Dynamic File Management Techniques

Milind B. Deshpande

Richard B. Bunt

Department of Computational Science
University of Saskatchewan
Saskatoon, Saskatchewan, Canada

ABSTRACT

Consideration of the dynamic characteristics of file referencing behaviour
provides an appropriate basis for the design of effective algorithms for the
management of a hierarchical file system. Several new algorithms are
proposed, based on similar algorithms in the memory referencing context.
Trace-driven simulation experiments were conducted to assess the
performance implications of these approaches. The results of these
experiment show that the dynamic algorithms do achieve their performance
objectives. More generally, the results reveal some interesting aspects of
the problem and indicate some impontant differences between the domains
of file referencing and memory management.

Key Words and Phrases: operating systems, file systems, storage
hierarchies, program behaviour, performance

1. Motivation

In a computer system, files containing programs and data are
organized into a logical structure called the file system. To manage the vast
amount of data in a file system effectively, storage hierarchies have been
intoduced, combining fast but expensive devices with slower and cheaper
ones to reduce storage costs and improve access speed. The management
of multilevel storage hierarchies deals with the problem of assigning files
within a file system to different levels of the hierarchy, based upon expected
use.

Since it is economically infeasible to store all files on the fastest
device, files that are used most often should be placed on faster devices,
while files that are used infrequently should be placed on slower devices. In
this way, it is possible for average access time to approach that of the fastest
(and most expensive) device while storage cost approaches that of the least
expensive (and slowest) device. File assignment, also known as file
allocation or file loading, is the problem of assigning files to various levels
in a storage hierarchy so as to achieve performance objectives. Changes in
file assignment are essential when the usage pattern of the files changes
with time and computational loads.

Solutions to the file assignment problem can be classified broadly as
static solutions or dynamic solutions, depending on how frequently the file
placement operation is carried out. Changing file referencing patterns and
the fluctuating nature of workload suggest that an optimal placement
achieved through a static algorithm (e.g., (9] will rarely remain optimal for
long. Dynamic algorithms (e.g..[6]), employing simple heuristic strategies
for dynamic file allocation based on frequency of reference, file size,
storage capacity of devices, eic., are more robust and can provide near
optimal file placement for much of the time, albeit with increased overhead.

While certain "dynamic” algorithms can be applied as frequently as
permitted by the overhead costs, they fail to exploit important
characteristics that may exist in file referencing behaviour. A comparison
with virtual memory management algorithms is appropriate here. It has
been observed frequently that the memory reference patterns of executing

1. Milind Deshpandc is presently 8 Ph.D. smdent at Rutgers University, New Brunswick, NJ.

0896-582X/87/0000/0086$01.00 © 1988 IEEE

86

programs are non-random. Programs tend to refer only a small subset of
their pages over a significant execution interval, a phenomenon known as
locality of reference. This characteristic of memory referencing behaviour
has been exploited extensively in the design effective memory management
policies such as LRU, PFF (2], and WS [3]. These use the notion of locality
to predict the future behaviour of programs and bring into main memory
only those pages that are likely to be referenced in the near future. In a
similar way it may be possible to base dynamic file assignment algorithms
on certain characteristics that may exist in file referencing behaviour. The
study of such characteristics may pave the way for more effective file
management techniques.

File referencing behaviour can be classified as either short-term or
long-term depending upon the granularity of measurements taken. In recent
years researchers have studied both short-term and long-term file
referencing behaviour and have observed that they are somewhat similar to
memory referencing behaviour. Lawrie [7] and Smith (11, 12} proposed
successful file migration algorithms based on the locality 'principle in long-
term file referencing behaviour. More recently, Majumdar and Bunt [8]
analyzed locality characteristics of short-term file referencing behaviour
and suggested ways to exploit them.

While the locality phenomenon seems to pervade the entire storage
hierarchy, it has been applied only at the upper (i.e. file migration) and
lower (i.e. memory management) ends. This paper considers the
intermediate range, proposes several algorithms for truely dynamic file
assignment, and examines the possibility of exploiting the locality
phenomenon in short-term file referencing behaviour for the design of such
algorithms.

2. The Experimental Environment

The performance of the dynamic file management algorithms
proposed in this paper was assessed by means of a set of trace-driven
simulation experiments. The workload traces used to drive these
experiments were taken from a DEC VAX 11/750 system running 4.2 BSD
UNIX™ in the Department of Computational Science Research Laboratory
at the University of Saskatchewan. The workload on the system represents
a typical university mix of computational activities such as text processing
and program development, as presented by faculty, graduate students, and
research staff. Each of the various strategies proposed in this paper was
simulated, with input in the form of file reference strings, a collection of file
sysiem events recorded using a software monitor. In the file reference
strings a file access refers to a logical file request issued by a program. This
definition avoids such system dependent factors as buffering mechanism
and block size. Data was captured for the 8 busy hours of a day, during
which an average of 7 to 10 users accessed approximately 10 megabytes of
data. Since the usage of this particular system changes little throughout the
year, it is reasonable to assume that the particular strings used for the
experiments represent typical file referencing activity on this system.

For the performance experiments a three-level storage hierarchy was
simulated, consisting of a drum, a fast disk and a slow disk. An average

2. UNIX™ is a trademark of AT&T Bell Laboratories

access time of 5 msec ‘was assumed for the first level (the drum), with a 10
ratio of 1:5:20 throughout the rest of the hierarchy. These values are typical
of devices commonly available and provide an opportunity to quantify the
performance results presented: ‘The qualitative. nature of ‘the results,
however, does not depend on the specific configuration of devices.

3. Characterizing The Experimental Workload

~ ‘This section examines the file reference strings used in the simulation
experiments (See 5] and (13] for more ‘detailed analysis). The purpose of
this analysis is to expose various characteristics of file reference patterns,
both ‘generally and specificaily, which are subsequently -exploited in the % cumulative
design: and analysis of algorithms -for storage hierarchy management. probability
System files are not. considered: first, because ;they yepresent a small
fraction of the -total . files on.the system; and second, ‘because they are
heavily referenced, any-reasonable -approach -to dynamic- - hierarchy
management would find it more efficient to assign such files to the fastest
device permanently and concentrate instcad on assignment of user files.

File Size: The analysis of file sizes (see Fig. 1) shows a heavy skewing

towards smaller sizes with a significant’ percentage of referenced files e
smaller than 10 Kbytes. This observation is in agreement with the studies) R 25 <0
conducted by Satyanarayanan {10] in a different environment. : - File size (Kbytes)
Inter-reference Duration: Inter-reference duration gives the average . A o
interval between two successive accesses to the file system and is.a measure Figure 1: Distribution of Refer-
of how busy the file system is, To be able to service ail requests, the ences Acroas File Sise Range.
average request rate should be lower.than the average service rate. Table.1.
shows the typical values of average interftefaence duration for user files
and Fig. 2 shows how.inter-reference duration varies. during the eight busy Table 2: Percentage of Files Causing
‘hours of the day. Such analysis can be used to determine if a given storage 50% and 90% References (Total).
hierarchy has the capacity to satisfy all the requests presented to it. .
: Ref. String %. | ©0%
Table 1: - Statistics On Inter- Reference Duration. ap:4 8:'“ :0,,; ;\:9‘;
. : - | apr10:85 1 0.97 | 20.79
Ref. String - l,}‘.?" reference apr12.85 | 0.44 | 18.46
|- Time{in sec.!) , | apris.85 1.37.] 23.24
apr4.85 Co 09278 . -1 apr19.85 0.57 '} 19.52
aprl0.85 0.8077 ‘ apr24.85 0.07 3.94
apr24.85° 1.3457 | apr26.85 0.16 7.78
apr20.85° 04177 o ‘ ‘| may3.85° -} 0.65 , 12.96
may3.85 0.3200 ' : _ —
. K e apr20.85
Locality: Bunt et al. [1]-characterized the: locality: phenomenon . in -the 1 .
domain of ‘memory referencing “behaviour in terms ‘of -concentration of T 3
reference and persistence of reference. Concentration refers 10.the tendency
of .a program to: refer to-a ‘small subset of .its ‘pages; persistence is a
phenomenon whereby a series of references is directed towards the same
page.. Both' are important to the -success of conventional - memory
management approaches. Analysis of file reference strings has shown that
similar properties exist in the context-of file references. A summary is » :
provided-here; a-more complete analysis is found in [13]. Inter-refl
a Concentration: Table 2 shows the percentage of files referenced in duration " . o , -
the reference string that are responsible for 50% and 90% of the total .{seconds) E _ :
file activity on the sysiem. The percentages are small in every string, : _ ‘ |
with from 4% to-23% of the. referenced files accounting for 90% of |
the references. This tendency for referencing activity to be
concentrated. to a small fraction of a total file system provides clear
motivation for dynamic file assignment. '
b. Persistence: Persistence of reference can be observed in two ways:
i. By examining the distribution of references to various levels of] S .
the LRU stack: Table 3 shows that this distribution is heavily 4 8
skewed towards the top of the stack, an indication of strongly Timie in bours - ‘
persistént referencing . patterns. ~Although program reference) . .
; strings show persistence, the behaviour appears to be even . Figure 2: Variation of Inter-reference
more prominent in file reference strings (13]. .. Distribution With Time. .~ C
87 i

Table 3: Stack Depth Distribution.

;:;‘:t apr26.85 | aprd.85 | may3.85 | apr24.5§
1 | 0.87854 | 0.78448 | 0.87093 | 0.87084

2 | 0.02988 | 0.05169 | 0.05171 | 0.03632

3 | 0.00819 | 0.01507 | 0.01139 | 0.01127

4 | 0.00467 | 0.00752 | 0.00527 | 0.00501

5 | 0.00270 | 0.00570 | 0.00297 | 0.00344

10 { 0.00127 | 0.00367 | 0.00082 0.00240

20 | 0.00128 | 0.00091 | 0.00092 | 0.00077
100 | 0.00003 | 0.00003 | 0.0C004 | 0.00003

ii. By studying the distribution of consecutive references to the
same file: Table 4 shows the distribution of frequencies with
which certain iength sequences of references to the same file
occur in a representative reference string. While a file reference
string tends to have more short reference sequences than long
ones, an average of between 3.5 and 12.1 references
(depending on the file system observed) are made to the same
user file before another file is referenced.

Table 4: Distribution of Consecutive References for
the Ref String Apr26.85.

Number of Cumulative Distribation
Consecutive Refs All MNT USR ROOT
—
1 0.20673 | 0.27301 | 0.32871 0.35261
2 0.70348 | 0.43724 | 0.586%9 0.606805
3 0.80950 | 0.67769 | 0.71938 0.73787
4 0.87341 | 0.82290 | 0.83497 0.79043
5 0.90393 | 0.88308 | 0.28797 0.82270
10 0.96204 | 0.95187 | 0.97120 0.01539
20 0.98178 | 0.97593 | 0.28425 0.92896
S0 0.99321 | 0.9369 | 0.99505 0.97678
100 0.9977 0.99755 | 0.99928 0.99229
200 0.99830 | 0.99233 -— 0.99423
Ave. length | ¢ 45 3.5 121
of a stning

Re-referencing Behaviour: Locality-based algorithms owe much of their
success in the memory management domain to the fact that programs show
a strong tendency 1o re-reference a small set of pages — the locality set.
This provides important stability. Table 5 illustrates the re-referencing
characteristics observed in file references. While the probability that a file
will be re-referenced within 10 seconds is seen to be very high, it falls off
rapidly outside the 10 second interval — much more rapidly than in the
memory reference domain. This particular re-referencing characteristic in
the file reference domain is significant and will be used to explain some of
the results presented in later sections.

In conclusion, while file referencing behaviour seems to have
substantial similarities with memory referencing behaviour, re-referencing
and persistence characteristics are different. To the extent that these latter
characteristics are important determinants, the performance of locality-
based file assignment algorithms may differ from that of locality-based
memory management strategies.

4. Algorithms for File Assignment

This paper examines the performance of several algorithms for
dynamic file management. Three of the algorithms — LRU, WS, and FFF
— are natural extensions of the corresponding algorithms from the memory
management domain, and are designed to exploit the locality phenomenon

88

Table 5: Study of File Re-referencing Behaviour.

Time Probability that a file will be re-referenced

interval in the given time interval.

(sec.) apr4.85 aprl5.85. | apr24.85 | apr26.85
10 0.562496 | 0.563980 | 0.803543 | 0.785350
20 0.034887 | 0.043863 | 0.021227 | 0.029416
30 0.022278 | 0.028360 | 0.013681 | 0.014912
40 0.0186568 | 0.022220 | 0.010887 | 0.009626
50 0.011754 | 0.016808 | 0.007546 | 0.008009

100 0.008952 | 0.000036 { 0.002679 | 0.004340
300 0.001982 | 0.001873 | 0.000720 | 0.001587
500 0.000820 | 0.001249 | 0.000806 | 0.001078

directly. RAND and FIFO are non-locality algorithms. GOPT, an optimal
algorithm that uses information about future referencing pattems, and RSA
(Random Static Assignment), a static assignment algorithm, provide upper
and lower bounds on the performance of file assignment algorithms.

As mentioned, a three-level file storage hierarchy comprising drum,
fast disk, and slow disk is assumed for the purpose of discussion. The
specific devices in the hierarchy are clearly not important to the discussion
in more general terms.

LRU: LRU is extended for managing a multilevel storage hierarchy by
considering drum as a repository of the most-recently-used files. A file
recently cast out of drum, itself managed by the LRU strategy, is more
likely to be referenced in the near future than a file forced out further in the
past. This technique effectively partitions the LRU stack into different
zones (see Fig. 3) so that the files in the topmost zone can be considered to -
constitute the current locality set and should therefore be assigned to the
drum. Files purged from the drum are assigned to the fast disk. The net
result of this strategy is to assign files to different devices based on
expected usage. Movement of the files is shown in Fig. 3. When a required
file is not found on the drum, it must be fetched to the drum from its device
of current residence. Unused files are gradually aged out to the next slower
device (a purge). Since each of the devices has a finite storage capacity, a
file exceeding available space cannot be stored on that device. This
constraint requires that such a file be stored on the next slower device that
can accommodate it.

WS (Working Set): The working set policy [3] can be extended for
managing a multilevel storage hierarchy by empioying a set of nested
working set windows for predicting future file referencing patterns (see Fig.
3). Assuming that the window sizes can be adjusted for a given
environment, the working set corresponding to the smallest window can be

Drum
=

———

{ Puru.] e =

feteh
Fast disk

Purge

TR R

Slow disk

LRU stack Waorking Set
Windows

Figure 3: Managing the File Storage Hierarchy

considered as the current locality set and the corresponding files can be
assigned to the drum. Files that fall in the next larger window, but outside
the smaller one, have moved out of the current working set and therefore,
should not be stored on the drum. This strategy results in a set of nested
working sets that relate to successively slower levels in the hierarchy.

FFF (File Fault Frequency): The Page Fault Frequency (PFF) memory
management algorithm [2] can be extended to the management of a file
storage hierarchy by using a set of non-decreasing fff parameters, one for
cach level in the hierarchy. Files corresponding to the smallest fff parameter
constitute the current locality set that can be assigned to the fastest device.
‘The rest of the fff parameters can similarly be employed to assign files to
other devices in the hierarchy.

FIFO: In this approach, every file moving to a device is time-stamped and,
when space runs out, files are purged to the next slower device on a first-
in-first-out basis. A file unavailable on the drum is searched for on
successively slower devices, and when found, moved to the drum from its
device of current residence. Once again, limited device capacities restrict
the movement of files.

RAND: The RAND strategy chooses a file to be replaced simply at
random: all the files on a device have equal likelihood of being replaced,
rcgardiess of measured (past) or expected (future) usage. A major weakness
of this strategy is that it could select a file that is going to be referenced
next. In certain situations, however, it will be shown that this strategy can
be surprisingly effective.

seneralized Optimum (GOPT): This optimal strategy (from [4]) provides
an upper bound on performance. Replacement decisions are based on the
size of a file and the time of its next reference. Since such replacement is
possible only if future referencing information is available, the algorithm is
realizable only in simulation. It does indicate, however, how much potential
for improvement exists in any realizable approach.

Random Static Assignment (RSA): This algorithm is employed to provide
a lower bound on the performance of a storage hierarchy. In this algorithm,
files are assigned at random to the various devices in the hierarchy, subject
only to the constraint that the device storage capacities are not exceeded.
While this algorithm is certainly not typical of actual static assignment
algorithms, the data collected serves to indicate potential effects of lack of
attention to the dynamic referencing behaviour. While dynamic algorithms
tend to give uniform performance at all times, the performance of static (or
even semi-static) algorithms degrades with the passage of time, After
sufficient duration, the file assignment may become even as bad as random
static assignment.

Several additional assumptions are necessary for these experiments.
It is assumed that there is no intemal buffering mechanism for the
filesystem. Every reference to a file is assumed to be a reference to the
storage hierarchy. It is also assumed that a file is read or written completely
in a single access. The measures used for comparing the performance of
algorithms include average time to access a file, hit ratios to devices, and
overhead for file transfer within the hierarchy. "Overhead” relates to the
cost associated with moving files between devices. The computational costs
associated with any algorithm are assumed to be negligible. When files are
fetched from slower devices, some files may have to be purged from faster
devices to make room for incoming files. This increased file movement is
undesirable, both because it requires time to do it, and because it represents
increased activity in /O channels. This is especially so because all file
movement between levels is assumed to take place through main memory,
using system resources such as CPU and main memory. Overhead cost is
quantified in terms of average time spent in purging files for every file
access.

5. Experimental Results

Results presented here were obtained from the trace-driven
simulation of the various file management algorithms proposed using the
various reference strings selected. A great volume of data was generated by
these experiments, creating a problem of presentation. Since the analysis of

89

file reference strings has shown that they possess similar characteristics in
general, the choice of any particular string was felt to have no qualitative
effect on the results. Reference strings collected on April 24th, 1985 and
April 26th, 1985, therefore, form the basis of the discussion presented. By
using two reference strings in the analysis rather than a single one, greater
generality can be shown.

The performance of the various algorithms is compared for different
values of storage space at the different levels. A typical experimental
strategy is to hold the capacity of one device fixed while changing that of
the other. WS and FFF are variable space algorithms, however, and care
must be taken to choose proper values of the parameters. Low values of
these parameters may mean low average resident set sizes and underutilized
devices, whereas large values may cause the device capacity constraints (0
influence the file replacement strategy excessively. Since both algorithms
assume unlimited device capacities, the parameters are chosen such that the
average resident set size on each device approximates the space used in the
fixed space strategies.

Figure 4 shows a plot of average access time versus drum capacity
for the LRU algorithm. Rather than showing absolute values, drum
capacity here and throughout is expressed as a percentage of the total file
space referenced in the reference string (roughly 10 Mbytes); the 1% figure
corresponds therefore to approximately 100 Kbytes. The behaviour
exhibited in Fig. 4 is similar to that exhibited in the "parachor curve”
familiar in the memory referencing domain. Access time drops quickly as
drum capacity increases, until the current locality set is on the drum, at
which point no further gain results. Similar results have been observed for
other algorithms. It is noteworthy that the size of the locality set on the
drum is quite small — about 0.1% of the total number of files referenced in
the string (amounting to about 10 Kbytes). Some of the characteristics of
the environment in which the reference strings were collected are
responsible for this behaviour. In particular, 60% of the references in the
string apr26.85 are directed towards files of size less than 10 Kbytes (see
Fig. 1). This observation parly explains the curve in Fig4 because when
the drum size is 10 Kbytes, almost all the heavily referenced files (i.e., files
smaller than 10 Kbytes) can be moved to the drum. This is particularly
effective because of the persistence tendency. After the first reference 10 a
file, if the file can be transferred to the drum, all successive references to
that file are directed to the drum, thereby reducing the average access time.
In practice, the drum size of 10 Kbytes does not represent a locality-set size
but rather a filter level which dictates which files should be allowed to come
to the drum. Thus, the average access lime curve is closely related to the
distribution of references across the file range (see Fig. 1).

2Q_ aPl’20|.85
1
15 _
Ave
ace (fdisk capacity = 100 K)
time A L—\
(msec) |

\

(fdisk cepacity = 400 K)

S]
(9] 2 4
Drum Capacity
(% of information referenced)

Figure 4: Variation of Average Access
Time With Drum Capacity (LRU)

5.1 Performance of Locality-Based Algorithms

Apart from minor differences in file accessing overhead, all the
locality-based algorithms (LRU, WS, and FFF) exhibit similar performance.
As shown in Fig. 5(a), all three algorithms considered, perform well at
small drum sizes (as small as 10 Kbytes). The comparison of overhead (Fig.
5(b)) shows that LRU has slightly lower file transfer activity. This is
because file movement under the other algorithms is governed both by the
replacement algorithm and by the device size constraint, whereas in the
case of LRU it is controlled solely by the device size. The application of
dual constraints generates more file activity in some algorithms, and this
overhead is likely to deieriorate access time performance to some extent. In
the experimental environment the adverse effect of overhead will be
minimal because the inter-reference duration is sufficiently larger than
average access time to allow the file transfer activity to take place in the
background.

Figure 5(c) shows the variation of device hit ratios with varying drum
capacity for the LRU algorithm. Similar behaviour was observed for other
algorithms as well. While the hit ratios for the drum and fast disk show
complementary variation, the hit ratio for the slow disk remains almost
unchanged. For lower drum capacities, files that cannot be accommodated
on the drum are stored on the fast disk thus directing many of the references
to the fast disk. As the drum capacity increases, the active files move from
the fast disk to the drum, causing changes in the hit ratios of these devices.
Since most of the references to the slow disk consist of references to large
files that cannot be moved to fast devices, the hit ratio to the slow disk
remains unchanged with the variation in drum capacity.

This redundancy of fast disk for higher drum capacities was quite
unexpected since the locality-based algorithms were designed to make use
of successively slower devices for storing files that have progressively
lower probability of being referenced in the near future. Since most of the
references are directed to files smaller than 10 Kbytes and the referencing
pattems show strong concentration and persistence aspects, it is possible
that only 4% 10 5% of the total information accessed in a day is actually
needed at any point in time. Once this information is transferred to drum,
the fast disk is mostly redundant. This is an interesting result for
environments with little fast storage compared to the volume of data
accessed in a day.

apr24.85
2 —
[
1% WS 7
Ave FFF
acc LRU
time
{msec)
1Q -
5]
0] 2 4

Drum Capacity
(% of information referenced)

(s)

Figure 5: Comparison of Locality-Based Algorithms (Fdisk
capacity of 400 Kbytes is assumed).

90

1 apr24.85
1
Overhead
2 4
Drum Capacity
(% of information referenced)
{b)
apr24.85
1
h N—— Drum
LRU
Device
hit Q.8 i
ratio

Fdisk

(" Sdisk

(O 2

Drum Capacity
(% of information referenced)

(¢

Figure 5: Comparison of Locality-Based Algorithms (Fdisk
capacity of 400 Kbytes is assumed). (cont.)

4

5.2 Performance of the Non-Locality Algorithms

A comparison of the performance of the RAND and FIFO algorithms
shows FIFO to be only marginally superior to RAND in all respects (see
Fig. 6). To understand the surprisingly strong performance of RAND, it is
necessary once again to look at the characteristics of the file referencing
behaviour in the experimental environment As has been shown, the
referencing patterns are marked by long sequences of references to the
same file and very little re-referencing of active files. This creates a
situation where only a small number of the files resident on the drum are
being heavily referenced at any given moment. When a file fault occurs, if
RAND replaces a file that will not be referenced in the near future, RAND
cannot perform worse than FIFO. On the other hand, even if RAND
removes a file that will be referenced in the near future, it does little harm
because it is highly probable that the file will experience a long sequence of
references, of which only the first one will cause a file fault. Thus, in the
long run, the percentage of references that cause file faults under RAND is

apr26.85

2Q ,

15 _
Ave
acc
time
(:.'nSCC) RAND

t FIFO
5
o y; 2

Drum Capacity
(% of information referenced)
(s)

Overhead
1

apr20.85
I

]
2 4
Drum Capacity
(% of information referenced)
(®)

Figure 6: Comparison of Non-Locality Algorithms (Fdisk

capacity of 400 Kbytes is assumed).

not far different from that under FIFO, or for that matter, under any of the
locality-based algorithms. With stronger re-referencing characteristics the
situation would be different.

5.3 Performance of the Optimal and Static Algorithms

As mentioned earlier, the GOPT and RSA algorithms give upper and
lower bounds, respectively, on the performance of file management
algorithms. A large difference between the optimal performance and the
performance of the dynamic aigorithms would indicate substantial scope for
improvement through the use of dynamic algorithms. Figure 7 shows a
comparison of average access time for the GOPT, LRU (chosen as a
representative dynamic algorithm), and RSA algorithms. Although the
optimal algorithm is clearly superior to LRU, the narrow margin is quite
surprising. It can be explained by the same reasoning used to explain the

apr26.85
12 .
\ RSA

9q -
Ave
A ea _
time
(msec)

3Q LRU -

GOPT
N
o y; 4

Drum Capacity
(% of information referenced)

Figure 7: Comparison of RSA, LRU and GOPT (Fdisk capacity
of 400 Kbytes is assumed). :

91

strong performance of RAND. The RSA algorithm, on the other hand,
performs poorly. Since RSA represents a static assignment it is unable to
match the capabilities of the high performance devices to the dynamics of
the referencing behaviour. This is clearly observed in Fig. 7 and presents a
strong argument in favour of the dynamic approach.

5.4 Summary: Comparison of All Algorithms

In general, all the dynamic algorithms examined improve the average
access time of file requests in a hierarchical file system while maintaining
low storage costs. This performance is summarized in Fig. 8. Similar
performance was observed on other file reference strings as well. The
optimal algorithm, GOPT, gives the best performance, but the realizable
dynamic algorithms are not far behind. The static algorithm, RSA, performs
quite poorly. With a dynamic approach in the enviorment considered it is
possible to keep the average access time to about 9 msec (nearer the 5 msec
access time of the drum than to the 25 msec access time of the fast disk) by
keeping as little as 4% of the information referenced in a day on each of the
drum and fast disk. Thus, dynamic file management algorithms are able to
approximate the performance of the fastest device in the storage hierarchy
while maintaining a very low storage cost. Actual cost comparisons have
not been shown.

The strong performance of the dynamic algorithms, RAND and FIFO
included, can be attributed directly to the existence of certain aspects of the
locality phenomenon in the file reference strings. Even RAND performs
well. Although it replaces files at random, it does succeed in bringing the
currently referenced files 1o faster devices, and thereby capitalizes on the
tendency 1o reference the same files successively (persisience of reference).
If the file references were not localized by the way of persistent references,
neither the locality-based approaches nor RAND could be expected to do
well. It should be noted that RAND and FIFO may not perform as well as
the locality-based strategies if the environment has strong re-referencing
characteristics.

There is one significant difference between locality-based memory
management and locality-based file assignment. In a typical
multiprogrammed environment, variable-space memory management
algorithms such as PFF and WS are generally superior to fixed-space
strategies such as LRU because they reduce the resident sct size of one
program to allocate the same space to another program and thereby reduce
overall page faults. If there is only one program running in the system,
however, LRU represents the best memory management approach because
it uses a fixed amount of memory most effectively. Similarly, the prime

aprl6.85.

T

Drum Capacity
(% of information referenced)

()

15 apr26.85

S |

o 2 4
Drum Capacity

(% of information referenced)

Figure 8: General Comparison of Dynamic Algorithms
(Fdisk capacity of 400 Kbytes is assumed).

objective of a sysiem-wide file management algorithm should be to
maximize the utilization of fixed device storage capacities. In this case LRU
again becomes the logical choice. While the FFF and WS file management
strategies give good access time performance they tend to underutilize the
device storage capacities. If these algorithms are operated with parameters
chosen to maximize the device utilization, however, their performance
approaches that of LRU.

6. Conclusions

This paper has examined several algoritims for the dynamic
management of a file system residing on a hierarchy of storage devices.
Some of these strategies attempt to exploit the locality properties exhibited
in file referencing behaviour. It appears that a storage hierarchy, even one
with small drum sizes, will perform well if there is some dynamic
mechanism (o bring the currently active files to the fastest devices and, at
the same time, move out less active files in order to clear the faster devices.
The unexpected result that the locality-based algorithms performed no
better than the non-locality approaches can be attributed to the nature of the
environment in which the experiments were conducted (and trace data was
collected). While the locality-based strategies may perform well in other
environments, characterized by more file re-referencing activity, the same
cannot be said about the non-locality approaches.

While the experiments reported were based on a particular
configuration of a file storage hierarchy, the results are clearly applicable
more generally. File caches for example, are a natural extension. File
allocation in a distributed system is likewise a similar problem. Although
the specific algorithms may change, it is clear that whatever decisions are
made should be based on the dynamic characteristics of file referencing
behaviour.

7. References

{11 Bunt, R.B., J.M. Murphy and S. Majumdar, "A Measure of Program
Locality and Its Application”, Proc. ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, Cambridge,
Massachusetts, August 1984, 28-40.

[2] Chu, W.W. and H. Opderbeck, "Program Behavior and the Page-
Fault-Frequency Replacement Algorithm”, Computer, Vol. 9, No.
11, November 1976, 29-38.

[3] Denning, P.J., "The Working Set Model of Program Behavior",
CACM, Vol. 11, No. 5, May 1968, 323-333.

[4] Denning, P.J. and Slutz, DR., "Generalized Working Sets for
Segment Reference Strings", CACM, Vol. 21, No. 9, September
1978, 750-759.

[5]1 Deshpande, M.B., "Locality-Based Approaches to Dynamic File
System Management", M.Sc. Thesis, Department of Computational
Science, University of Saskaichewan, 1985 (available as TR. 85-
14).

[6] Foster, D. and J.C. Browne, "File Assignment in Memory
Hierarchies”, Modelling and Performance Evaluation of Computer
Systems, (E. Gelenbe, ed.), North Holland Publishing Company,
1976, 119-127.

{71 Lawre, D.H., J.M. Randal and RR. Barton, "Experiments With
Automatic File Migration”, Computer, Vol. 25, No. 7, July 1982,
45-55. :

[8] Majumdar, S. and R.B. Bunt, "Measurement and Analysis of
Locality Phases in File Referencing Behaviour”, Proc. Performance
‘86 and ACM SIGMETRICS 86 Joint Conference on Computer
Performance Modelling, Measurement and Evaluation, Raleigh,
North Carolina, May 1986, 180-192.

{91 Ramamoorthy, C.V. and K.M. Chandy, "Optimization of Memory
Hierarchies in Multiprogrammed Systems", JACM, Vol. 17, No. 3,
July 1970, 426-445.

[10] Satyanarayanan, M., "A Study of File Sizes and Functional
Lifetimes", Proc. Eighth ACM Symposium on Operating Systems
Principles, Pacific Grove, California, December 1981, 96-108.

(11] Smith, AJ., "Analysis of Long Term File Reference Patterns and
Their Applications to File Migration Algorithms”, JEEE-TSE, Vol.
SE-7, No. 4, July 1981, 403-417.

[12] Smith, AJ., "Long Term File Migration: Development and
Evaluation of Algorithms", CACM, Vol. 24, No. 8, August 1981,
521-532.

[13] Williamson, C.L. and R.B. Bunt, "Characterizing Short Term File
Referencing Behaviour", Proc. Fifth Phoenix Conference on
Computers and C. ications, Phoenix, Arizona, March 1986,
651-660.

3. Financial support for this work was provided by the Natural Sciences and Engineering

Research Council of Canada, through operating grant number A3707, and by the University
of Saskatchewan,

