure. For example:

e Application Threats. What prevents one application from signing messages claiming to be from a different
application, or fromthe operating system or Miniboot? What preventsan application from requesting sufficiently
many “legitimate” signatures to enable cryptanalysis? What if an Internet-connected application has been
compromised by aremote adversary?

e OS Threats. If use of the device private key is to be available to applications in rea-time, then (given the
infeasibility of address-based hardware access control) protection of the key depends entirely on the operating
system. What if the operating system has holes? We are back to the scenario of Section 6.1.

e Miniboot Threats. An often-overlooked aspect of security in real distributed systems is the integrity of the
cryptographic code itself. How can one distinguish between a good and corrupted version of Miniboot 1? Not
only could acorrupt version misuse the device private key—it can also lieabout who it is.

This last item is instance of the more genera versioning problem. As the software configuration supporting a
particular segment changes over time, its trustworthinessin the eyes of aremote participant may change. If one does
not consider the old version of the OS or the new version of an application to be trustworthy, then one must be able to
verify that oneis not talking to them. The authentication scheme must accommodate these scenarios.

10.3. Our Solution

These risks suggest the need for decoupling between software levels, and between software versions. Our architecture
carries out this strategy (although currently, we have only implemented the bottom level, for Layer 1).

As Section 5 explained, we build an internal key hierarchy, starting with the keypair certified for Miniboot 1
in a device a device initidization. This private key is stored in Page 1 in LBBRAM—so it is visible only to
Miniboot 1. Our architecture has Miniboot 1 regenerate its keypair as an atomic part of each ordinary reload of
Miniboot 1. The transition certificate includes identification of the versions of Miniboot involved. (As Section 8
discusses, each emergency reload of Miniboot 1 erases its private key—the authority who just carried out mutual
secret-key authentication must then re-initiaizethe device.)
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Similarly, as an atomic part of loading any higher Layer N (for N > 1), our architecture has the underlying
Layer N — 1 generate a new keypair for Layer N, and then certify the new public key and deletes the old private
key. This certification includes identification of the version of the code. Although Miniboot could handle the keys
for everyone, our current plan is for Miniboot to certify the outgoing keypair for the operating system, and for our
operating system to certify the keypair for the application—because this scheme more easily accommodates customer
requirements for application options. The OS private key will be stored in Page 2in LBBRAM.

Our approach thus uses two factors:

e Certification bindsakeypair to the layers and versions of code that could have had access to the private key.

e The loading protocol along with the hardware-protected memory structure confines the private key to exactly
those versions.

This approach provides recoverability from compromise. Code deemed untrustworthy cannot spoof without the
assistance of code deemed trustworthy. An untampered device with a trusted Miniboot 1 can aways authenticate and
repair itself with public-key techniques; an untampered device with trusted ROM can always authenticate itself and
repair Miniboot 1 with secret-key techniques.

Thisapproach also arguably minimizesnecessary trust. For example, in Figure 16, if Program F isgoingto believe
in the authenticity of the mystery message, then it arguably must trust everything inside the dotted line—because if
any of thoseitemsleaked secrets, then the message could not be authenticated anyway. But our scheme does not force
Program F to trust anything outside the dotted line (except the integrity of the original CA).

Layer 3 Program F,
current ver. message M, somewhere
j else.
‘ depends on
'
1
: L :
Layer 2, tipdated to Layer2, | updatedio ,l1ayer?2,
previous H current ver. : next version
version : T :
depends on

Y

Layer 1, | updatedto | ayer 1, | updatedto | |ayer1, | updated | | ayer 1,
Version 1 Version 2 Version 3 H Version 4
Outgoing key :
= Public key ' depends on
certified 1
by device’s Y
Certifying Outgoing key
Authority = secret key encrypted Layer O
and signed by Certifying (ROM)
Authority

Figure 16 Our outgoing authentication strategy requires that, in order to authenticate message
M, Program F trust only what's inside the dotted line—which it would have to trust anyway.
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11. Conclusions and Future Work

We plan immediate work into extending the device. The reloadability of Miniboot 1 and the operating system allows
exploration of upgrading the cryptographic algorithms (e.g., perhaps to dliptic curves, as well as certificate blacklists
and expiration) as well as additional trust parameters for policy enforcement. Hardware work also remains. In the
short run, we plan to finish addressing the engineering challenges in moving this technology into PCMCIA format.

However, the main avenue for future work is to devel op applications for this technology, and to enable others to
develop applications for it. We view this project not as an end-result, but rather as a toal, to finally make possible
widespread devel opment and deployment of secure coprocessor solutions.
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