Short Encodings of Evolving Structures

D. D. Sleator, R. E. Tarjan, W. P. Thurston, Short Encodings of Evolving Structures, SIAM J. DISC. MATH., Vol. 5, No. 3, pp. 428-450, 1992

Full Text (PDF)


A derivation in a transformational system such as a graph grammar may be redundant in the sense that the exact order of the transformations may not affect the final outcome; all that matters is that each transformation, when applied, is applied to the correct substructure. By taking advantage of this redundancy, we can develop an efficient encoding scheme for such derivations. This encoding scheme has a number of diverse applications. It can be used in efficient enumeration of combinatorial objects or for compact representation of program and data structure transformations. It can also be used to derive lower bounds on lengths of derivations. It is shown, for example, that Ω(n1og n) applications of the associative and commutative laws are required in the worst case to transform an n-variable expression over a binary associative, commutative operation into some other equivalent expression. Similarly, it is shown that Ω(n1og n) “diagonal flips” are required in the worst case to transform one n-vertex numbered triangulated planar graph into some other one. Both of these lower bounds have matching upper bounds. An O(n log n) upper bound for associative, commutative operations was known previously, whereas here an O(n log n) upper bound for diagonal flips is obtained.

Daniel Sleator: Email, Home Page, Papers
Last modified: Sat Jan 21 07:15:44 EST 2006