Reprinted from JOURNAL OF COMPUTER AND SYSTEM SCIENCES Vol. 38, No. 1, February 1989
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Making Data Structures Persistent*
James R. Driscorr?

Computer Science Department, Carnegie-Mellon University,
Pittsburgh, Pennsylvania 15218

NEIL SARNAK

. IBM T.J. Watson Research Center, Yorktown Heights, New. York 10598

DANIEL D. SLEATOR

Computer Science Department, Carnegie-Mellon University,
Pittsburgh, Pennsylvania 15218

AND

ROBERT E. TARJAN?

Computer Science Department, Princeton University, Princeton, New Jersey 08544 and
AT&T Bell Laboratories, Murray Hill, New Jersey 07974

Received August 5, 1986

This paper is a study of persistence in data structures. Ordinary data structures are
ephemeral in the sense that a change to the structure destroys the old version, leaving only the
new version available for use. In contrast, a persistent structure alows access to any version,
old or new, at any time. We develop simple, systematic, and efficient techniques for making
linked data structures persistent. We use our techniques to devise persistent forms of binary
search trees with logarithmic access, insertion, and deletion times and O(1) space bounds for
insertion and deletion. © 1989 Academic Press, Inc.

1. INTRODUCTION

Ordinary data structures are ephemeral in the sense that making a change to the
structure destroys the old version, leaving only the new one. However, in a variety
of areas, such as computational geometry [6, 9, 12, 25, 26, 29, 30], text and file
editing [27], and implementation of very high level programming languages [19],

* A condensed, preliminary version of this paper was presented at the Eighteenth Annual ACM
Symposium on Theory of Computing, Berkeley, California, May 28-30, 1986.

* Current address: Computer Science Department, University of Colorado, Boulder, Colorado 80309.

! Research partially supported by National Science Foundation Grant DCR 8605962.

86

0022-0000/89 $3.00

Copyright © 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.

MAKING DATA STRUCTURES PERSISTENT 87

multiple versions of a data structure must be maintained. We shall call a data struc-
ture persistent if it supports access to multiple versions. The structure is partially
persistent if all versions can be accessed but only the newest version can be
modified, and fully persistent if every version can be both accessed and modified.

A number of researchers have devised partially or fully persistent forms of
various data structures, including stacks [227, queues [14], search trees [19, 21,
23, 25, 27, 30], and related structures [6, 9, 127]. Most of these results use ad hoc
constructions; with the exception of one paper by Overmars [26], discussed in
Section 2, there has been no systematic study of persistence. Providing such a
study is our purpose in this paper, which is an outgrowth of the second author’s
Ph. D. thesis [28].

We shall discuss generic techniques for making linked data structures persistent
at small cost in time and space efficiency. Since we want to take a general approach,
we need to specify exactly what a linked structure is and what kinds of operations
are allowed on the structure. Formally, we define a linked data structure to be a
finite collection of nodes, each containing a fixed number of named fields. Each field
is either an information field, able to hold a single piece of information of a specified
type, such as a bit, an integer, or a real number, or a pointer field, able to hold a
pointer to a node or the special value null indicating no node. We shall assume that
all nodes in a structure are of exactly the same type, ie., have exactly the same
fields; our results easily generalize to allow a fixed number of different node types.
Access to a linked structure is provided by a fixed number of named access pointers
indicating nodes of the structure, called entry nodes. We can think of a linked struc-
ture as a labeled directed graph whose vertices have constant out-degree. If a node
X contains a pointer to a node y, we call y a successor of x and x a predecessor of y.

As a running example throughout this paper, we shall use the binary search tree.
A binary search tree is a binary tree ' containing in its nodes distinct items selected
from a totally ordered set, one item per node, with the items arranged in symmetric
order: if x is any node, the item in x is greater than all items in the left subtree of x
and less than all items in the right subtree of x. A binary search tree can be
represented by a linked structure in which each node contains three fields: an item
(information) field and left and right (pointer) fields containing pointers to the left
and right children of the node. The tree root is the only entry node.

On a general linked data structure we allow two kinds of operations: access
operations and update operations. An access operation computes an accessed set
consisting of accessed nodes. At the beginning of the operation the accessed set is
empty. The operation consists of a sequence of access steps, each of which adds one
node to the accessed set. This node must either be an entry node or be indicated by
a pointer in a previously accessed node. The time taken by an access operation is
defined to be the number of access steps performed. In an actual data structure the
successively accessed nodes would be determined by examining the fields of
previously accessed nodes, and the access operation would produce as output some

U Our tree terminology is that of the monograph of Tarjan [31].

88 DRISCOLL ET AL.

of the information contained in the accessed nodes, but we shall not be concerned
with the details of this process. An example of an access operation is a search for an
item in a binary search tree. The accessed set forms a path in the tree that starts at
the root and is extended one node at a time until the desired item is found or a null
pointer, indicating a missing node, is reached. In the latter case the desired item is
not in the tree.

An update operation on a general linked structure consists of an intermixed
sequence of access and update steps. The access steps compute a set of accessed
nodes exactly as in an access operation. The update steps change the data structure.
An update step consists either of creating a new node, which is added to the
accessed set, changing a single field in an accessed node, or changing an access
pointer. If a pointer field or an access pointer is changed, the new pointer must
indicate a node in the accessed set or be null. A newly created node must have its
information fields explicitly initialized; its pointer fields are initially null. As in the
case of an access operation, we shall not be concerned with the details of how the
steps to be performed are determined. The total time taken by an update operation
is defined to be the total number of access and update steps; the update time is the
number of update steps. If a node is not indicated by any pointer in the structure, it
disappears from the structure; that is, we do not require explicit deallocation of
nodes.

An example of an update operation is an insertion of a new item in a binary
search tree. The insertion consists of a search for the item to be inserted, followed
by a replacement of the missing node reached by the search with a new node con-
taining the new item. A more complicated update operation is a deletion of an item.
The deletion process consists of three parts. First, a search for the item is perfor-
med. Second, if the node, say x, containing the item has two children, x is swapped
with the node preceding it in symmetric order, found by starting at the left child
and following successive right pointers until reaching a node with no right child.
Now x is guaranteed to have only one child. The third part of the deletion consists
of removing x from the tree and replacing it by its only child, if any. The subtree
rooted at this child is unaffected by the deletion. The total time of either an
insertion or a deletion is the depth of some tree node plus a constant; the update
time is only a constant.

Returning to the case of a general linked structure, let us consider a sequence of
intermixed access and update operations on an initially empty structure (one in
which all access pointers are null). We shall denote by m the total number of
update operations. We index the update operations and the versions of the struc-
ture they produce by integers: update i is the ith update in the sequence; version 0
is the initial (empty) version, and version i is the version produced by update i. We
are generally interested in performing the operations on-line; that is, each successive
operation must be completed before the next one is known.

We can characterize ephemeral and persistent data structures based on the
allowed kinds of operation sequences. An ephemeral structure supports only
sequences in which each successive operation applies to the most recent version. A

MAKING DATA STRUCTURES PERSISTENT 89

partially persistent structure supports only sequences in which each update applies
to the most recent version (update i applies to version i — 1), but accesses can apply
to any previously existing version (whose index must be specified). A fully persistent
structure supports any sequence in which each operation applies to any previously
existing version. The result of the update is an entirely new version, distinct from all
others. For any of these kinds of structure, we shall call the operation being perfor-
med the current operation and the version to which it applies the current version.
The current version is not necessarily the same as the newest version (except in the
case of an ephemeral structure) and thus in general must be specified as a
parameter of the current operation. In a fully persistent structure, if update
operation i applies to version j < i, the result of the update is version i; version j is
not changed by the update. We denote by n the number of nodes in the current
version.

The problem we wish to address is as follows. Suppose we are given an
ephemeral structure; that is, we are given implementations of the various kinds of
operations allowed on the structure. We want to make the structure persistent; that
is, to allow the operations to occur in the more general kinds of sequences
described above. In an ephemeral structure only one version exists at any time.
Making the structure persistent requires building a data structure representing all
versions simultaneously, thereby permitting access and possibly update operations
to occur in any version at any time. This data structure will consist of a linked
structure (or possibly something more general) with each version of the ephemeral
structure embedded in it, so that each access or update step in a version of the
ephemeral structure can be simulated (ideally in O(1) time) in the corresponding
part of the persistent structure.

The main results of this paper are in Sections 2-5. In Section 2 we discuss how to
build partially persistent structures, which support access but not update operations
in old versions. We show that if an ephemeral structure has nodes of constant
bounded in-degree, then the structure can be made partially persistent at an amor-
tized ? space cost of O(1) per update step and a constant factor in the amortized
time per operation. The construction is quite simple. Using more powerful techni-
ques we show in Section 3 how to make an ephemeral structure with nodes of
constant bounded in-degree fully persistent. As in Section 2, the amortized space
cost is O(1) per update step and the amortized time cost is a constant factor.

In Sections 4 and 5 we focus on the problem of making balanced search trees
fully persistent. In Section 4 we show how the result of Section 2 provides a simple
way to build a partially persistent balanced search tree with a worst-case time per
operation of O(log n) and an amortized space cost of O(1) per insertion or deletion.
We also combine the result of Section 3 with a delayed updating technique of
Tsakalidis [35, 36] to obtain a fully persistent form of balanced search tree with the
same time and space bounds as in the partially persistent case, although the

2 By amortized cost we mean the cost of an operation averaged over a worst-case sequence of
operations. See the survey paper of Tarjan [33].

90 DRISCOLL ET AL.

insertion and deletion time is O(logn) in the amortized case rather than in the
worst case. In Section 5 we use another technique to make the time and space
bounds for insertion and deletion worst-case instead of amortized.

Section 6 is concerned with applications, extensions, and open problems. The
partially persistent balanced search trees developed in Section 4 have a variety of
uses in geometric retrival problems, a subject more fully discussed in a companion
paper [28]. The fully persistent balanced search trees developed in Sections 4 and 5
can be used in the implementation of very high level programming languages, as
can the fully persistent deques (double-ended queues) obtainable from the results of
Section 3. The construction of Section 2 can be modified so that it is write-once.
This implies that any data structure built using augmented LISP (in which replaca
and replacd are allowed) can be simulated in linear time in pure LISP (in which
only cons, car, and cdr are allowed), provided that each node in the structure has
constant bounded in-degree.

2. PARTIAL PERSISTENCE

Our goal in this section is to devise a general technique to make an ephemeral
linked data structure partially persistent. Recall that partial persistence means that
each update operation applies to the newest version. We shall propose two
methods. The first and simpler is the far node method, which applies to any
ephemeral linked structure and makes it persistent at a worst-case space cost of
O(1) per update step and a worst-case time cost of O(log m) per access or update
step. More complicated is the node-copying method, which applies to an ephemeral
linked structure of constant bounded in-degree and has an amortized time and
space cost of O(1) per update step and a worst-case time cost of O(1) per access
step.

2.1. Known Methods

We begin by reviewing the results of Overmars [26], who studied three simple
but general ways to obtain partial persistence. One method is to store every version
explicitly, copying the entire ephemeral structure after each update operation. This
costs (n) time and space per update. An alternative method is to store no versions
but instead to store the entire sequence of update operations, rebuilding the current
version from scratch each time an access is performed. If storing an update
operation takes O(1) space, this method uses only O(m) space, but accessing ver-
sion i takes Q(i) time even if a single update operation takes O(1) time. A hybrid
method is to store the entire sequence of update operations and in addition every
kth version, for some suitable chosen value of k. Accessing version i requires
rebuilding it from version k |_i/k | by performing the appropriate sequence of update
operations. This method has a time-space trade-off that depends on & and on the
running times of the ephemeral access and update operations. Unfortunately any

MAKING DATA STRUCTURES PERSISTENT 91

choice of k causes a blowup in either the storage space or the access time by a
factor of \/r;, if one makes reasonable assumptions about the efficiency of the
ephemeral operations.

The third approach of Overmars is to use the dynamization techniques of Bentley
and Saxe [2], which apply to so-called “decomposable” searching problems. Given
an ephemeral data structure representing a set of items, on which the only update
operation is insertion, the conversion to a persistent structure causes both the
access time and the space usage to blow up by a logarithmic factor, again if one
makes reasonable assumptions about the efficiency of the ephemeral operations. If
deletions are allowed the blowup is much greater.

We seek more efficient techniques. Ideally we would like the storage space used
by the persistent structure to be O(1) per update step and the time per operation to
increase by only a constant factor over the time in the ephemeral structure. One
reason the results of Overmars are so poor is that he assumes very little about the
underlying ephemeral structure. By restricting our attention to linked structures
and focusing on the details of the update steps, we are able to obtain much better
results.

2.2. The Fat Node Method

Our first idea is to record all changes made to node fields in the nodes them-
selves, without erasing old values of the fields. This requires that we allow nodes to
become arbitrarily “fat,” i.e., to hold an arbitrary number of values of each field. To
be more precise, each fat node will contain the same information and pointer fields
as an ephemeral node (holding original field values), along with space for an
arbitrary number of extra field values. Each extra field value has an associated field
name and a version stamp. The version stamp indicates the version in which the
named field was changed to have the specified value. In addition, each fat node has
its own version stamp, indicating the version in which the node was created.

We simulate ephemeral update steps on the fat node structure as follows. Con-
sider update operation i. When an ephemeral update step creates a new node, we
create a corresponding new fat node, with version stamp i, containing the
appropriate original values of the information and pointer fields. When an
ephemeral update step changes a field value in a node, we add the corresponding
new value to the corresponding fat node, along with the name of the field being
changed and a version stamp of i. For each field in a node, we store only one value
per version; when storing a field value, if there is already a value of the same field
with the same version stamp we overwrite the old value. Original field values are
regarded as having the version stamp of the node containing them. (Our
assumptions about the workings of linked data structures do not preclude the
possibility of a single update operation on an ephemeral structure changing the
same field in a node more than once. If this is not allowed, there is no need to test
in the persistent structure for two field values with the same version stamp.)

The resulting persistent structure has all versions of the ephemeral structure

92 DRISCOLL ET AL.

embedded in it. We navigate through the persistent structure as follows. When an
ephemeral access step applied to version i accesses field f of a node, we access the
value in the corresponding fat node whose field name is f, choosing among several
such values the one with maximum version stamp no greater than i.

We also need an auxiliary data structure to store the access pointers of the
various versions. This structure consists of an array of pointers for each access
pointer name. After update operation i, we store the current values of the access
pointers in the ith positions of these access arrays. With this structure, initiating
access into any version takes O(1) time.

Remark. The only purpose of nodes having version stamps is to make sure that
each node only contains one value per field name per version. These stamps are not
needed if there is some other mechanism for keeping track during update operation
i of the newest field values of nodes created during update i. In order to navigate
through the structure it suffices to regard each original field value in a node as
having a version stamp of zero.

Figure 1 shows a persistent binary search tree constructed using the fat node
method. The update operations are insertions and deletions, performed as described
in Section 1. Version stamps on nodes are easy to dispense with in this application.
Since the original pointers in each node are known to be null, they too can be
omitted. (The version f pointer field of a node is taken to be null if no field f pointer
stored in the node has a version stamp less than or equal to i.)

The fat node method applies to any linked date structure and uses only O(1)
space per ephemeral update step in the worst case, but it has two drawbacks. First,
the fat nodes must be represented by linked collections of fixed-size nodes. This
poses no fundamental difficulty but complicates the implementation. Second, choos-

4-10 Mn-12

FiG. 1. A partially persistent search tree built using the fat node method, for the sequence of update
operations consisting of insertions of E, C, M, 0, 4, I, G, K, J, followed by deletion of M, E, and A4. The
“extra” pointers are labeled with their version stamps. Left pointers leave the left sides of nodes and right
pointers leave the right sides. The version stamps and original null pointers of nodes are omitted, since
they are unnecessary.

MAKING DATA STRUCTURES PERSISTENT 93

ing which pointer in a fat node to follow when simulating an access step takes more
than constant time. If the values of a field within a fat node are ordered by version
stamp and stored in a binary search tree, simulating an ephemeral access or update
step takes O(log m) time. This means that there is a logarithmic factor blow-up
in the times of access and update operations over their times in the ephemeral
structure.

Remark. Although fat nodes must in general be able to hold arbitrarily many
pointers, this is not true in the binary tree application discussed above if insertion is
the only update operation. In this case each “fat” node only needs to hold one item
and two pointers, one left pointer and one right pointer, each with a version stamp.

2.3. The Node-Copying Method

We eliminate the drawbacks of fat nodes with our second idea, node copying. We
allow nodes in the persistent structure to hold only a fixed number of field values.
When we run out of space in a node, we create a new copy of the node, containing
only the newest value of each field. We must also store pointers to the new copy in
all predecessors of the copied node in the newest version. If there .is no space in a
predecessor for such a pointer, the predecessor, too, must be copied. Nevertheless, if
we assume that the underlying ephemeral structure has nodes of constant bounded
in-degree and we allow sufficient extra space in each node of the persistent struc-
ture, then we can derive an O(1) amortized bound on the number of nodes copied
and the time required per update step.

2.3.1. The Data Structure

In developing the details of this idea, we shall use the following terminology. We
call a node of the underlying ephemeral structure an ephemeral node and a node of
the persistent structure a persistent node. If x is an ephemeral node existing in
version i of the ephemeral structure, then version i of x is x together with all its field
values in version i of the structure. That is, we think of an ephemeral node as going
through several versions as its fields are changed. We shall denote by X a persistent
node corresponding to an ephemeral node x.

In the node-copying method as we shall describe it, each persistent node contains
only one version of each information field but may contain muitiple versions of
pointer fields. (Other variants of the method, allowing multiple versions of infor-
mation fields, are easily formulated.) Let d be the number of pointer fields in an
ephemeral node and let p be the maximum number of predecessors of an ephemeral
node in any one version. We assume that p is a constant. Each persistent node will
contain d+ p+e+ 1 pointer fields, where e is a sufficiently large constant, to be
chosen later. Of these fields, d are the same as the pointer fields of an ephemeral
node and contain original pointers, p are for predecessor pointers, e for extra poin-
ters, and one is for a copy pointer. Each persistent node has the same information
fields as an ephemeral node, and it also has a version stamp for the node itself and

94 DRISCOLL ET AL.

a field name and a version stamp for each extra pointer. Original pointers in a node
are regarded as having version stamps equal to that of the node.

The correspondence between the ephemeral structure and the persistent structure
is as follows. Each ephemeral node corresponds to a set of persistent nodes, called a
Sfamily. The members of the family form a singly-linked list, linked by the copy
pointers, in increasing order by version stamp, i.e., the newest member is last on the
list. We call this last member live and the other members of the family dead. Each
version of the ephemeral node corresponds to one member of the family, although
several versions of the ephemeral node may correspond to the same member of the
family. The live nodes and their newest field values represent the newest version of
the ephemeral structure. We call a pointer in the persistent structure representing a
pointer in the newest version of the ephemeral structure a live pointer. To facilitate
node copying, each live pointer in the persistent structure has a corresponding
inverse pointer; i.., if live node x contains a live pointer to live node y, then p
contains a pointer to X stored in one of its p predecessor fields.

As in the fat node method, we use access arrays, one per access pointer name, to
store the various versions of the access pointers. Thus we can access any entry node
in any version in O(1) time. Navigation through the persistent structure is exactly
the same as in the fat node method: to simulate an ephemeral access step that
applies to version i/ and follows the pointer in field f of an ephemeral node x, we
follow the pointer with field name fin the corresponding persistent node, selecting
among several such pointers the one with maximum version stamp no greater than
i. Simulating an ephemeral access step in the persistent structure takes O(1) time.

2.3.2. Update Operations

When simulating an ephemeral update operation, we maintain a set S of nodes
that have been copied. Consider update operation i. We begin the simulation of this
operation by initializing S to be empty. We simulate ephemeral access steps as
described above. When an ephemeral update step creates a new node, we create a
corresponding new persistent node with a version stamp of i and all original
pointers null. When an ephemeral update step changes an information field in an
ephemeral node x, we inspect the corresponding persistent node x. If x has version
stamp i, we merely change the appropriate field in %. If ¥ has version stamp less
than i, but has a copy ¢(X) (which must have version stamp i), we change the
appropriate field in ¢(x). If ¥ has version stamp less than i but has no copy, we
create a copy c(X) of x with version stamp i, make the copy pointer of X point to it,
and fill it with the most recent values of the information fields of x, which,
excluding the new value of the changed field, can be obtained from x. We. also add
to ¢(x) pointers corresponding to the most recent values of the pointer fields of x.
This requires updating inverse pointers and is done as follows. Suppose that x con-
tains a pointer to a node y as the most recent version of field f. We store in original
pointer field f of node c¢(x) a pointer to j, or to the copy c(7) of y if y has been
copied. We erase the pointer to ¥ in one of the predecessor fields of y, and we store

MAKING DATA STRUCTURES PERSISTENT 95

a pointer to c(x) in the predecessor field of 7 or c(j) as appropriate. Once c¢(x) has
all its original pointer fields filled, we add % to the set S of copied nodes.

Simulating an ephemeral update step that changes a pointer field is much like
simulating a step that changes an information field. If x is the ephemeral node in
which the change takes place, we inspect the corresponding persistent node %. If %
has version stamp i, we merely change the appropriate original pointer field in %. If
% has version stamp less than i but has a copy c(¥), we change the appropriate
original pointer field in ¢(%). If X has a version stamp less than i but has no copy,
we check whether x has space for an extra pointer. If so, we store the appropriate
new pointer in X, along with the appropriate field name and a version stamp of i. If
not, we create a new copy c(x) of x, fill it as described above, and add x to S.
During the simulation, whenever we install a pointer in a persistent node %, we
make sure it points to a live node. More precisely, if the pointer indicates j but y
has a copy ¢(y), we place in X a pointer to c(7) instead of . Also, whenever
installing a2 new pointer, we update inverse pointers appropriately.

After simulating all the steps of the update operation, we postprocess the set S to
make live pointers point to live nodes. This postprocessing consists of repeating the
following step until S is empty: .

Update pointers. Remove any node y from S. For each node % indicated by a
predecessor pointer in j, find in % the live pointer to j. If this pointer has version
stamp equal to i, replace it by a pointer to ¢(7). If the pointer has version stamp
less than i, add a version i pointer from ¥ to ¢(j), copying % as described above if
there is no space for this pointer in %. If ¥ is copied, add % to S. When installing
pointers, update inverse pointers appropriately.

To complete the update operation, we store the newest values of the access poin-
ters in the ith positions of the access arrays. We are then ready to begin the next
operation.

2.3.3. An Example

As an example of the use of the node-copying method, let us apply it to binary
search trees. In this application a major simplification is possible: we can dispense
with inverse pointers in the persistent structure, because in the ephemeral structure
there is only one access path to any node, and accessing a node requires accessing
its predecessor. In general we can avoid the use of inverse pointers if in the
ephemeral structure a node is only accessed after all its predecessors are accessed.
In the binary tree case we can also dispense with the copy pointers and the version
stamps of nodes, since node copying proceeds in a very controlled way, back
through ancestors of the node where a change occurs. Figure 2 illustrates a per-
sistent binary search tree built using the node-copying method, without inverse and
copy pointers and version stamps of nodes. The update operations are insertions
and deletions. Each persistent node has one extra pointer field, which, as we shalil
see below, suffices to guarantee an O(m) space bound on the size of the persistent
structure, since in this case p = 1.

96 DRISCOLL ET AL.

FIG. 2. A partially persistent search tree built using the node-copying method, for the same sequence
of update operations as in Fig. 1. The version stamps of nodes and the copy pointers are omitted, since
they are unnecessary.

2.34. Space and Time Analysis

It remains for us to analyze the space needed for the persistent structure and the
time needed for update steps. We shall derive an amortized O(1) bound on the
space and time per update step using the “potential” technique [33]. To obtain this
bound, it suffices to choose e to be any integer constant such that e > p.

Recall that a persistent node is live if it has not been copied and dead otherwise.
All updates to fields are in live nodes, except for erasures of inverse pointers, which
can occur in dead nodes. We define the potential of the persistent structure to be
e/(e— p+1) times the number of live nodes it contains minus 1/(e — p+ 1) times
the number of unused extra pointer fields in live nodes. Observe that the potential
of the initial (empty) structure is zero and that the potential is always nonnegative,
since any node has at most e unused extra pointer fields. We define the amortized
space cost of an update operation to be the number of nodes it creates plus the net
increase in potential it causes. With this definition, the total number of nodes
created by a sequence of update operations equals the total amortized space cost
minus the net increase in potential over the sequence. Since the initial potential is
zero and the final potential is nonnegative, the net potential increase over any
sequence is nonnegative, which implies that the total amortized space cost is an
upper bound on the total number of nodes created.

The key part of the analysis is to show that the amortized space cost of an update
operation is linear in the number of update steps. Consider an update operation
that performs u update steps. Each update step has an amortized space cost of O(1)
and adds at most one node to S. Consider the effect of the postprocessing that
empties S. Let t<u be the number of nodes in S at the beginning of the
postprocessing and let k be the number of nodes copied during the postprocessing.
Each time a node is copied during postprocessing, a live node with potential

MAKING DATA STRUCTURES PERSISTENT 97

e/(e — p+1) becomes dead and a new live node with potential zero is created, for a
net potential drop of e/(e— p+ 1). In addition, a node is added to S. The total
number of nodes added to S before or during the postprocessing is thus ¢ + k. When
a node is removed from S and pointers to its copy are installed, there is a potential
increase of 1/(e — p + 1) for each pointer stored in an extra pointer field. There are
at most p such possible storages per node removed from S, for a total of p(t+k),
but at least k of these do not in fact occur, since the pointers are stored in original
fields of newly copied nodes instead. Thus the net potential increase during the
postprocessing is at most (p(t+ k) —k)/(e — p+ 1) caused by storage of pointers in
extra field minus ke/(e — p + 1) caused by live nodes becoming dead. The amortized
space cost of the postprocessing is thus at most

k+(p(t+k)—k)/(e—p+1)—ke/(e—p+1)
=k+pt/fle—p+1)+k(p—1—e)e—p+1)
=pt/le—p+1)=0(2).

Hence the amortized space cost of the entire update operation is O(t) = O(u), ie.,
O(1) per update step. The same analysis shows that the amortized time per update
step is also O(1). :

3. FuLL PERSISTENCE

In this section we address the harder problem of making an ephemeral structure
fully persistent. We shall obtain results analogous to those of Section 2. Namely,
with the fat node approach we can make an ephemeral linked structure fully per-
sistent at a worst-case space cost of O(1) per update step and an O(log m) worst-
case time cost per access or update step. With a variant of the node-copying
method called node splitting, we can make an ephemeral linked structure of con-
stant bounded in-degree fully persistent at an O(1) amortized time and space cost
per update step and an O(1) worst-case time cost per access step.

3.1. The Version Tree and the Version List

The first problem we encounter with full persistence is that whereas the various
versions of a partially persistent structure have a natural linear ordering, the ver-
sions of a fully persistent structure are only partially ordered. This partial ordering
is defined by a rooted version tree, whose nodes are the versions (0 through m),
with version i the parent of version j if version j is obtained by updating version i,
Version 0 is the root of the version tree. The sequence of updates giving rise to
version i corresponds to the path in the version tree from the root to i.

Unfortunately, the lack of a linear ordering on versions makes navigation
through a representation of a fully persistent structure problematic. To eliminate

98 DRISCOLL ET AL.

this difficulty, we impose a total ordering on the versions consistent with the partial
ordering defined by the version tree. We represent this total ordering by a list of the
versions in the appropriate order. We call this the version list. When a new version,
say i, is created, we insert i in the version list immediately after its parent (in the.
version tree). The resuiting list defines a preorder on the version tree, as can easily
be proved by induction. This implies that the version list has the following crucial
property: for any version i, the descendants of i in the version tree occur
consecutively in the version list, starting with i (see Fig. 3). We shall refer to the
direction toward the front of the version list (from a given item) as leftward and the
direction toward the back of the list as rightward.

In addition to performing insertions in the version list, we need to be able to
determine, given two versions i and j, whether i precedes or follows j in the version
list. This list order problem has been addressed by Dietz [10], by Tsakalidis [3, 4],
and most recently by Dietz and Sleator [11]. Dietz and Sleator [11] proposed a
list representation supporting order queries in O(1) worst-case time, with an O(1)
amortized time bound for insertion. They also proposed a more complicated
representation in which both the query time and the insertion time are O(1) in the
worst case.

3.2. The Fat Node Method

Having dealt in a preliminary way with the navigation issue, let us investigate
how to use fat nodes to make a linked structure fully persistent. We use the same
node organization as in Section 2; namely, each fat node contains the same fields as

Ot

FIG. 3. A version tree. Each node represents an update operation; an “i” or “d” indicates an inser-
tion or deletion of the specified item. The nodes are labeled with the indices of the corresponding
operations. The version list is 1, 6, 7, 10, 11, 2, 8, 9, 3, 4, 5, 12.

MAKING DATA STRUCTURES PERSISTENT 99

an ephemeral node (for storing original field values), as well as space for an
arbitrary number of extra field values, each with a field name and a version stamp,
and space for a version stamp for the node itself. Each original field in a fat node is
regarded as having the same version stamp as that of the node itself.

Navigation through the persistent structure is the same as in the partially
persistent case, except that versions are compared with respect to their positions in
the version list, rather than with respect to their numeric values. That is, to find the
value corresponding to that of field f in version i of ephemeral node x, we find in
the fat node X corresponding to x the value of field f whose version stamp is
rightmost in the version list but not to the right of i.

Updating differs slightly from what happens in the partially persistent case,
because the insertion of new versions in the middle of the version list makes it, in
general, necessary to store two updated field values per update step, rather than
one. We begin update operation i by adding i to the version list as described above.
When an ephemeral update step creates a new ephemeral node, we create a
corresponding new fat node with version stamp i, filling in its original fields
appropriately. Suppose an ephemeral update step changes field f of ephemeral node
x. Let i+ denote the version after i in the version list, if such a version exists. To
simulate the update step, we locate in the fat node x corresponding to x values v,
and v, of field f such that v, has rightmost version stamp not right of i and v, has
leftmost version stamp right of i (in the version list). Let i, and i, be the version
stamps of v, and v,, respectively. There are two cases:

(i) If iy =i, we replace v, by the appropriate new value of field f If in
addition i is the version stamp of node %, v, is a null pointer, and i+ exists, we
store in X a null pointer with field name f and version stamp i+, unless x already
contains such a null pointer.

(i) If i, <i, we add the appropriate new value of field f to node X, with a
field name of f and a version stamp of i. If in addition i, <i and i+ <i, (or i+
exists but i, does not exist), we add to X a new copy of v, with a field name of f and
a version stamp of i+. This guarantees that the new value of field f will be used
only in version /, and value v, will still be used in versions from i+ up to but not
including i, in the version list.

At the end of the update operation we store the current values of the access
pointers in the ith positions of the access arrays. (The current values of the access
pointers are those of the parent of i in the version tree, as modified during the
update operation.)

Let v be a value of a field f havingd version stamp i in fat node x. We define the
valid interval of v to be the interval of versions in the version list from i up to but
not including the next version stamp of a value of field f in %, or up to and
including the last version in the version list if there is no such next version stamp.
The valid intervals of the values of a field f in a fat node x partition the interval of
versions from the version stamp of X to the last version. The correctness of the fat

100 DRISCOLL ET AL.

node method can be easily established using a proof by induction on the number
of update steps to show that the proper correspondence between the ephemeral
structure and the persistent structure is maintained.

Figure 4 shows a fully persistent binary search tree built using the fat node
method. In this application, we can as in the partially persistent case omit the
version stamps of nodes and the original null pointers of nodes.

The fat node method provides full persistence with the same asymptotic efficiency
as it provides partial persistence; namely, the worst-case space cost per update step
is O(1) and the worst-case time cost per access and update step is O(log m),
provided that each set of field values in a fat node is stored in a search tree, ordered
by version stamp. A more accurate bound is O (log k) time per access or update
step, where h is the maximum number of changes made to an ephemeral node. As
in the case of partial persistence, the fat node method applies even if the in-degree
of ephemeral nodes is not bounded by a constant.

3.3. The Node-Splitting Method

We improve over the fat node method by using a variant of node copying. We
shall call the variant node splitting, since it resembles the node splitting used to per-
form insertions in B-trees [1]. The major difference between node splitting and
node copying is that in the former, when a node overflows, a new copy is created
and roughly half the extra pointers are moved from the old copy to the new one,
thereby leaving space in both the old and new copies for later updates. The efficient
implementation of node splitting is more complicated than that of node copying,
primarily because the correct maintenance of inverse pointers requires care. Also,
access pointers for old versions must sometimes be changed. This requires the main-
tenance of inverse pointers for access pointers as well as for node-to-node pointers.

Fic. 4. A fully persistent search tree built using the fat node method, for the update sequence in
Fig. 3. The version stamps and original null pointers of nodes are omitted as unnecessary.

