
Making fast hardware with separation logic

Byron Cook
Microsoft Research

Stephen Magill
Carnegie Mellon University

Mohammad Raza
Imperial College

Jiri Simsa
Carnegie Mellon University

Satnam Singh
Microsoft Research

Abstract
Recently developed tools now allow us to automatically synthesize
hardware from programs that use the heap [5]. Unfortunately, be-
cause current tools are unable to accurately track the heap-carried
data dependencies between program commands, the synthesis tools
miss many opportunities for optimization, such as pipelining, par-
allelization, or memory localization. Thus, the resulting circuits
have poor performance. In this paper we describe a separation logic
based program analysis for identifying heap-carried data depen-
dencies between program statements, and demonstrate the perfor-
mance gains that it enables when performing hardware synthesis.

1. Introduction
Recent work on high-level synthesis tools now make it possible
to take programs making non-trivial use of dynamically-allocated
heap (e.g. linked-list C programs that call malloc and free) and
convert them to hardware circuits [5]. Unfortunately, the resulting
circuits are slow. The problem is that the program’s heap makes
it more difficult to work out when circuit-level pipelining or par-
allelization can be applied without changing the behavior of the
program. Furthermore, without a better understanding of each com-
mand’s heap footprint [23], we are forced to build connections be-
tween each circuit implementing a command and every possibily
allocated heap cell in the circuitry used to represent the heap.

What’s needed is a tool that automatically works out layout of
the heap during the program’s execution and then provides accurate
information about heap-carried dependecies between commands
(thus allowing pipelining and parallelisation) as well as symbolic
memory footprints [23] (thus allowing the heap to be distributed
across multiple memories on chip).

In this paper we develop a new program analysis that infers
precisesly this information. Using an abstract domain inspired by a
recent extension to separation logic [24], our analysis automatically
infers program invariants that describe the layout of linked data
structures during the program’s execution, (e.g. doubly-linked lists,
or trees), as well as information about which program commands

[Copyright notice will appear here once ’preprint’ option is removed.]

depend on each other via connections in the heap. These invariants
symbolically track where memory cells are allocated, deallocated,
read from, and written to.

Using the output of our analysis we can then more accurately
determine when it is safe to employ circuit transformations de-
signed to optimize performance. Note that code fragments must
respect conditions regarding dangling pointers and termination be-
fore we can soundly apply the optimizations. We make these con-
ditions clear when proving soundness.

Related work. Recent work [24] has developed a program
logic designed to prove properties about dependences in heap-
manipulating programs. In this work we develop a program anal-
ysis using an abstract domain influenced by [24]. Note that, be-
yond developing an analysis, in order to express information about
pipelining we extended the logic to determine loop carried depen-
dences. Our approach also uses a new notion of heap labelling
which avoids the bookkeeping overhead of footprint and intersec-
tion logs of [24].

Previously reported program analysis (e.g. pointer analysis) can
be used to soundly overapproximate the information infered here.
In fact, [5] does precisely this. Experimentally we have found
these analyses to be too imprecise, limiting the performance of the
resulting circuits. Note that these previously reported analyses are
more scalable than the one we propose here. We trade precision
for analysis performance, and thus can only synthesize programs
of relatively modest size.

Numerous heap dependence analyses have been developed (e.g.
[10, 13, 14, 19]), and we present a similar analysis based on separa-
tion logic, which provides precise aliasing information about heap
data structures to give accurate dependence information. Depen-
dence analysis is a standard analysis which is useful in different
applications such as optimization, program slicing and program
integration. However, we describe here how a standard heap de-
pendence analysis needs to be strengthened before it can be used
to soundly optimize programs. Program optimizations have been
implemented based on heap dependence analyses [10, 15], using
the independence assumption, which states when two commands
are independent (access separate heap and variables in all possible
executions), then they can be parallelized or reordered to give an
equivalent program. We show in Section 4 that the independence
assumption is unsound in general, and present restrictions on the
analysis which guarantee correctness of the optimizations. In [15]
specific rewrite rules are used convert sequential code into parallel
code. The applicability of these rewrites depend in part on the struc-
ture of the input code, while our approach uses traditional compiler

1 2009/9/18

1 while (1) {
2 k = n;
3 l1 = NULL;
4 l2 = NULL;
5

6 while (k>0) {
7 l1 = insertion sort(l1,input(i1));
8 l2 = insertion sort(l2,input(i2));
9 k−−;

10 }
11

12 while (l1 != NULL && l2 != NULL) {
13 output(o,remove smallest(l1,l2));
14 }
15 }

Figure 1. C language description of a circuit that reads in n inputs
from input streams i1 and i2 and outputs them in sorted order to
output stream o.

techniques to discover maximal parallelism given a set of control
and data dependencies of the input program.

Our soundness results in section 4 are an investigation of inde-
pendence in the presence of dynamic memory allocation and deal-
location. This has some relation to work on independence mod-
els [25], especially [12], where examples based on allocation and
deallocation are presented to show interaction between parallel pro-
cesses and as counterexamples to the completeness of concurrent
separation logic. In contrast, we have investigated the sense of
equivalence which can be guaranteed under such interactions and
the constraints required for this equivalence to hold. In relation to
[17], we are showing that certain allocations and deallocations are
not movers, and the conditions under which they can be ‘moved’
are based on an extension of the heap footprint of commands.

Previous work based on rewriting has been used succesfully
to optimize (as well as prove the correctness) of pipelined and
superscalar circuits (e.g. [20]). The difficulty in these algebraic re-
write systems is that, in many cases, the rules cannot be used unless
the lack of aliasing can be established. Our work tackles precisely
this problem. As future work it is worth investigating an integration
of our analysis with rewrite based circuit optimization techniques.

2. Example
Consider the program in Figure 1, which provides a C-level de-
scription of a circuit designed to read n values from the input sig-
nals i1 and i2 and write them out in sorted order on the output signal
o. We assume that insertion sort is the standard list-based proce-
dure for insertion sort. The procedure remove smallest is defined
as:

1 int remove smallest(LIST ∗ p, LIST ∗ q) {
2 if (q==NULL ||
3 (p != NULL && (p−>value < q−>value))) {
4 int x = p−>value;
5 LIST ∗ t = p;
6 p=p−>next;
7 free(p);
8 return x;
9 } else {

10 int x = q−>value;
11 LIST ∗ t = q;
12 q=q−>next;
13 free(q);
14 return x;
15 }
16 }

Lines 2-4

Lines 6-10

Lines 12-14

Input: i1 Input: i2

Output: o

Heap circuit

Figure 2. Top-level schematic of unoptimized circuit from pro-
gram in Figure 1. Dotted lines indicate enable wires. Solid lines
indicate data wires and buses.

Recent work [5] allows us to synthesize this heap-based pro-
gram to hardware. The trick is to figure out that, in this case, the
code never needs more than 2n linked-list nodes at any time during
execution, thus leading to a finite-state system (for a fixed n).

The problem is that the resulting hardware is not effecient:
Without a deep understanding of the invariants about the heap’s
structure, for the sake of correctness, we are forced to build a circuit
whose layout effectively matches the control-flow-graph of the
original program. In this conservative model, only one command
sub-circuit is allowed to execute at any given time.

See Figure 2 for a high-level schmetic view of the circuit pro-
duced using techniques from [5]. The boxes with annotations such
as “Lines 6-10” represent sub-circuits implementing the corre-
sponding commands and loops. Each of these sub-circuits begins
executing when its enable input is set to true, and sets its neigh-
bour’s enable wire to true when it is done executing. The fact that
only one command sub-circuit executes at a time leads to poor la-
tency. The circuit’s throughput is also poor, as without an under-
standing of the heap-based feedback between loop iterations we
cannot safely put pipeline delays in between sub-circuits represent-
ing lines 6-10 and lines 12-14. Without information about which
heap cells a command might read from or write to, we must also
build a connection between every command and the circuit that
represents the program’s heap. The fact that the memory must be
wired up to each sub-circuit can lead to long wires, which may in-
hibit clock speeds.

Now consider Figure 3, which contains a high-level schematic
view of an optimized circuit resulting from our method. Because
the heap-footprint of the commands at lines 7 and 8 are independent
and the order in which values are read from i1 and i2 is irrelevant,
we can break the loop at lines 6-10 into two loops: L1 consisting
of lines 2, 3, 6, 7, 9, and 10 and L2 consisting of lines 2, 4, 6,
8, 9, and 10. These two loops are independent (after α-renaming
of the variable k), which allows us to execute them in parallel.
Note that because the new loop L1 only touches the heap segment

2 2009/9/18

representing the list pointed to by l1, we can use a local memory
circuit to store this list, rather than a shared representation of the
entire program heap. Analagously we can do the same for the list
pointed to by l2. When both of the loops have completed sorting
values from the input signals, the enable line should be activated,
thus we have wired the enable line from the pipeline stage back to
the circuits implementing L1 and L2.

Our analysis also tells us that once we have built up the lists
pointed to by l1 or l2 we are free to make a copy of them for the
use of circuit implementing lines 12-14 and immediately begin re-
building the lists l1 or l2 for the next iteration of the top-level loop.
This is achieved by inserting a double-buffered pipeline stage.

Our experimental evalution has shown that using heap depen-
dencies computed by our analysis to parallelize a sequential circuit
that implements the above program has decreased latency by 65%
and increased throughput by 183%. Further pipelining and mem-
ory localization of the circuit enabled by our analysis has improved
throughput by 283% with respect to its sequential version.

3. Analysis
In this section we describe our separation logic based analysis
for identifying heap-carried data dependencies between program
statements. We illustrate our analysis in the setting of a simple
while language and predicates for linked lists, as is standard in the
literature on program analysis with separation logic [23].

3.1 Labelled Symbolic Heaps
We describe our approach in the simple storage model of [8], which
is based on a set Loc of locations and Val = Loc∪{0}. We assume
a finite set Var of program variables and an infinite set Var′ of
primed variables.

x, y, .. ∈ Var program variables
x′, y′, .. ∈ Var′ primed variables

Primed variables will not be used in programs, only within formu-
lae where they will be implicitly existentially quantified. We set

Heaps = Loc ⇀fin Val
Stacks = (Var ∪ Var′) → Val
States = Stacks× Heaps

The analysis shall use the standard fragment of separation logic
known as symbolic heapsOB [1, 8].
E,F ::= 0 | x | x′ expressions

Π ::= true | E = E | E '= E | Π ∧ Π pure formulae
S ::= E)→F | ls(E, F) simple spatial formulae
Σ ::= emp | S | Σ ∗ Σ spatial formulae
SH ::= Π

!
!Σ symbolic heaps

The interpretation, s, h |= Π

!
!Σ, is the standard one on stack

s and heap h. Expressions are program or logical variables or
0. Pure formulae are a conjunction of equalities or inequalities
of expressions interpreted on s, while spatial formulae specify
properties of h. The predicate emp holds in the empty heap where
nothing is allocated. The formula Σ1 ∗ Σ2 uses the separating
conjunction of separation logic. It holds in h if h can be split into
two disjoint parts h1 and h2 such that Σ1 holds in h1 and Σ2 in
h2 . The points-to assertion E #→ F describes a heap with single
allocated address with contents F . The formula ls(E, F) holds for
a linked list segment from E to F . All primed variables in symbolic
heaps are existentially quantified.

Our analysis will be required to track portions of the heap during
execution in order to determine dependencies between program
statements. We shall do this with a notion of labeling to keep track
of portions of the heap, and associate every simple spatial formula
in a symbolic heap with a set of labels from a fixed a set of Lab.

l ∈ Lab labels
L ∈ P (Lab) label sets
Λ ::= emp | 〈S〉L | Λ ∗ Λ labelled spatial formulae

LSH ::= Π

!
!Λ labelled symbolic heaps

We write unlabelled(Λ) to represent the unlabelled formula that
is Λ without the label sets. A label l appearing in a formula repre-
sents a set of allocated heap locations. Labels can, for example, be
indices of program statements, representing the part of the heap that
the statement accessed in the symbolic execution. For example, a
formula 〈ls(x, 0)〉{19,42}∗〈ls(y, 0)〉{3} at some point in the sym-
bolic execution may mean that statements 42 and 19 accessed list
x but not list y, while statement 3 accessed list y but not list x. La-
bels need not necessarily be statement indices, and can in general
be used as arbitrary ‘markers’ on the heap.

For a label l and formula Λ, we write Λ|l to be the conjunction
of all formulae in Λ whose label sets contain l. We can have a
simple formal interpretation of labels by extending heaps to contain
a label set for each heap cell in the heap. This will collect the labels
of all the commands that access the heap cell. We extend heaps with
label sets as follows:

Heaps = Loc ⇀fin (Val× P (Lab))

So every heap cell has a value and a label set. The satisfaction of
unlabelled symbolic heaps, s, h |= Π

!
!Σ, just ignores the label sets

in h. For labelled symbolic heaps, we have that the labels of every
heap cell are contained in the label set of the part of the symbolic
heap that describes the cell.
DEFINITION 1 (Label Satisfaction). We have s, h |= Π

!
!〈S〉L iff

s, h |= Π

!
!S and for all l ∈ dom(h), if h(l) = (l′, L′) then

L′ ⊆ L. We have that s, h |= Π

!
!Λ1 ∗Λ2 iff h = h1 ∗ h2 such that

s, h1 |= Π
!
!Λ1 and s, h2 |= Π

!
!Λ2.

Notice that a symbolic heap only gives an over-approximation
of the labels of a concrete heap. For example, assume we have s, h
where h contains separate lists at x and y, the head of the list at x
has label set {l}, and the label sets of the rest of the heap are all
empty. Then we have

s, h |= 〈x #→x′〉{l} ∗ 〈ls(x′, y)〉∅ ∗ 〈ls(y, 0)〉∅
s, h |= 〈ls(x, y)〉{l} ∗ 〈ls(y, 0)〉{l}

s, h *|= 〈ls(x, y)〉∅ ∗ 〈ls(y, 0)〉∅
Such over-approximation may, for example, be encountered in the
analysis when we fold predicates.

3.2 Analysis
We consider a simple imperative programming language with heap
manipulating commands and while loops.

b ::= E = E | E '= E
A ::= x := E | x := [E] | [E1] := E2 | new(x) | dispose(x)
c ::= A | if b c1 c2 | while b c | c1; c2

We assume that every command in the program is labelled with
a unique index, and we shall use label variables l, l1, l2, ... to range
over these index labels. A program is then a sequential composition
of the form

l1 : c1; . . . ; ln : cn

where every ci is an atomic command, or a composite command
(conditional or while loop), and li denote the index labels of the
commands. The nested bodies of composite commands are also
sequential blocks of this form. We first describe the dependency
analysis between commands in a sequential block, and will later
describe the detection of loop-carried dependencies (dependencies
between iterations of loops), which is needed for pipelining.

3 2009/9/18

Lines 2,3,6,7,9,10

Input: i1 Input: i2

Output: o

ls(l1,NULL) Lines 2,4,6,8,9,10 ls(l2,NULL)

Pipeline delay buffer

Lines 12-14 ls(l1,NULL) * ls(l2,NULL)

Figure 3. Top-level schematic of optimized circuit from program in Figure 1. Dotted lines indicate enable wires. Solid lines indicate data
wires and buses.

For every sequential block in the program (at any level of nest-
ing inside loops or conditionals), our goal is to detect when any two
component commands li : ci and lj : cj access the same heap loca-
tions. This dependency information can be represented as a relation
on the command labels. We describe our method for a single notion
of heap access, and shall later describe how it is a simple extension
to differentiate between read and write access.

In general, our analysis can be based on any standard shape
analysis with separation logic [1], and in this work we have im-
plemented it on top of the analysis from [18]. The basic idea is
to extend the shape analysis to track labels through the symbolic
execution and to detect the heap footprints of commands in terms
of labels. The propagation of labels in the symbolic execution is
illustrated in Figure 4.

The dependence detection algorithm is given in Figure 5. Given
a sequential block c = l1 : c1; . . . ; ln : cn and a set of labelled
symbolic heaps pre , it detects dependencies between the compo-
nent commands of c by tracking their labels through a symbolic
execution of c starting from the given pre-condition states. For ev-
ery label l in the sequential block, the algorithm determines a set of
dependencies deps(l) of all labels on which l depends. We describe
the algorithm assuming sequential blocks with atomic commands,
and address composite commands in the next section.

The rearrange(pre , E) procedure makes the cell at E explicit
in the states in pre using the rearrangement rules in Figure 4. This
is necessary for an atomic command accessing cell E to execute.
For example, if the command y := [E] then we may have

rearrange({x = E ∧ x "= 0

!
!〈ls(x, 0)〉l}, E)

= {x = E ∧ x "= 0

!
!〈E %→ x′〉l ∗ 〈ls(x′, 0)〉l}

The getFootprintLabels(c′, Π

!
!Λ) procedure detects the part of

Π

!
!Λ that c′ is accessing, and returns the labels associated with

that part. For atomic commands that do not access existing heap
cells, such as assignment or allocation, this set is empty. For atomic
commands accessing cell E, the state is in the rearranged form
Π

!
!〈E #→ F 〉L ∗ Λ, so the computed footprint labels are L. The

EXECUTION RULES

Π

!
!Λ

x = E[x′/x] ∧ (Π

!
!Λ)[x′/x]

l : x := E, x′fresh

Π
!
!Λ ∗ 〈E %→ F ′〉L

Π

!
!Λ ∗ 〈E %→ F 〉L∪{l}

l : [E] := F

Π
!
!Λ ∗ 〈E %→ F 〉L

x = F [x′/x] ∧ (Π

!
!Λ ∗ 〈E %→ F 〉L∪{l})[x′/x]

†

† l : x := [E], x′ fresh

Π

!
!Λ

(Π

!
!Λ)[x′/x] ∗ 〈x %→ 0〉{l}

l : new(x), x′ fresh

Π

!
!Λ ∗ 〈E %→ F 〉L

Π

!
!Λ

l : dispose(E)

REARRANGEMENT AND FOLDING RULES

Π

!
!Λ ∗ 〈F %→ F ′〉L

Π

!
!Λ ∗ 〈E %→ F ′〉L

Π (E = F

Π

!
!Λ ∗ 〈ls(F, F ′)〉L

Π

!
!Λ ∗ 〈E %→ x′〉L ∗ 〈ls(x′, F ′)〉L

†

† Π

!
!Λ ∗ 〈ls(F, F ′)〉L (F "= F ′ ∧ E = F and x′ fresh

Π

!
!Λ ∗ 〈E %→ x′〉L1

∗ 〈ls(x′, F)〉L2

Π

!
!Λ ∗ 〈ls(E, F)〉L1∪L2

Figure 4. Label propagation in symbolic execution

4 2009/9/18

getDeps(c, pre) =
if c is empty then return
else let c = l : c′; c′′

if c′ is an atomic command accessing heap cell E
then pre = rearrange(pre, E)
for allΠ

!
!Λ ∈ pre

deps(l) = getFootprintLabels(c′, Π

!
!Λ)

end for
post = getPost(c′, l, pre)
getDeps(c′′, post)

Figure 5. Dependency detection algorithm

{x "=0

!
!〈ls(x, 0)〉∅}

l1 : new(y);
{x "=0

!
!〈ls(x, 0)〉∅ ∗ 〈y %→ 0〉{l1}}

{x "=0

!
! 〈x %→ x′〉∅ ∗ 〈ls(x′, 0)〉∅ ∗ 〈y %→ 0〉{l1}}

l2 : z := [x];

{z=x′∧x "=0

!
! 〈x %→ x′〉{l2} ∗ 〈ls(x′, 0)〉∅ ∗ 〈y %→ 0〉{l1}}

l3 : dispose(x);

{z=x′∧x "=0

!
!〈ls(x′, 0)〉∅ ∗ 〈y %→ 0〉{l1} }

l4 : [y] := z;
{z=x′∧x "=0

!
!〈ls(x′, 0)〉∅ ∗ 〈y %→ z〉{l1,l4}}

Figure 6. Dependency detection in replacing the head of a list

case when c′ is a composite command, like a conditional or a loop,
is described in the next section. We add the footprint labels to the
set of dependencies deps(l) of l.

The next step is to propagate the labels by calling
getPost(c′, l, pre), which returns the set of symbolic post states
after executing c′ on pre, with the label l added to the part of the
post-states that c′ accessed. For atomic commands this is speci-
fied by the execution rules in Figure 4. For composite commands
we use frame inference to do this propagation. The details of how
frame inference is used to carry out the propagation are given in
the next section. Finally, the main procedure is recursively called
on the remaining block starting from the set of post states.

We illustrate the method in Figure 6, which shows the label
propagation for a sequence of commands to replace the head of
linked list. The footprints of commands are boxed in the com-
mand’s pre-state. l2 does not depend on l1 because its footprint la-
bels are the label set of the boxed formula (x #→ x′) in the pre-state
of l2, which is empty. l3 depends on l2 but not on l1, and l4 depends
only on l1. Note that there is a stack dependency between l4 and l2
because of variable z, but our goal here is only to determine heap
dependencies. Stack dependencies can be easily determined from
the syntax of commands.

To distinguish between read and write access, we can annotate
labels with the type of access. Thus for a command with label l we
can have labels lr and lw to represent and read and write access,
and insert lr into parts of the symbolic heap that the command
only reads. This way we can prevent a dependency between two
commands that only read the same location.

The dependency detection algorithm can be applied to the main
program, and also independently to the bodies of all composite
commands such as loops and conditionals. However, for a given se-
quential block with composite commands, we have yet to describe
how the algorithm detects the footprint of the whole command in
the pre-state, and also how the labels are propagated to the post-
states of the whole command. This is done through a process of
inferring the frame of the entire command.

3.3 Frame inference
We now describe the footprint detection (getFootprintLabels) and
label propagation (getPost) for composite commands. Given a
composite command l : c and a pre-state Π

!
!Λ, we need to find

the part of Λ accessed by c in its entire execution, and also the set
of post-states in which the labels in the pre-state and the label l of
c are propagated correctly. This is achieved by a process of frame
inference on the symbolic execution of c that is provided by the
shape analysis. The frame inference method does not require label
tracking, as the aim is only to search for a part of the initial state
that is never accessed in the execution of the command. So for the
unlabelled pre-state Π

!
!Σ (where Σ = unlabelled(Λ)), the frame

inference finds a ΣF such that Σ = Σ′ ∗ ΣF , and ΣF is never
accessed in the symbolic execution of c.

For example, say we are given the pre-state t = x

!
!ls(x, y) ∗

ls(y, 0) and the loop while (t *= y) {t := [t]}. After symbolic
execution and folding on the first couple of unrollings of the loop,
we obtain the state

ls(x, t) ∗ ls(t, y) ∗ ls(y, 0)

So far we have determined that ls(y, 0) has not been accessed.
Then in the invariant execution we have

{t '= y

!
!ls(x, t) ∗ ls(t, y) ∗ ls(y, 0)}

{ls(x, t) ∗ t)→ t′1 ∗ ls(t′1, y) ∗ ls(y, 0)}
t := [t];

{ls(x, t′2) ∗ t′2)→ t ∗ ls(t, y) ∗ ls(y, 0)}
{ls(x, t) ∗ ls(t, y) ∗ ls(y, 0)}

Thus ls(y, 0) is not unfolded or accessed in the invariant exe-
cution, so no iteration of the loop accesses the concrete heap that
satisfies ls(y, 0). However, we also need to ensure that if the in-
variant is reestablished at the end of the execution, then none of the
accessed heap moves over to the frame assertion. We ensure this
by not allowing the frame assertion to contain existential variables,
so that all the predicates in the frame assertion are precise [22]. A
precise predicate is such that for any concrete heap, there is at most
one subheap that satisfies the predicate.

Formally, assume we have the invariant Π

!
!Σ ∗ ΣF , where ΣF

is precise, and the concrete heap is h ∗ hF at the beginning of an
iteration such that h |= Σ and hF |= ΣF . Then after the symbolic
execution we have Π′

!
!Σ′∗ΣF and the concrete state h′∗hF where

h′ |= Σ′ and hF |= ΣF , and hF has not been accessed. To get back
the invariant, we use the entailment:

Π′

!
!Σ′ ∗ ΣF + Π

!
!Σ ∗ ΣF

The fact that ΣF is precise ensures that only hF satisfies ΣF in
the reestablished invariant. So, in every iteration, hF is the only
concrete heap that satisfies ΣF and it is not accessed in any iteration
of the loop.

Once we have determined the frame assertion we use it to obtain
the footprint labels from the pre-state, and also to propagate the
labels from the pre-state of the whole command to its post-states,
as follows. Assume that the labelled pre-state is Π

!
!Λ ∗ΛF and the

unlabelled pre-state is Π

!
!Σ ∗ΣF . The set of footprint labels of the

command is obtained as union of the labels in Λ, that is, all labels
not included in the frame assertion.

For the unlabelled pre-state Π

!
!Σ ∗ ΣF , every post-state from

the shape analysis is of the form Π′

!
!Σ′ ∗ ΣF . In this post-state we

label ΣF exactly as ΛF , and for all the formulae in Σ′, we assign
them the label set Ft ∪ {l}, where Ft are the footprint labels and
l is the label of the composite command. The following example
illustrates our frame inference.

5 2009/9/18

{t = x

!
!〈ls(x, y)〉L1

∗ 〈ls(y, 0)〉L2
}

l1 : while (t '= y) {t := [t]}
{t = y

!
!〈ls(x, y)〉L1∪{l1}

∗ 〈ls(y, 0)〉L2
}

l2 : while (t '= 0) {t := [t]}
{t = 0

!
!〈ls(x, y)〉L1∪{l1}

∗ 〈ls(y, 0)〉L2∪{l2}
}

In this case the frame assertion inferred for l1 is ls(y, 0) and
for l2 it is ls(x, y), and so the footprint set of l1 is L1 and for l2 it
is L2.

3.4 Loop carried dependencies
So far we have described the dependence analysis for commands in
a sequential block. This could be applied to the bodies of loops, but
it only finds dependences within any iteration of the loop. To do op-
timizations such as pipelining, we need to determine heap depen-
dences between iterations of the loop. This can be determined by
performing a fixpoint computation on the labelled symbolic heaps
to reach an invariant which distinguishes parts of the symbolic heap
that have not been accessed so far in the loop, that is, have an empty
label set.

Assume that we are given a loop while(B){C} and an initial
set of states with empty label sets, and our goal is to determine
whether there is a heap dependency between any two iterations of
the loop. In order to find dependencies between iterations, we as-
sume distinct labels to the instances of commands in each iteration
of the body C, so that iteration i is of the form

li,1 : C1; . . . ; li,n : Cn

To determine an invariant, we perform a label propagating exe-
cution on the loop starting with the first iteration, and at the widen-
ing stage at the end of each iteration we replace all non-empty label
sets with ,. The , element is the set of all labels, so the abstraction
only maintains information about the parts of the state that “have
been accessed by some command”, as opposed to not accessed by
any command. We stop when we reach a state Λ such that Λ + Λ′

for some Λ′ at the end of a previous iteration. So the invariant that
is reached will have label sets that are either empty or ,. For ex-
ample, for the loop while (t *= 0) {t := [t]} with initial state
{t = x

!
!〈ls(x, 0)〉∅}, we will reach the invariant

{〈ls(x, t)〉$ ∗ 〈ls(t, 0)〉∅}

When we have determined the invariant, we can then execute
the body of an arbitrary iteration on it to determine whether any
command in the iteration accesses a state with label set ,. So for
our example we have the following execution:

{t '= 0

!
!〈ls(x, t)〉$ ∗ 〈ls(t, 0)〉∅}

{

!
!〈ls(x, t)〉$ ∗ 〈t)→ t′〉∅ ∗ 〈ls(t′, 0)〉∅}

li,1 : t := [t];
{

!
!〈ls(x, t′′)〉$ ∗ 〈t′′)→ t〉{li,1}

∗ 〈ls(t, 0)〉∅}

{〈ls(x, t)〉$ ∗ 〈ls(t, 0)〉∅}

The footprint label set of command instance li,1 is not ,,
which means that li,1 accesses a part of the heap that has not been
accessed by any command instances from previous iterations. Thus
we determine that there is no heap dependency between iterations
of the loop, although note that there is a stack dependency due to
variable t. In the case of the merge program in Figure 1, for the
infinite outer loop the heap is empty before and after every iteration,
which is a simple case of heap independence between iterations.

4. Restrictions and soundness
In the previous section we have described our method for heap de-
pendency analysis. Note that other approaches[10, 13, 14, 19, 24]

have been used in the past to carry out the same type of analysis.
Program optimizations have been proposed using this type of anal-
ysis [10, 15], based on the independence assumption, which states
that if two commands are independent (access separate heap and
variables in all possible executions), then they can be parallelized
or reordered to give an equivalent program. We describe here how
the independence assumption is, in general, not a sound basis for
such optimizations: transformations based on this assumption can
produce results that are not equivalent to the original program. We
then propose a restriction on input programs as well as the applica-
tion of the transformations, and demonstrate the soundness of our
restricted method using a trace semantics of programs.

4.1 Dynamic memory allocation
Dynamic memory allocation is one reason why the independence
assumption does not hold in general. Consider the program C1:

l1 : new(x);
l2 : new(y);
l3 : dispose(x);
l4 : if(x = y)then{z := 0}else{z := 1};

At l4, we have the x *= y because x and y cannot be allocated
the same heap cell, so the original program never sets z := 0. Now
statements l2 and l3 are independent in that they access separate
heap cells and variables, but reordering them may allow x and y
to be equal if the cell allocated in l1 is re-used for l2. This means
that the optimized program will possibly set z := 0, and so new
behaviour can result from optimizations involving allocation and
deallocation.

We first note that it is a widely accepted standard that programs
should not read the values of pointers that are not allocated [16],
and it may hence be argued that the above program is not an
‘acceptable’ program in the first place.

The following example shows that it is not simply a matter of
disallowing programs that read dangling pointers1. Consider the
program C2:

l1 : new(x);
l2 : new(y);
l3 : f := x;
l4 : if(f = y)then{z := 0}else{z := 1};
l5 : dispose(x);
l6 : dispose(y);

In this case it is possible to optimize such that the statement
sequence l1, l3, l5 is executed even before y is allocated in l2. Thus
again, y may get the same address as x, and so the true branch
in l4 can fire in the optimization but not in the original program.
So the problem exists even in programs that do not read values of
dangling pointers, and which we cannot disallow. However, notice
that in the C2 optimization we are still reading the value of f
after assigning it to x and disposing x. Thus we need to somehow
prevent optimizations that break the ‘no dangling reads’ rule.

Conceptually, we propose that the footprint of statements that
read pointer variables should include the heap cell that the pointer
is addressing. Thus a program that reads pointers that are not
allocated, such as C1, will be considered to be a faulting program,
just like one that dereferences a pointer that is not allocated. In the
case of C2, the program itself is not faulting, but the footprint of l4
in the dependency analysis will now include the heap allocated at
f and y. This will prevent the illegal optimization because f and
x address the same heap, and so the dispose command l5 depends

1 Note that we do not mean dereferencing dangling pointers, but even just
looking at their value

6 2009/9/18

{emp}
l1 : new(x);

{〈x %→ 0〉{l1}}
l2 : new(y);

{〈x %→ 0〉{l1} ∗ 〈y %→ 0〉{l2}}
l3 : f := x;

{f = x

!
!〈x %→ 0〉{l1} ∗ 〈y %→ 0〉{l2}}

{f = x
!
! 〈f %→ 0〉{l1} ∗ 〈y %→ 0〉{l2} }

l4 : if(f = y)then{z := 0}else{z := 1};
{

f "= y ∧ z = 0 ∧ f = x

!
!〈f %→ 0〉{l1,l4} ∗ 〈y %→ 0〉{l2,l4},

f = y ∧ z = 1 ∧ f = x

!
!〈f %→ 0〉{l1,l4} ∗ 〈y %→ 0〉{l2,l4}

}

{f "= y ∧ z = 0 ∧ f = x

!
! 〈x %→ 0〉{l1,l4} ∗ 〈y %→ 0〉{l2,l4}}

l5 : dispose(x);

{f "= y ∧ z = 0 ∧ f = x

!
! 〈y %→ 0〉{l2,l4} }

l6 : dispose(y);
{f "= y ∧ z = 0 ∧ f = x}

Figure 7. Dependency analysis for C2

Π

!
!Λ ∗ 〈E %→ F 〉L

x = E[x′/x] ∧ (Π

!
!Λ ∗ 〈E %→ F 〉L∪{l})[x′/x]

l : x := E, x′fresh

Π

!
!Λ

x = 0 ∧ (Π

!
!Λ)[x′/x]

l : x := E, Π

!
!Λ (E = 0, x′fresh

Π

!
!Λ ∗ 〈E %→ E′〉L ∗ 〈F %→ F ′〉L′

Π

!
!Λ ∗ 〈E %→ F 〉L∪{l} ∗ 〈F %→ F ′〉L′∪{l}

l : [E] := F

Π

!
!Λ ∗ 〈E %→ E′〉L

Π

!
!Λ ∗ 〈E %→ F 〉L∪{l}

l : [E] := F, Π

!
!Λ ∗ 〈E %→ E′〉L (F = 0

Π

!
!Λ ∗ 〈E %→ F 〉L ∗ 〈F %→ F ′〉L′

x = F [x′/x] ∧ (Π

!
!Λ ∗ 〈E %→ F 〉L∪{l} ∗ 〈F %→ F ′〉L′∪{l})[x′/x]

†

† l : x := [E], x′ fresh

Π

!
!Λ ∗ 〈E %→ F 〉L

x = F [x′/x] ∧ (Π

!
!Λ ∗ 〈E %→ F 〉L∪{l})[x′/x]

†

† l : x := [E], x′ fresh, Π

!
!Λ ∗ 〈E %→ F 〉L (F = 0

Figure 8. Assignment, mutation and lookup with increased foot-
print that includes the heap of the pointer that is being read

on l4 and cannot be moved above it, which is also clearly what one
would expect of any execution of the program.

Formally, we need to alter the dependency analysis of the last
section to increase the footprint of commands that read pointer
variables. Figure 8 shows the rules for the assignment, mutate and
lookup commands which now require that if the pointer that is read
is not null, then it must be allocated in the pre-state, and the label
of the command is also added to the heap of the read pointer in
the post-state. If the pointer to be read is null, then we have the
usual execution rules from the previous section. We use similar case
splits on pointers in the guards of conditionals and while loops, so
that non-null pointers in the guards must be allocated in the pre-
state and are part of the access footprint of the whole composite
command. For example, the dependency analysis for program C2

is shown in Figure 7 (with boxed footprints). The footprint set of
l5 contains l4, and so there is a dependency from l5 to l4 which
prevents the incorrect optimization for C2 described earlier. We
formally show soundness in section 4.3.

4.2 Non-terminating executions
The other problem with the independence assumption is that it does
not account for non-terminating executions. For example, consider
the program C3

l1 : while(true){skip;}
l2 : [x] := 0;

This program is safe but non-terminating on an initially empty
heap, because of the infinite loop in l1. In this case l1 and l2 do
not access any common heap locations or variables in any possible
execution of the program, and are hence independent by definition.
But if we use the independence assumption to reorder l1 and l2,
then the optimized program will be unsafe since it will access the
unallocated cell at x. Also notice that it is not just a matter of
dead code becoming live in the optimization, as can be seen in the
program C4:

l1 : if(y ≥ 0)then{new(x); }
l2 : while(y '= 0){y −−; }
l3 : [x] := 0;

If initially y ≥ 0 then the program is safe and terminating and
l3 is executed. If y < 0, then the program does not terminate, but
moving l3 above l2 will cause a memory fault.

We can address this problem using methods from [4], synthesiz-
ing conditions to underapproximate weakest preconditions. Note
that if we can statically prove termination (using e.g. [6]), then
W = true. For any given sequential block c = l1 : c1; . . . ; ln : cn,
we can synthesize an underapproximation to termination:

W = WP(c, true)

and perform the optimization conditionally:

if(W)then{c}else{c}

As an example, in the case of C4 we will get

if(y ≥ 0)then{C4}else{C4}

and safely reorder l3 and l2 in the true branch of the conditional.
Note that, while we can optimize non-terminating programs, we

only perform the optimizations inside the bodies of loops, not out-
side (we check that the pre-state guarentees termination using an
underapproximation to the weakest precondition). As an example
consider the program in Figure 1, which has a non-terminating
outer while loop. In this case the sequential block containing the
outer loop will have weakest precondition false, so no optimiza-
tions will be applied at this level. But when the analysis is applied
to the sequential block which is the body of this outer loop, then
every trace is finite since it is a trace of a single iteration of the infi-
nite loop. If the body happens to contain an infinite loop, then again
the weakest precondition of the body will avoid optimizing any in-
finite traces. For this reason, when proving soundness, we will use
a partial correctness semantics that does not consider infinite traces
for loops. We need only consider finite traces from preconditions,
thus modeling the execution within loop bodies.

4.3 Soundness
In this section we demonstrate soundness of the analysis using an
action trace semantics of commands [2]. Traces are sequential com-
position of atomic actions, where atomic actions are primitive com-
mands or assume statements, the formal semantics of which is de-
fined below. The trace sets of programs are shown in Figure 9. For
a sequential block i1 : c1; . . . ; in : cn, we label all the atomic ac-
tions in all traces of ck with the label ik, for 1 ≤ k ≤ n. Thus every
trace of the sequential block is of the form (i1 : τ1); . . . ; (in : τn),
where ik : τk is the trace τk in which every atomic action has the

7 2009/9/18

T (a) = {a}
T (c1; c2) = {τ1; τ2 | τ1 ∈ T (c1), τ2 ∈ T (c2)}

T (if b c1 c2) =
{assume(b); τ1 | τ1 ∈ T (c1)} ∪ {assume(¬b); τ2 | τ2 ∈ T (c2)}

T (while b c) = (assume(b); T (c))∗; assume(¬b)
where (.)∗ is Kleene-star (iterated ;)

Figure 9. Action trace semantics of commands

label ik . Our aim is to show that any reordering of atomic actions
in a trace under the dependencies determined by our analysis will
produce equivalent output states to the original trace.

For the purposes of proving soundness, we work with a refined
storage model which distinguishes whether a location has been
disposed or not. We do this by extending the set of values with
the set of disposed locations, Locd = {ld | l ∈ Loc}. The idea is
that when a location l is disposed by the dispose command, then
every variable and cell that was pointing to l will now point to ld

to indicate that the variable or cell is holding a disposed location.
Thus we have Val = Loc∪ {0} ∪ Locd. Heaps and Stacks are as
defined in Section 3 but States have a well-formedness constraint
that all variables and cells either point to null, a disposed location or
a location that is allocated on the heap. Thus every (s, h) ∈ States
is such that

∀x ∈ Var. s(x) = 0 ∨ s(x) ∈ Locd ∨ s(x) ∈ dom(h)

∀l ∈ dom(l). h(l) = 0 ∨ h(l) ∈ Locd ∨ h(l) ∈ dom(h)

Semantically, the primitive actions correspond to total functions
that are of the form States → P(States)$. The , element
represents a faulting execution, that is, dereferencing a null pointer
or an unallocated region of the heap, as well as the reading of
dangling pointers, as we described in section 4.1.

The atomic actions and their denotational semantics are given
in Figure 10. The semantics records the label of the action in the
label set of the heap cells that the action accesses. In the case of
dispose we substitute the disposed location in all the variables and
cells that were referring to the cell that is disposed. The expression
(s, h)[ld/l] is the state (s′, h′) defined as:

s′(x) =

{

ld if s(x) = l
s(x) otherwise h′(l′) =

{

ld if h′(l′) = l
h′(l′) otherwise

The assume statements filter out all the states that satisfy the
boolean condition, but fault if the expressions being read are not
allocated locations. Similar faulting behaviour is shown by the
assignment, lookup and mutation if the locations they read are
not allocated in the heap, and this constraint ensures that disposed
locations are never read in any safe execution.

Figure 10 also defines the access label set of every atomic
action. For any atomic action (i : a) acting on a state s, h, the
access label set, acc(i : a, s, h), is the set of labels in the part of
h that is accessed by i : a when i : a is executed on the state s, h.
Thus the access set of an action i : a indicates all the previous
actions that accessed the heap that the i : a is accessing.

The semantics of an action trace is given by the sequential
composition of its actions, defined as !(i : a); (i′ : a′)"(s, h)

=







⋃

(s′,h′)∈!i:a"(s,h)

!i′ : a′"(s′, h′) if !i : a"(s, h) '= /

/ otherwise

We now define the notion of dependency between two actions
in a trace, with respect to a given initial state.

DEFINITION 2 (Dependency). Assume we have an action trace
τ = (i1 : a1); . . . ; (in : an)

For any two actions (iu : au) and (iv : av) in τ such that u < v,
there is a heap carried dependency between the two actions from
an initial state (s, h), written

hdep(iu : au, iv : av, τ, s, h)

iff !(i1 : a1); . . . ; (iv−1 : av−1)"(s, h) = S and for some
(s′, h′) ∈ S, we have iu ∈ acc(iv : av, s′, h′).

We write dep(iu : au, iv : av, τ, s, h) if there is either a
heap carried dependency or the two actions access common stack
variables.

For a set of states S, we shall write dep(i : a, i′ : a′, τ, S) if
there is some (s, h) ∈ S such that dep(i : a, i′ : a′, τ, s, h), and
similarly for hdep.

LEMMA 1. The dependency detection algorithm from Figure 5
soundly determines heap carried dependencies, that is, for a se-
quential block c, if there is a dependency hdep(iu : au, iv :
av, τ, s, h) between any two actions (iu : au) and (iv : av) in any
trace τ of c for some (s, h) in the precondition, then iu ∈ deps(iv)
in the result of the algorithm.

Our ultimate goal is to show soundness of the transformations
made using this dependence information. That is, we have to show
that starting from the same initial state, a non-diverging trace that
is reordered under dependencies between atomic actions produces
output states which are in some sense equivalent to the output of the
original trace (only non-diverging traces represent real executions).
This notion of equivalence is not always equality of the set of output
states. For example, the program

c = new(x); new(y); dispose(x);

may be safely transformed to
c′ = new(x);dispose(x);new(y);

In this case c′ may produce a state in which x was allocated the
same location as y, but c cannot give such an outcome. However,
we observe that such differences relate to the specifics of the allo-
cation behaviour of the program, and so the notion of equivalence
we shall guarantee is that of equivalence up to permutation of allo-
cated locations.

DEFINITION 3 (Structural equivalence). We then define two states
(s, h) and (s′, h′) to be structurally equivalent, written (s, h) /
(s′, h′), iff |dom(h)| = |dom(h′)| and there exists a bijection
π : dom(h) → dom(h′) such that for all l ∈ dom(h) and for
all x ∈ Var,

h(l) = (l′, L) ∧ l′ ∈ Locd ⇒ h′(π(l)) = (l′′, L) ∧ l′′ ∈ Locd

h(l) = (l′, L) ∧ l′ '∈ Locd ⇒ h′(π(l)) = (π(l′), L)
h(l) = (0, L) ⇒ h′(π(l)) = (0, L)

s(x) ∈ Locd ⇒ s′(x) ∈ Locd

s(x) '∈ Locd ⇒ s′(x) = π(s(x))
s(x) = 0 ⇒ s′(x) = 0

We may write π(s, h) = (s′, h′) when the two states are related
by permutation π.

LEMMA 2. Structural equivalence, /, is an equivalence relation.
We write [s, h]' for the equivalence class of s, h. For a set of states
S, we write [S]' to denote the union of the equivalence classes of
all states in S.

LEMMA 3 (Access). For every atomic action i : a and state s, h
we have acc(i : a, s, h) = acc(i : a, s1, h1) for every (s1, h1) ∈
[s, h]'.

8 2009/9/18

i : x := E :







{s[x %→0], h}, ∅ if !E"s = 0
{s[x %→ l], h[l %→ (l′, L ∪ {i})]}, L if !E"s = l and h(l) = (l′, L)
,, undef otherwise

i : x := [E] :







{s[x %→0], h[l %→ (0, L ∪ {i})]}, L if !E"s = l, h(l) = (0, L)
{s[x %→ l1], h[l %→ (l1, L1 ∪ {i})][l1 %→ (l2, L2 ∪ {i})]}, L1 ∪ L2 if !E"s = l, h(l) = (l1, L1) and h(l1) = (l2, L2)
,, undef otherwise

i : [E1] := E2 :







{s, h[l %→ (0, L ∪ {i})]}, L if !E1"s = l, !E2"s = 0 and h(l) = (l′, L)
{s, h[l %→ (l1, L1 ∪ {i})][l1 %→ (l′′, L2 ∪ {i})]}, L1 ∪ L2 if !E1"s = l, !E2"s = l1 , and h(l) = (l′, L1) and h(l1) = (l′′, L2)
,, undef otherwise

i : new(x) : {s[x → l], h ∗ l %→ (0, {i}) | l ∈ Loc\dom(h)}, ∅

i : dispose(E) :

{

{(s, h′)[ld/l]}, L if !E"s = l, h = h′ ∗ l %→ (l′, L)
,, undef otherwise

i : assume(E1 = E2) :



























{s, h}, ∅ if !E1"s = 0, !E2"s = 0
{s, h[l %→ (l′, L ∪ {i})]}, L if !E1"s = l, !E2"s = l, h(l) = (l′, L)
∅, L ∪ L′ if !E1"s = l, !E2"s = l′ and h = h′ ∗ l %→ (l1, L) ∗ l′ %→ (l2, L′)
∅, L if !E1"s = l, !E2"s = 0 and h = h′ ∗ l %→ (l′, L)
∅, L if !E1"s = 0, !E2"s = l and h = h′ ∗ l %→ (l′, L)
,, undef otherwise

i : assume(E1 "= E2) :



























∅, ∅ if !E1"s = 0, !E2"s = 0
∅, L if !E1"s = l, !E2"s = l, h(l) = (l′, L)
{s, h′ ∗ l %→ (l1, L ∪ {i}) ∗ l′ %→ (l2, L′ ∪ {i})}, L ∪ L′ if !E1"s = l, !E2"s = l′ and h = h′ ∗ l %→ (l1, L) ∗ l′ %→ (l2, L′)
{s, h[l %→ (l′, L ∪ {i})]}, L if !E1"s = l, !E2"s = 0 and h = h′ ∗ l %→ (l′, L)
{s, h[l %→ (l′, L ∪ {i})]}, L if !E1"s = 0, !E2"s = l and h = h′ ∗ l %→ (l′, L)
,, undef otherwise

Figure 10. Denotational semantics and access labels sets of atomic actions. For every labelled atomic action i : a, the figure shows
!i : a"(s, h), acc(i : a, s, h) for a stack and heap state s, h.

LEMMA 4 (Closure). If !τ"(s, h) = S then all states in S are
structurally equivalent. We also have !τ"([s, h]') ⊆ [S]' and if
S *= ∅ then !τ"([s, h]') *= ∅.

LEMMA 5 (Reordering). Let τ be a trace and (i : a) an atomic
action. Assume we have !τ ; (i : a)"(s, h) = S, S *= ∅ and
¬dep(i′ : a′, i : a, τ ; (i : a), s, h) for all actions (i′ : a′) in τ .
We then have !(i : a); τ"(s, h) ⊆ [S]' and !(i : a); τ"(s, h) *= ∅.

THEOREM 6 (Soundness). Let C be a sequential block to which
the dependency detection algorithm (Figure 5) has been applied for
a certain precondition. Let s, h be a state in the precondition and
let τ be a trace of C such that !τ"(s, h) = S and S *= ∅. If τ ′ is
any reordering of actions in τ respecting computed dependencies,
then we have !τ ′"(s, h) ⊆ [S]' and !τ ′"(s, h) *= ∅.

5. Experimental evaluation
The preceding sections have described a method for using a shape
analysis based on separation logic to determine heap-carried de-
pendencies. In this section, we describe how this analysis can be
used when synthesizing hardware. We also discuss the outcome of
our preliminary experimental evaluation.

5.1 Implementation
Section 3 described a method of associating with each label l a
set of labels L such that L is an over-approximation of the heap-
carried data dependencies of the command at l. Such information
specifies a partial ordering among commands and indicates that the
command at l can not be executed before any command at l′ ∈ L.
To obtain the full set of data dependencies, we need to augment this
information with the dependencies between instructions that arise
due to interaction between stack variables. For example, in the code
below, the command at l3 is data-dependent on the command at l1.

l1 : x := 3; l2 : y := 4; l3 : z := x + 2;

In addition to these data dependencies, we also have control
dependencies that arise whenever the execution of one command
is dependent on the evaluation of another command, as occurs in

conditional branches. In the program below, l2 and l3 are control-
dependent on l1 while l4 is not, since l4 is evaluated regardless of
which branch is taken.

l1 : if(x < 5) then l2 : y = 0 else l3 : y = 1;
l4 : z = x;

Our implementation is based on the shape analysis tool [18].
Our tool uses known techniques for exploiting dependency infor-
mation for instruction re-ordering and parallelization: [9] gives al-
gorithms for taking sequential code, computing control dependen-
cies, and combining this with data dependencies to obtain a pro-
gram dependence graph. Such a graph can then be transformed
into optimized sequential code using techniques adapted from
[26, 11, 3]. The computed dependencies are then passed to our cus-
tom C to VHDL compiler for programs with heap. The compiler
adopts the approach of [7] to introduce parallelism into to the de-
sign.

5.2 Experiments
We evaluated the benefit of the analysis using the following three
examples:
Merge sort – This is our running example from Figure 1. The

design has two input signals and one output signal. The implemen-
tation repeatedly inputs and sorts n elements through the first input
signal and n elements through the second input signal. Using the
merge sort it then combines the two sequences into one sorted se-
quence, which is then outputted. In our evaluation we used n = 10.
Priority queue – The design has one input signal and one

output signal. The implementation repeatedly inputs and sorts and
outputs n elements. In our evaluation we used n = 10.
Huffman encoder – This example implements a data structure

for binary encoding of symbols. The design has three input signals
and one output signal. The implementation repeatedly inputs n1

symbols through the first input signal, their frequencies through
the second input signal, and builds a Huffman encoder using this
data. This is then followed by receiving n2 symbols through the
third input signal and producing their respective binary encodings

9 2009/9/18

Design C-ALUTs Regs M-Blocks F-Max
Sequential Prio 5908 4745 4096 86.65 MHz
Parallel Prio 5867 4667 4096 82.14 MHz
Final Prio 5883 4697 4096 88.46 MHz
Sequential Merge 12951 5334 8192 76.62 MHz
Parallel Merge 12985 5298 8192 85.5 MHz
Final Merge 11850 9400 8192 79.29 MHz
Sequential Huffman 30186 16156 12288 77.92 MHz
Parallel Huffman - - - - MHz
Final Huffman - - - - MHz

Figure 11. Synthesis Results

through the output signal. In our evaluation we used n1 = 10 and
n2 = 10.

Three versions of VHDL designs were generated for each of the
above examples. The sequential version models sequential execu-
tion of the original C program. The parallel version uses heap and
stack dependencies to enable parallel execution of instructions. The
final version extends the parallel version with memory localization
and pipelining. Two pipeline stages were introduced in the Priority
Queue and Merge Sort examples and four stages were introduced
in the Huffman encoder example.

The generated circuits were synthesized for experimentation on
an FPGA using Altera’s Quartus II 9.0 tools. The synthesis phase
involves transforming our generated VHDL descriptions into a cir-
cuit netlist (graph) which contains logical elements like combina-
tional gates and registers for state information. The implementation
phase involves mapping these components onto a specific FPGA
chip by automatically places the nodes in the graph and then auto-
matically routing wires between the nodes. The target FPGA archi-
tecture we use is Stratix III. The frequency results were obtained
using a slow 1199mV 0C device model.

The table in Figure 11 gives the synthesis results for all nine
VHDL designs considered here. The C-ALUTs column identifies
the number of combinational four-input lookup tables used in the
design. The Regs column identifies the number of registers flip-
flops used in the design. TheM-Blocks column identifies the num-
ber of bytes of memory blocks used in the design. The F-Max col-
umn identifies the maximum clocking frequency of the design.

Our synthesis results show very little variation in maximum
clock frequency after parallelization and pipelining. This is largely
due to the critical path being determined by the slowest statement
in the finite state machine representation of the final circuit.

As of the writing of this document, the parallel and pipelined
versions of the Huffman encoder circuit successfully synthesize
from VHDL into gates, but the generated circuit is too large to fit
onto a Stratix III FPGA. In the short term we believe it is possi-
ble to improve our synthesis flow to generate more efficient state
machine representations that consume far fewer gates. One longer-
term approach we are considering is to synthesize heap programs to
Bluespec [21]. Bluespec generates Verilog output which is crafted
to be well-aligned with commercial gates synthesis tools whereas
we generate VHDL code without making such considerations.

A custom VHDL test bench was written for each design and
ran in simulation to evaluate latency and throughput of our designs.
The table in Figure 12 summarizes results of these measurements.
The F-Cycles column identifies the number of clock cycles needed
by the respective design to produce the first result. This measure
represents the latency of the circuit. The N-Cycles column identi-
fies the number of clock cycles needed by the respective design to
produce the next result (assuming that inputs are always available).
This measure represents the throughput of the circuit.

The table in Figure 12 tells us that using our analysis to intro-
duce parallelism into a sequential design decreases latency by 45%
for the Priority Queue and Huffman Encoder examples, and by 65%

Design F-Cycles N-Cycles
Sequential Prio 353 353
Parallel Prio 196 196
Final Prio 196 168
Sequential Merge 955 955
Parallel Merge 337 337
Final Merge 337 250
Sequential Huffman 1771 1771
Parallel Huffman 966 966
Final Huffman 972 342

Figure 12. Latency and Throughput Measurements

for the Merge Sort example, while the throughput is increased by
83% and 183% respectively. By manually applying pipelining and
memory localization optimizations, the throughput gain grows to
110% for the Priority Queue example, 282% for the Merge Sort ex-
ample, and 417% for the Huffman encoder example. As expected,
the latency of the final version of the circuits matches that of the
parallel version.

Let us note that the source of the measured throughput and
latency gains of the parallel version over the sequential version
are both stack and heap dependencies, with heap dependencies
often making the difference; for example, the two input loops of
the Merge Sort example could not be executed in parallel without
computing fine heap dependencies. The source of the measured
throughput gains of the final versions over the parallel versions are
heap dependencies only. For our pipelined circuits, throughput is
determined by the pipeline stage consuming the most clock cycles.
The Priority Queue and Merge Sort examples both have one long
and one short stage and thus the benefit of pipelining is modest.
However, the Huffman Encoder example has four pipeline stages
of comparable lengths. Consequently, the throughput gain for the
Huffman encoder example is substantial.

6. Conclusion
In this paper we have described a separation logic based program
analysis for indentifying heap-carried data dependencies between
program statements, and shown how this allows us pipeline, par-
allelize, and localize memories when synthesizing circuits from C
programs. In the future we might find the techniques described here
useful when synthesizing hardware from lower-level hardware de-
sign languages such as VHDL or Verilog where heap-like struc-
tures are sometimes encoded explicitly in arrays. The techniques
proposed here could also potentially be used for compilation for
embedded systems. For example, ARM microprocessors provide
support for software pipeling (e.g. predicated instructions). Finally,
our support for memory localization allows for different memory
management schemes to be used according to profiled behavior in
the same program: this could have application both for C-to-gates
synthesis, as well as compilation for embedded systems.

References
[1] J. Berdine, C. Calcagno, and P. O’Hearn. Symbolic execution with

separation logic. In APLAS, 2005.
[2] C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract

separation logic. In LICS, 2007.
[3] J. M. P. Cardoso and H. C. Neto. Compilation for fpga-based

reconfigurable hardware. Design & Test of Computers, IEEE,
20(2):65–75, 2003.

[4] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv.
Proving conditional termination. In CAV: International Conference
on Computer Aided Verification, 2008.

10 2009/9/18

[5] B. Cook, A. Gupta, S. Magill, A. Rybalchenko, J. Simsa, S. Singh,
and V. Vafeiadis. Finding heap-bounds for hardware synthesis.
Submitted. Available on Byron Cook’s webpage, 2010.

[6] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for
systems code. In PLDI, 2006.

[7] J. B. Dennis. First version of a data flow procedure language. In Pro-
gramming Symposium, Proceedings Colloque sur la Programmation,
pages 362–376, London, UK, 1974. Springer-Verlag.

[8] D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis
based on separation logic. In TACAS: Tools and Algorithms for the
Construction and Analysis of Systems, 2006.

[9] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans. Program.
Lang. Syst., 9(3):319–349, 1987.

[10] R. Ghiya, L. Hendren, and Y. Zhu. Detecting parallelism in c
programs with recursive data structures. In CC, 1998.

[11] W. Gong. Synthesizing sequential programs onto reconfigurable
computing systems. PhD thesis, Santa Barbara, CA, USA, 2007.
Adviser-Kastner, Ryan.

[12] J. Hayman and G. Winskel. Independence and concurrent separation
logic. In LICS, 2006.

[13] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for poiner
variables. In PLDI, 1989.

[14] J. Hummel, L. Hendren, and A. Nicolau. A general data dependence
test for dynamic, pointer-based data structures. In PLDI, 1994.

[15] C. Hurlin. Automatic parallelization and optimization of programs
by proof rewriting. In SAS, 2009.

[16] B. Kernighan and D. Ritchie. The c programming language. Prentice
Hall, 1988.

[17] R. Lipton. Reduction: A method of proving properties of parallel
programs. CACM, 18(12), 1975.

[18] S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. THOR: A tool for
reasoning about shape and arithmetic. In CAV, 2008.

[19] M. Marron, D. Stefanovic, D. Kapur, and M. Hermenegildo.
Identification of heap-carried data dependence via explicit store heap
models. In LCPC, 2008.

[20] J. Matthews and J. Launchbury. Elementary microarchitecture
algebra. In CAV, 1999.

[21] R. Nikhil. Bluespec system verilog: efficient, correct rtl from high
level specifications. Formal Methods and Models for Co-Design,
2004. MEMOCODE ’04. Proceedings. Second ACM and IEEE
International Conference on, pages 69–70, June 2004.

[22] P. O’Hearn. Resources, concurrency and local reasoning. In
CONCUR, 2004.

[23] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In CSL, 2001.

[24] M. Raza, C. Calcagno, and P. Gardner. Automatic parallelization with
separation logic. In ESOP, pages 348–362, 2009.

[25] V. Sassone, M. Nielsen, and G. Winskel. Models for concurrency:
Towards a classification. TCS, 170(1-2):297–348, 1996.

[26] J. Zeng, C. Soviani, and S. A. Edwards. Generating fast code from
concurrent program dependence graphs. In LCTES ’04: Proceedings
of the 2004 ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools for embedded systems, pages 175–181, New
York, NY, USA, 2004. ACM.

7. Appendix
LEMMA 1. The dependency detection algorithm from Figure 5
soundly determines heap carried dependencies, that is, for a se-
quential block c, if there is a dependency hdep(iu : au, iv :
av, τ, s, h) between any two actions (iu : au) and (iv : av) in any

trace τ of c for some (s, h) in the precondition, then iu ∈ deps(iv)
in the result of the algorithm.

Proof: We first need to check that the getPost procedure from
the algorithm correctly propagates command labels through the
symbolic execution so that the label sets of the concrete heap at
every stage satisfy the labelling on the symbolic state.

For each of the atomic commands we check that the symbolic
execution rules for label propagation (shown in Figure 4 and up-
dated in Figure 8) are sound. In the case of assignment, the first
rule from figure 8 is

Π

!
!Λ ∗ 〈E #→ F 〉L

x = E[x′/x] ∧ (Π

!
!Λ ∗ 〈E #→ F 〉L∪{i})[x

′/x]
i : x := E,x′fresh

In this case if a state (s, h) |= Π

!
!Λ∗〈E #→ F 〉L, then h = h′∗l #→

(l′, L′) where !E"s = l and L′ ⊆ L. By semantics of assignment
from figure 10 we have that the concrete state after assignment is
s[x #→ l], h[l #→ (l′, L′ ∪ {i})], which satisfies the symbolic post
state

x = E[x′/x] ∧ (Π

!
!Λ ∗ 〈E #→ F 〉L∪{i})[x

′/x]

since L′ ∪ {i} ⊆ L ∪ {i}.
Each of the other rules can be checked in a similar way using

the semantics of commands from figure 10, and the rearrangement
rules can be similarly checked to be sound implications. In the case
of composite commands, it was shown in section 3.3 that frame
inference determines the frame assertion ΛF such that the pre-state
and the post state of the command are of the form Π

!
!Λ ∗ ΛF and

Π′

!
!Λ′ ∗ ΛF respectively, so that the concrete heap hF satisfying

ΛF in the pre-state is never accessed by the command. This means
that no action in any action trace of the command accesses hF , so
the label sets in hF are preserved through any trace execution. This
is the only information that is used in the label propagation in the
post-state since only the labels in ΛF are preserved exactly in the
post-state, and all the label sets in Λ′ are conservatively assumed
to be the union of all labels in Λ and the label of the composite
command.

Next, we need to check that the getFootprintLabels(c,Π

!
!Λ)

procedure overapproximates the access label set of the command c
on all the states satisfying Π

!
!Λ. For primitive commands, the algo-

rithm applies the rearrangement rules and determines the footprint
labels from the relevant points-to assertion. In the case of assign-
ment, if we have the rearranged symbolic pre-state

Π

!
!Λ ∗ 〈E #→ F 〉L

then the computed footprint label set is L. A concrete state s, h
satisfying this formula is of the form s, h′ ∗ l #→ (l′, L′) where
!E"s = l and L′ ⊆ L. According to figure 10 the access label
set of the command on this state is L′, so the superset L is a valid
overapproximation.

In the case of composite commands, for the pre-state Π
!
!Λ∗ΛF ,

the footprint labels are taken to be the union of all the labels in Λ.
If the concrete pre-state is s, h ∗ hF and h satisfies Λ, then the set
of labels in h is a subset of all the labels in Λ. Since hF is never ac-
cessed by any action in any action trace of the composite command,
the access label sets of any action in any action trace can only have
labels from h or the label of the composite command itself. This is
overapproximated by the labels in Λ and the label of the compos-
ite command. Note, however, that the algorithm actually does not
include the label of the composite command in its computed foot-
print labels, as it is trivially true that there is a dependency from the
command to itself.

LEMMA 2. Structural equivalence, /, is an equivalence relation.
We write [s, h]' for the equivalence class of s, h. For a set of states

11 2009/9/18

S, we write [S]' to denote the union of the equivalence classes of
all states in S.
Proof: Reflexivity follows by taking the relating bijection π to
be the identity. For symmetry, if (s, h) / (s′, h′) and π is a
relating bijection, then the inverse of π is a relating bijection for
(s′, h′) / (s, h). For transitivity, if we have (s, h) / (s′, h′) and
(s′, h′) / (s′′, h′′) related by bijections π and π′ respectively, then
the composition of π and π′ is a relating bijection for (s, h) /
(s′′, h′′).

LEMMA 3. For every atomic action i : a and state s, h we have
acc(i : a, s, h) = acc(i : a, s1, h1) for every (s1, h1) ∈ [s, h]'.
Proof: For each primitive command i : a we can check that if
(s1, h1) / (s, h) then acc(i : a, s, h) = acc(i : a, s1, h1).
We assume that π is the relating permutation such that π(s, h) =
(s1, h1)

For example, in the case of assignment, i : x := E, if !E"s = 0
then acc(i : a, s, h) = ∅. By definition 3 we have !E"s1 = 0 and
so acc(i : a, s1, h1) = ∅ = acc(i : a, s, h). If !E"s = l and
h(l) = (l′, L) then by definition 3 we have !E"s1 = π(l) and
h1(π(l)) = (l′′, L) for some l′′, which gives acc(i : a, s1, h1) =
L = acc(i : a, s, h). Otherwise !E"s ∈ Locd, which means
!E"s1 ∈ Locd, and so both access sets are undefined. A similar
argument applies to the other commands.

LEMMA 4. If !τ"(s, h) = S then all states in S are structurally
equivalent. We also have !τ"([s, h]') ⊆ [S]' and if S *= ∅ then
!τ"([s, h]') *= ∅.
Proof: The proof is by induction on τ . We first check the base cases
when τ is a primitive command i : a. For the first part of the lemma,
every action other than allocation produces a single output state on
input state s, h, and so the outputs are structurally equivalent. In the
case of allocation, for input state s, h we may have any two output
states s, h ∗ l1 → (0, {i}) and s, h ∗ l2 → (0, {i}). These two
are related by the permutation π such that π(l1) = l2 and is the
identity on dom(h).

For the second part, Lemma 3 already implies that if i : a
is safe on (s, h) and (s1, h1) / (s, h) then i : a is safe on
(s1, h1). It remains to show that if (s′, h′) ∈ !i : a"(s, h), then
!i : a"(s1, h1) *= ∅ and for all (s′1, h

′
1) ∈ !i : a"(s1, h1), we

have (s′1, h
′
1) / (s′, h′). If !i : a"(s, h) = ∅ then we should have

!i : a"(s1, h1) = ∅.
The interesting cases are allocation, deallocation and the as-

sume statements. In the case of allocation, let (s′, h′) ∈ !i :
new(x)"(s, h) and (s1, h1) / (s, h). For any (s′1, h

′
1) ∈ !i :

new(x)"(s′1, h
′
1), we have to show (s1, h1) / (s, h). We have

(s′, h′) = (s[x → l], h ∗ l #→ (0, {i})) for some l *∈ dom(h)
and (s′1, h

′
1) = (s1[x → l1], h1 ∗ l1 #→ (0, {i})) for some

l1 *∈ dom(h1).
Let π be the permutation such that π(s, h) = (s1, h1). We then

define π′ : dom(h′) → dom(h′
1) such that π′(k) = π(k) if k ∈

dom(h), and π′(l) = l1. Then we have that π′(s′, h′) = (s′1, h
′
1)

and so they are structurally equivalent.
For dispose, let !i : dispose(E)"(s, h) = {s′, h′} and

!E"s = l and h = h′′ ∗ l #→ (l′, L). We have (s′, h′) =
(s, h′′)[ld/l] . Now assume (s1, h1) / (s, h) and π(s, h) =
(s1, h1). By definition 3, we have !E"s1 = π(l) and h1 =
h′′

1 ∗ π(l) #→ (l′1, L) for some h′′
1 and l′1. This means that we

have !i : dispose(E)"(s1, h1) = {(s1, h
′′
1)[ld/l]}. Setting π′ :

dom(h′) → dom(h′
1) as the restriction of π to dom(h)\{l}, we

have π′(s′, h′) = (s′1, h
′
1).

For i : assume(E1 = E2) on state (s, h) let !E1"s = l and
!E2"s = l′. Assume we have π(s, h) = (s1, h1) and !E1"s1 = l1,
!E2"s1 = l′1. By definition 3, we have l and l′ are allocated in h
and equal if and only if l1 and l′1 are allocated in h1 and equal. We

also have l = 0 if and only if l1 = 0 and l′ = 0 if and only if l′1 = 0
and l ∈ Locd if and only if l1 ∈ Locd and l′ ∈ Locd if and only
if l′1 ∈ Locd. Thus the assume command diverges on (s, h) if and
only if it diverges on (s1, h1). If it does not diverge then the output
states are identical to the input, and so we have π(s, h) = (s1, h1),
which shows that the output states are structurally equivalent. A
similar argument holds for the inequality assume command.

For assignment, mutation and lookup, it can be checked in a
similar way that for structurally equivalent input states (s, h) and
(s1, h1) related by a permutation π, the output states are also
related by the same permutation π.

We now do the inductive case for arbitrary τ . So assume that we
have τ = τ ′; (i : a), !τ"(s, h) = S and that the lemma holds for
τ ′ by the induction hypothesis. So let !τ ′"(s, h) = S1. For the first
part of the lemma, by induction hypothesis we have that all states in
S1 are structurally equivalent, and so by the base case we get that
all states in S are structurally equivalent, since !i : a"(S1) = S.

For the second part of the lemma, we have !τ ′"([s, h]') =
S′

1 ⊆ [S1]' by the induction hypothesis. We also have by the
base case that !i : a"([S1]') ⊆ [S]' since !i : a"(S1) = S,
which gives !i : a"(S′

1) ⊆ [S]'. So putting them together we get
!τ"([s, h]') ⊆ [S]'.

If S *= ∅, then S1 *= ∅, which by induction hypothesis implies
that S′

1 *= ∅. The only way that (i : a) can diverge on S′
1 is if it

is an assume statement, and we saw in the proof of assume state-
ments that structurally equivalent states have the same divergence
behaviour. Hence, since (i : a) does not diverge on S1 and all states
in S′

1 are structurally equivalent to those in S1, we have that (i : a)
does not diverge on S′

1, and we get !τ"([s, h]') *= ∅.

LEMMA 5. Let τ a trace and (i : a) an atomic action. Assume
we have !τ ; (i : a)"(s, h) = S, S *= ∅ and ¬dep(i′ : a′, i :
a, τ ; (i : a), s, h) for all actions (i′ : a′) in τ . We then have
!(i : a); τ"(s, h) ⊆ [S]' and !(i : a); τ"(s, h) *= ∅.

Proof: The proof is by induction on τ . For the base case we assume
that τ is an atomic action (i′ : a′), and check all the commands
individually. When (i : a) and (i′ : a′) are not a combination
of allocation and deallocation, we have that reordering preserves
equality of states rather than just structural equivalence. That is, if
!(i′ : a′) : (i : a)"(s, h) = S then !(i : a) : (i′ : a′)"(s, h) = S.
This follows by checking in each case that the access set of (i : a)
on the intermediate state !i′ : a′"(s, h) does not contain i′, and so
the two actions commute because they alter different parts of the
heap and stack and leave the rest unchanged.

The interesting cases are the combination of allocation and deal-
location. Say we have !(i′ : new(x)); (i : dispose(E))"(s, h) =
S and !E"s = l. In this case when we reorder we get !(i :
dispose(E)); (i′ : new(x))"(s, h) = S ∪ {h′ ∗ l → (0, {i′})}
where h = h′ ∗ l #→ (l′, L) for some l′, L. The new state is struc-
turally equivalent to every state in S because any state in S is of the
form h′ ∗ l1 → (0, {i′}). The two states are related by a permuta-
tion π such that π(l1) = l and π is the identity on dom(h′).

The other case is when we have !(i′ : dispose(E)); (i :
new(x))"(s, h) = S and !E"s = l. In this case when we reorder
we get !(i : new(x)); (i′ : dispose(E))"(s, h) = S′ ⊂ S. This is
because l may have been allocated in S but it cannot be allocated
in S′ as it has not been deallocated yet. In this case structural
equivalence is preserved since S′ ⊂ S.

In all cases it can be checked that the access label set of (i : a)
on (s, h) is the same as the access set of (i : a) on all states in
!i′ : a′"(s, h).

For the inductive case, we assume that τ = τ ′; (i′ : a′) and
that !τ ′; (i′ : a′); (i : a)"(s, h) = S and S *= ∅ and that
the lemma holds for τ ′. Let !τ ′"(s, h) = S′. Since there is no

12 2009/9/18

dependency between (i : a) and (i′ : a′) we have by the base
case that !τ ′; (i : a); (i′ : a′)"(s, h) ⊆ [S]' and !τ ′; (i : a); (i′ :
a′)"(s, h) *= ∅ and the access set of (i : a) on S′ is the same as
its access set on !i′ : a′"(S′). Hence (i : a) is independent of
all actions in τ ′ from (s, h). So by induction hypothesis we have
!(i : a); τ ′"(s, h) = S′′ ⊆ [S′′′]' where S′′′ = !τ ′; (i : a)"(s, h)
and S′′ *= ∅. Since we have !i′ : a′"(S′′′) ⊆ [S]', this gives
!(i : a); τ"(s, h) ⊆ [S]'. We also have !(i : a); τ"(s, h) *= ∅,
because the only way it can diverge is if (i′ : a′) is an assume
statement, but the divergence behaviour of assume statements is
the same on structurally equivalent states by proof of lemma 4, and
S′′ is structurally equivalent to S′′′ .

THEOREM 6. Let C be a sequential block to which the depen-
dency detection algorithm (Figure 5) has been applied for a certain
precondition. Let s, h be a state in the precondition and let τ be a
trace of C such that !τ"(s, h) = S and S *= ∅. If τ ′ is any re-
ordering of actions in τ respecting computed dependencies, then
we have !τ ′"(s, h) ⊆ [S]' and !τ ′"(s, h) *= ∅.

Proof: By Lemma 1 we have that the computed dependencies in-
clude all the valid dependencies in τ from state (s, h). Thus we
show the result for any reordering τ ′ of τ respecting the dependen-
cies between atomic actions in τ from state s, h. We show this by
induction on τ . The base case is when τ is an atomic action, and in
this case the result follows by lemma 5.

For the inductive case, assume that τ = τ1; (i : a) and that
!τ1"(s, h) = S1, where we know that S1 *= ∅ since S *= ∅. Let
τ ′ = τ ′′; (i : a); τ ′′′ be the dependency respecting reordering of
τ , where for all actions (i′ : a′) in τ ′′′, we have ¬dep(i′ : a′, i :
a, τ, s, h). We then have that τ ′′; τ ′′′ is a dependency respecting
reordering of τ1, since for every pair of actions (i1 : a1) and
(i2 : a2) in τ1, there is a dependency dep(i1 : a1, i2 : a2, τ1, s, h)
iff there is a dependency dep(i1 : a1, i2 : a2, τ, s, h).

So by the induction hypothesis we get !τ ′′; τ ′′′"(s, h) = S′
1 ⊆

[S1]' and S′
1 *= ∅. By lemma 4, we have that all the states in S1

are structurally equivalent, and so by lemma 3, we know that (i : a)
has the same access set L on all states in S′

1 as it does on all states
in S1. This access set L does not contain the labels of any action
in τ ′′′. This is because we had that τ ′ = τ ′′; (i : a); τ ′′′ is a valid
dependency respecting reordering of τ , and so by definition 2, none
of the actions in τ ′′′ have labels that are in L.

So now we have !τ ′′; τ ′′′"(s, h) = S′
1 and that (i : a) has

access set L on all states in S′
1, where L does not contain any labels

of actions in τ ′′′. This means that in the trace τ ′′; τ ′′′; (i : a) from
state (s, h), there is no dependency between (i : a) and any actions
in τ ′′′. Hence by lemma 5, we have !τ ′′; (i : a); τ ′′′"(s, h) ⊆ [S]'
and !τ ′′; (i : a); τ ′′′"(s, h) *= ∅.

13 2009/9/18

