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Abstract

This paper examines the problem of extracting low-
dimensional manifold structure given millions of high-
dimensional face images. Specifically, we address the com-
putational challenges of nonlinear dimensionality reduction
via Isomap and Laplacian Eigenmaps, using a graph con-
taining about18 million nodes and65 million edges. Since
most manifold learning techniques rely on spectral decom-
position, we first analyze two approximate spectral decom-
position techniques for large dense matrices (Nyström and
Column-sampling), providing the first direct theoretical and
empirical comparison between these techniques. We next
show extensive experiments on learning low-dimensional
embeddings for two large face datasets: CMU-PIE (35
thousand faces) and a web dataset (18 million faces). Our
comparisons show that the Nyström approximation is su-
perior to the Column-sampling method. Furthermore, ap-
proximate Isomap tends to perform better than Laplacian
Eigenmaps on both clustering and classification with the
labeled CMU-PIE dataset.

1. Introduction

The problem of dimensionality reduction arises in many
vision applications, where it is natural to represent images
as vectors in a high-dimensional space. Manifold learn-
ing techniques extract low-dimensional structure from high-
dimensional data in an unsupervised manner. These tech-
niques typically try to unfold the underlying manifold so
that Euclidean distance in the new space is a meaningful
measure of distance between any pair of points. This makes
certain applications such as K-means clustering more effec-
tive in the transformed space.

In contrast to linear dimensionality reduction techniques
such as Principal Component Analysis (PCA), manifold
learning methods provide more powerful non-linear dimen-
sionality reduction by preserving the local structure of the
input data. Instead of assuming global linearity, these
methods make a weaker local-linearity assumption,i.e., for

nearby points in high-dimensional input space,L2 distance
is assumed to be a good measure of geodesic distance, or
distance along the manifold. Good sampling of the under-
lying manifold is essential for this assumption to hold. In
fact, many manifold learning techniques provide guaran-
tees that the accuracy of the recovered manifold increases
as the number of data samples increases. In the limit of
infinite samples, one can recover the true underlying man-
ifold for certain classes of manifolds [22][4][8]. However,
there is a trade-off between improved sampling of the man-
ifold and the computational cost of manifold learning algo-
rithms. This paper addresses the computational challenges
involved in learning manifolds given millions of face im-
ages extracted from the Web.

Several powerful manifold learning techniques have re-
cently been proposed,e.g., Semidefinite Embedding (SDE)
[23], Isomap [22], Laplacian Eigenmaps [3], and Local Lin-
ear Embedding (LLE) [19]. SDE aims to preserve distances
and angles between all neighboring points. It is formulated
as an instance of semidefinite programming, and is thus pro-
hibitively expensive for large-scale problems. Isomap con-
structs a dense matrix of approximate geodesic distances
betweenall pairs of inputs, and aims to find a low dimen-
sional space that best preserves these distances. Other al-
gorithms,e.g., Laplacian Eigenmaps and LLE, focus only
on preserving local neighborhood relationships in the input
space. They generate low-dimensional representations via
manipulation of the graph Laplacian or other sparse ma-
trices related to the graph Laplacian [20]. In this work,
we focus mainly on Isomap and Laplacian Eigenmaps, as
both methods have good theoretical properties and the dif-
ferences in their approaches allow us to make interesting
comparisons between dense and sparse methods.

All of the manifold learning methods described above
can be viewed as specific instances of Kernel PCA [14].
These kernel-based algorithms require spectral decompo-
sition of matrices of sizen × n, wheren is the number
of samples. This generally takes O(n3) time. When only
a few eigenvalues and eigenvectors are required, there ex-
ist less computationally intensive techniques such as the



Jacobi, the Arnoldi, and the more recent Hebbian meth-
ods [12][13]. These iterative methods require computation
of matrix-vector products at each step and involve several
passes through the data. When the matrix is sparse, these
techniques can be implemented relatively efficiently. How-
ever, when dealing with a large, dense matrix, as in the case
of Isomap, these products become expensive to compute.
Moreover, when working with18M data points, it is not
possible even to store the full matrix (∼ 1600TB), render-
ing the iterative methods infeasible.

Random sampling techniques provide a powerful alter-
native for approximate spectral decomposition and only op-
erate on a subset of the matrix. Recently, the Nyström
approximation has been studied in the machine learning
community [24] [10]. In parallel, an alternative Column-
sampling technique has been analyzed in the theoretical
Computer Science community [7]. However, the relation-
ship between these approximations has not been well stud-
ied. In this work, we show the connections between these
algorithms, and provide the first direct comparison between
their performances.

Apart from spectral decomposition, the other main com-
putational hurdle associated with Isomap and Laplacian
Eigenmaps is large-scale graph construction and manipula-
tion. These algorithms first need to construct a local neigh-
borhood graph in the input space, which is an O(n2) prob-
lem. Moreover, Isomap requires shortest paths between
every pair of points resulting in O(n2 log n) computation.
Both steps are intractable whenn is as large as18M. In this
work, we use approximate nearest neighbor methods, and
show that random sampling based spectral decomposition
requires the computation of shortest paths only for a subset
of points. Furthermore, these approximations allow for an
efficient distributed implementation of the algorithms.

We now summarize our main contributions. First, we
present the largest scale study so far on manifold learning,
using18M data points. To date, the largest manifold learn-
ing study involves the analysis of music data using267K
points [18]. In vision, the largest study is limited to less
than10K images [15]. Second, we show connections be-
tween two random sampling based spectral decomposition
algorithms and provide the first direct comparison of their
performances. Finally, we provide a quantitative compari-
son of Isomap and Laplacian Eigenmaps for large scale face
manifold construction on clustering and classification tasks.

2. Manifold learning

Given n input points,X = {xi}n
i=1 andxi ∈ R

d, the
goal is to find corresponding outputsY = {yi}n

i=1, where
yi ∈ R

k, k ≪ d, such thatY ‘faithfully’ representsX.
We first briefly review the Isomap and Laplacian Eigenmaps
techniques to discuss their computational complexity.

2.1. Isomap

Isomap aims to extract a low-dimensional data represen-
tation that best preserves all pairwise distances between in-
put points, as measured by their geodesic distances along
the manifold [22]. It approximates the geodesic distance as
a series of hops between neighboring points. This approx-
imation becomes exact in the limit of infinite data. Isomap
can be viewed as an adaptation of Classical Multidimen-
sional Scaling [5], in which geodesic distances replace Eu-
clidean distances.

Computationally, Isomap requires three steps: (1) Find
t nearest neighbors for each point in input space and con-
struct an undirected neighborhood graph,G, with points
as nodes and links between neighbors as edges. This re-
quires O(n2) time. (2) Compute approximate geodesic dis-
tances,∆ij , between all pairs of nodes(i, j) by finding
shortest paths inG using Dijkstra’s algorithm at each node.
Construct a dense,n × n similarity matrix, G, by center-
ing ∆2

ij , where centering converts distances into similari-
ties. This step takes O(n2 log n) time, dominated by cal-
culation of geodesic distances. (3) Find the optimalk di-
mensional representation,Y = {yi}n

i=1, such thatY =
argminY ′

∑

i,j

(

‖y′
i − y′

j‖2
2 − ∆2

ij

)

. The solution is given
by,

Y = (Σk)1/2(Uk)T (1)

whereΣk is the diagonalk × k matrix storing the topk
eigenvalues ofG, andUk are the associated eigenvectors.
This step requires O(n2) space for storingG, and O(n3)
time for its eigendecomposition. The time and space com-
plexities for all three steps are intractable forn = 18M .

2.2. Laplacian eigenmaps

Laplacian Eigenmaps aims to find a low-dimensional
representation that best preserves neighborhood relations as
measured by a weight matrixW [3]. The algorithm works
as follows: (1) Similar to Isomap, first findt nearest neigh-
bors for each point. Then constructW , a sparse, symmetric
n×n matrix, whereWij = exp

(

−‖xi−xj‖2
2/σ2

)

if (xi, xj)
are neighbors,0 otherwise, andσ is a scaling parameter. (2)
Construct the diagonal matrixD, such thatDii =

∑

j Wij ,
in O(tn) time. (3) Find thek dimensional representation
by minimizing the normalized, weighted distance between

neighbors as,Y = argminY ′

∑

i,j

(

Wij‖y′

i−y′

j‖
2

2√
DiiDjj

)

. Sup-

pose,L = I−D−1/2WD−1/2 is the symmetrized, normal-
ized form of the graph Laplacian, given byD − W . Then,
the solution is,

Y = (Uk)T (2)

whereUk are the bottomk eigenvectors ofL, excluding the
last eigenvector corresponding to eigenvalue0. SinceL is
sparse, it can be stored in O(tn) space, and iterative methods
can be used to find thesek eigenvectors relatively quickly.



To summarize, in both the Isomap and Laplacian Eigen-
maps methods, the two main computational efforts required
are neighborhood graph construction/manipulation and
spectral decomposition of a symmetric positive semidefi-
nite (SPSD) matrix. We discuss two approximate spectral
decomposition techniques in the next section, and describe
the graph operations in Section4.

3. Approximate spectral decomposition

Spectral decomposition is intractable for largen, espe-
cially in the case of Isomap whereG is dense and too large
to be stored. Two different methods have recently been
introduced for approximating spectral decomposition of a
large matrix using a subset of the columns (or rows) of the
matrix. These techniques have appeared in two different
communities, and there exists no work analyzing their rela-
tionship and comparative performance. In this section, we
address both of these issues.

3.1. Terminology

In manifold learning, one deals with ann×n SPSD ma-
trix, G, which can be decomposed asG = UΣUT . Here
Σ contains the eigenvalues ofG andU are the associated
eigenvectors. Suppose we randomly samplel ≪ n columns
of G uniformly without replacement1. Let C be then × l
matrix of these sampled columns, andW be thel × l ma-
trix consisting of the intersection of thesel columns with
the correspondingl rows of G. SinceG is SPSD,W is
also SPSD. Without loss of generality, we can rearrange the
columns and rows ofG based on this sampling such that:

G =

[

W GT
21

G21 G22

]

and C =

[

W
G21

]

. (3)

We next discuss two approximation techniques that use
eigendecomposition ofW or singular value decomposition
(SVD) of C to generate approximations ofU andΣ.

3.2. Nyström method

The Nystr̈om method was presented in [24] to speed up
the performance of kernel machines. It has since been used
for Landmark MDS [17] and image segmentation [11]. The
Nyström method usesW andC from (3) to approximateG.
According to the Nystr̈om method,

G ≈ G̃ = CW+CT , (4)

whereW+ is the pseudoinverse ofW . It has been shown
that G̃ converges toG asl increases [10]. Substituting (3)

1Other sampling schemes have been suggested [10][7]. However, ran-
dom sampling is least costly, and has been empirically shown tobe com-
petitive with other schemes.

into (4), the Nystr̈om method reduces to approximatingG22

in G̃ usingW andC as,

G̃ =

[

W GT
21

G21 G21W
+GT

21

]

. (5)

The approximate eigenvalues (Σ̃) and eigenvectors (̃U ) of
G generated from the Nyström method are:

Σ̃ =
(n

l

)

ΣW (6)

Ũ =

√

l

n
CUW Σ+

W (7)

whereW = UW ΣW UT
W [24].

To calculate approximations to the topk eigenvectors
and eigenvalues ofG, the runtime of this algorithm is
O(l3 + kln), l3 for eigendecomposition onW andkln for
multiplication withC.

3.3. Column-sampling approximation

The Column-sampling method was initially introduced
to approximate SVD for any rectangular matrix and has
been shown to have bounded approximation error [7][9]. It
approximates eigendecomposition ofG by using the SVD
of C directly2. SupposeC = UCΣCV T

C , then the approxi-
mate eigenvectors ofG are given by the left singular vectors
of C:

Ũ = UC = CVCΣ+

C , (8)

and the corresponding approximate eigenvalues are scaled
versions of the singular values ofC:

Σ̃ =

√

n

l
ΣC . (9)

Combining (8), (9) andG̃ = Ũ Σ̃ŨT , we get:

G ≈ G̃ = C

(

√

l

n
(CT C)

1

2

)+

CT . (10)

Comparing (4) and (10), we see that the two approximations
have very similar forms. Specifically, the Column-sampling

method replacesW+ in (4) with
√

l
n (CT C)

1

2 .

SVD onC costs O(nl2) but since it cannot be easily par-
allelized, it is still quite expensive whenn = 18M. How-
ever, sinceCT C = VcΣ

2
cV

T
c , one can getUc andΣc by

SVD onCT C combined with (8). This is advantageous as
CT C can be computed easily even for largen since matrix
multiplication can be parallelized. Thus, the time needed
to calculate approximations to the topk eigenvectors and
eigenvalues ofG is O(nl2 + l3), nl2 to generateCT C and
l3 for SVD onCT C.

2The Nystr̈om method also uses sampled columns ofG, but the
Column-sampling method is named so because it uses direct decompo-
sition ofC, while the Nystr̈om method decomposes its submatrix,W .
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Figure 1. Mean error in top approximate eigenvalues, measured
by percent deviation from the exact ones for varying numbers of
samples (l). Top row: PIE-2.7K, bottom row: PIE-7K. Column-
sampling gives more accurate eigenvalues than Nyström approxi-
mation for both datasets.

3.4. Approximation experiments

We conducted experiments to see how well the Nyström
and Column-sampling methods approximate eigenvalues,
eigenvectors, and low-dimensional embeddings. We
worked with PIE-2.7K and PIE-7K, two subsets of the
CMU-PIE face dataset (see Section4.1) containing 2.7K
left profile face images and 7K frontal face images, respec-
tively. Starting withA ∈ R

d×n, a matrix containing mean-
centered input images (d = 2304) as its columns, we con-
structed a SPSD Gram matrixAT A and compared its exact
decomposition with the two approximate ones.

For eigenvalues, we measured the percentage error be-
tween the exact and the approximate ones for different
values of l. For eigenvectors, accuracy was measured
by the dot products, i.e., cosines of principal angles, be-
tween the exact and the approximate eigenvectors, which
should be close to one for good approximations. For a
fixed l, each experiment was repeated10 times with dif-
ferent samples of columns. Figures1 and2 show that both
approximations yield more accurate results asl increases.
Also, the Column-sampling method generates more accu-
rate eigenvectors and eigenvalues for both datasets. This is
not surprising since the Column-sampling method performs
SVD on a larger submatrix ofG than does the Nyström
method (C versusW ). Another possible reason for the poor
Nyström performance is that, unlike the Column-sampling
method, the eigenvectors from the Nyström method are not
exactly orthonormal. As shown in (7), the Nystr̈om method
extrapolates eigenvectors ofG from eigenvectors ofW , los-
ing orthonormality in this process. In the future, it would be
interesting to explore the construction of orthonormal ap-
proximations to the eigenvectors from the Nyström method.

We next compared the quality of low-dimensional em-
beddings, as defined in (1), constructed using the top
k = 100 eigenvalues and eigenvectors for varying val-
ues of l. The average L2 error in projection given by
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Figure 2. Mean accuracy of top approximate eigenvectors mea-
sured by dot product with exact ones for different numbers of
samples (l). Top row: PIE-2.7K, bottom row: PIE-7K. Column-
sampling gives more accurate eigenvectors than Nyström approx-
imation for both datasets.

200 400 600 800 1000
0

500

1000

1500

Number of Samples (l)

L 2 E
rr

or
 in

 P
ro

je
ct

io
n

 

 

Nystrom
Col−Sampling

200 400 600 800 1000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of Samples (l)

L 2 E
rr

or
 in

 P
ro

je
ct

io
n

 

 

Nystrom
Col−Sampling

Figure 3. Average L2 error for projections (k = 100) with varying
l. Error bars show one standard deviation for10 different runs for
eachl. Left: PIE-2.7K. Right: PIE-7K. Column-sampling gives
lower error than Nystr̈om for both datasets.

‖exact− approx‖2 is shown in Figure3. Consistent with
the approximation accuracy of eigenvalues and eigenvec-
tors independently, the Column-sampling method results in
a lower projection error than the Nyström method. More-
over, as the number of samples increases, the projection er-
ror decreases for both methods.

4. Large-scale learning

The following sections outline the process of learning
a manifold of faces. We first describe the datasets used
in Section4.1. Section4.2 explains how to extract near-
est neighbors, a common step between Laplacian Eigen-
maps and Isomap. The remaining steps of Laplacian Eigen-
maps are straightforward, so the subsequent sections focus
on Isomap, and specifically on the computational efforts re-
quired to generate a manifold using Webfaces-18M.

4.1. Datasets

We used two datasets of faces consisting of35K and
18M images. The CMU PIE face dataset [21] contains
41, 368 images of68 subjects under13 different poses and
various illumination conditions. A standard face detector
extracted35, 247 faces (each48 × 48 pixels), which com-
prised our35K set (PIE-35K). We used this set because,



being labeled, it allowed us to perform quantitative compar-
isons. The second dataset, named Webfaces-18M, contains
18.2 million images of faces extracted from the Web us-
ing the same face detector. For both datasets, face images
were represented as2304 dimensional pixel vectors which
were globally normalized to have zero mean and unit vari-
ance. No other pre-processing,e.g. face alignment, was per-
formed. Constructing Webfaces-18M, including face detec-
tion and duplicate removal, took15 hours using a cluster of
several hundred machines. We used this cluster for all ex-
periments requiring distributed processing and data storage.

4.2. Nearest neighbors and neighborhood graph

The cost of naive nearest neighbor computation is O(n2),
wheren is the size of the dataset. It is possible to compute
exact neighbors for PIE-35K, but for Webfaces-18M this
computation is prohibitively expensive. So, for this set, we
used a combination of random projections and spill trees
[16] to get approximate neighbors. Computing5 nearest
neighbors in parallel with spill trees took∼2 days on the
cluster. Figure4 shows the top5 neighbors for a few ran-
domly chosen images in Webfaces-18M. In addition to this
visualization, comparison of exact neighbors and spill tree
approximations for smaller subsets suggested good perfor-
mance of spill trees.

We next constructed the neighborhood graph by repre-
senting each image as a node and connecting all neighbor-
ing nodes. Since Isomap and Laplacian Eigenmaps require
this graph to be connected, we used depth-first search to
find its largest connected component. These steps required
O(tn) space and time. Constructing the neighborhood graph
for Webfaces-18M and finding the largest connected com-
ponent took10 minutes on a single machine using the Open-
FST library [1].

For neighborhood graph construction, the ‘right’ choice
of number of neighbors,t, is crucial. A smallt may give too
many disconnected components, while a larget may intro-
duce unwanted edges. These edges stem from inadequately
sampled regions of the manifold and false positives intro-
duced by the face detector. Since Isomap needs to compute
shortest paths in the neighborhood graph, the presence of
bad edges can cause leakage or ‘short-circuits’[2]. Here, we
choset = 5 and also enforced an upper limit on neighbor
distance to alleviate the problem of leakage. We used a dis-
tance limit corresponding to the95th percentile of neighbor
distances in the PIE-35K dataset.

Table1 shows the effect of choosing different values for
t with and without enforcing the upper distance limit. As
expected, the size of the largest connected component in-
creases ast increases. Also, enforcing the distance limit
reduces the size of the largest component. Figure5 shows
a few random samples from the largest component. Im-
ages not within the largest component are either part of

Figure 4. Visualization of neighbors for Webfaces-18M. The first
image in each row is the target, and the next five are its neighbors.

No Upper Limit Upper Limit Enforced
t # Comp % Largest # Comp % Largest

1 1.7M 0.05 % 4.3M 0.03 %
2 97K 97.2 % 285K 80.1 %
3 18K 99.3 % 277K 82.2 %
5 1.9K 99.9 % 275K 83.1 %

Table 1. Number of components in the Webfaces-18M neighbor
graph and the percentage of images within the largest connected
component (‘% Largest’) for varying numbers of neighbors (t)
with and without an upper limit on neighbor distances.

Figure 5. A few random samples from the largest connected com-
ponent of the Webfaces-18M neighborhood graph.

Figure 6. Visualization of disconnected components of the neigh-
borhood graphs from Webfaces-18M (top row) and from PIE-35K
(bottom row). The neighbors for each of these images are all
within this set thus making the entire set disconnected from the
rest of the graph. Note that these images are not exactly the same.

a strongly connected set of images (Figure6) or do not
have any neighbors within the upper distance limit (Figure
7). As shown in Figure7, many of these ‘single-image-
components’ are false positives. Clearly, the distance limit
introduces a trade-off between filtering out non-faces and
excluding actual faces from the largest component.3

4.3. Approximating geodesics

To construct the similarity matrixG in Isomap, one ap-
proximates geodesic distance by shortest-path lengths be-

3To construct embeddings with Laplacian Eigenmaps, we generatedW

andD from nearest neighbor data for images within the largest component
of the neighborhood graph and solved (2) using a sparse eigensolver.



Figure 7. Visualization of disconnected components containing ex-
actly one image. Although several of the images above are not
faces, some are actual faces, suggesting that certain areas of the
face manifold are not adequately sampled by Webfaces-18M.

tween every pair of nodes in the neighborhood graph. This
requires O(n2 logn) time and O(n2) space, both of which
are prohibitive for 18M nodes. However, since we use
sampling-based approximate decomposition as described in
Section3, we need onlyl ≪ n columns ofG, which form
the submatrixC. We thus computed geodesic distance be-
tweenl randomly selected nodes (called landmark points)
and the rest of the nodes, which required O(ln log n) time
and O(ln) space. Since this computation can easily be par-
allelized, we performed geodesic computation on the clus-
ter. The overall procedure took 60 minutes for Webfaces-
18M usingl = 10K. The bottom four rows in Figure9 show
sample shortest paths for images within the largest compo-
nent for Webfaces-18M, illustrating smooth transitions be-
tween images along each path.

4.4. Generating low-dimensional embeddings

Before generating low-dimensional embeddings in
Isomap, one needs to convert distances into similarities us-
ing a process called centering [5]. For the Nystr̈om approx-
imation, we computedW by double centeringD, thel × l
matrix of squared geodesic distances between all landmark
nodes, asW = − 1

2
HDH, whereH = Il − 1

l 11
T is the

centering matrix,Il is the l × l identity matrix and1 is a
column vector of all ones. Similarly, the matrixC was ob-
tained from squared geodesic distances between the land-
mark nodes and all other nodes using single-centering as
described in [6].

For the Column-sampling approximation, we decom-
posedCT C, constructed by performing matrix multiplica-
tion in parallel onC. For both approximations, decomposi-
tion on anl × l matrix (CT C or W ) took about one hour.
Finally, we computed low-dimensional embeddings by mul-
tiplying the scaled eigenvectors from approximate decom-
position withC. For Webfaces-18M, generating low dimen-
sional embeddings took1.5 hours for the Nystr̈om method
and6 hours for the Column-sampling method.

5. Manifold evaluation

Manifold learning techniques typically transform the
data such that Euclidean distance in the transformed space

betweenany pair of points is meaningful. Since K-means
clustering computes Euclidean distances between all pairs
of points, it is a natural choice for evaluating these tech-
niques. We also compared the performance of various tech-
niques using nearest neighbor classification. Since CMU-
PIE is a labeled dataset, we first focused on quantitative
evaluation of different embeddings using face pose as class
labels. The PIE set contains faces in13 poses, and such a
fine sampling of the pose space makes clustering and clas-
sification tasks very challenging. In all the experiments we
fixed the dimension of the reduced space,k, to be100.

The first set of experiments was aimed at finding how
well different Isomap approximations perform in compar-
ison to exact Isomap. We used a subset of PIE with10K
images (PIE-10K) since, for this size, exact eigendecompo-
sition could be done on a single machine within reasonable
time and memory limits. We fixed the number of clusters
in our experiments to equal the number of pose classes, and
measured clustering performance using two measures,Pu-
rity andAccuracy. Purity measures the frequency of data
belonging to the same cluster sharing the same class label,
while Accuracy measures the frequency of data from the
same class appearing in a single cluster. Thus, ideal cluster-
ing will have 100% Purity and 100% Accuracy.

Table2 shows that clustering with Nyström Isomap with
just l = 1K performs almost as well as exact Isomap on
this dataset4. This matches with the observation made in
[24], where the Nystr̈om approximation was used to speed
up kernel machines. Further, Column-sampling Isomap per-
forms slightly worse than Nyström Isomap. The clustering
results on the full PIE-35K set (Table3) with l = 10K also
affirm this observation. Figure8 shows the optimal2D pro-
jections from different methods for PIE-35K. The Nystr̈om
method separates the pose clusters better than Column-
sampling, verifying the quantitative results.

The fact that Nystr̈om outperforms Column-sampling
is somewhat surprising given the experimental evaluations
in Section3.4. We believe that the poor performance of
Column-sampling Isomap is due to the form of the similar-
ity matrix G. When using a finite number of data points
for Isomap,G is not guaranteed to be positive semidefinite
(PSD). We verified thatG was not PSD in our experiments,
and a significant number of top eigenvalues,i.e., those with
largest magnitudes, were negative. The two approximation
techniques differ in their treatment of negative eigenvalues
and the corresponding eigenvectors. The Nyström method
allows one to use eigenvalue decomposition (EVD) ofW
to yield signed eigenvalues, making it possible to discard
the negative eigenvalues and the corresponding eigenvec-
tors. On the contrary, it is not possible to discard these in
the Column-based method, since the signs of eigenvalues
are lost in the SVD of the rectangular matrixC (or EVD of

4The differences are statistically insignificant.



Methods Purity (%) Accuracy (%)
PCA 54.3 (±0.8) 46.1 (±1.4)

Exact Isomap 58.4 (±1.1) 53.3 (±4.3)
Nyström Isomap 59.1 (±0.9) 53.3 (±2.7)

Col-Sampling Isomap 56.5 (±0.7) 49.4 (±3.8)
Laplacian Eigenmaps 35.8 (±5.0) 69.2 (±10.8)

Table 2. Results of K-means clustering of face poses applied to
PIE-10K for different algorithms. Results are averaged over10
random K-means initializations.

Methods Purity (%) Accuracy (%)
PCA 54.6 (±1.3) 46.8 (±1.3)

Nyström Isomap 59.9 (±1.5) 53.7 (±4.4)
Col-Sampling Isomap 56.1 (±1.0) 50.7 (±3.3)
Laplacian Eigenmaps 39.3 (±4.9) 74.7 (±5.1)

Table 3. Results of K-means clustering of face poses applied to
PIE-35K for different algorithms. Results are averaged over10
random K-means initializations.

CT C).
Tables2 and3 also show a significant difference in the

Isomap and Laplacian Eigenmaps results. The2D embed-
dings of PIE-35K (Figure 8) reveal that Laplacian Eigen-
maps projects data points into a small compact region, as
it tends to map neighboring inputs as nearby as possible in
the low-dimensional space. When used for clustering, these
compact embeddings lead to a few large clusters and sev-
eral tiny clusters, thus explaining the high accuracy and low
purity of the clusters. This indicates poor clustering perfor-
mance of Laplacian Eigenmaps, since one can achieve even
100% Accuracy simply by grouping all points into a single
cluster. However, the Purity of such clustering would be
very low. Finally, the improved clustering results of Isomap
over PCA for both datasets verify that the manifold of faces
is not linear in the input space.

We also compared the performance of Laplacian Eigen-
maps and Isomap embeddings on pose classification. The
data was randomly split into a training and a test set, and
K-Nearest Neighbor (KNN) was used for classification.
K = 1 gives lower error than higherK as shown in Table
4. Also, the classification error is lower for both exact and
approximate Isomap than for Laplacian Eigenmaps, sug-
gesting that neighborhood information is better preserved
by Isomap (Tables4 and5). Note that, similar to cluster-
ing, the Nystr̈om approximation performs as well as Ex-
act Isomap (Table4). Better clustering and classification
results, combined with 2D visualizations, imply that ap-
proximate Isomap outperforms exact Laplacian Eigenmaps.
Moreover, the Nystr̈om approximation is computationally
cheaper and empirically more effective than the Column-
sampling approximation. Thus, we used Nyström Isomap
to generate embeddings for Webfaces-18M.

After learning a face manifold from Webfaces-18M, we
analyzed the results with various visualizations. The top
row of Figure9 shows the2D embeddings from Nyström
Isomap. The top left figure shows the face samples from

Figure 8. Optimal 2D projections of PIE-35K where each point is
color coded according to its pose label. Top Left: PCA projections
tend to spread the data to capture maximum variance, Top Right:
Isomap projections with Nyström approximation tend to separate
the clusters of different poses while keeping the cluster of each
pose compact, Bottom Left: Isomap projections with Column-
sampling approximation have more overlap than with Nyström
approximation. Bottom Right: Laplacian Eigenmaps projects the
data into a very compact range.

Methods K = 1 K = 3

Exact Isomap 10.9 (±0.5) 14.1 (±0.7)
Nyström Isomap 11.0 (±0.5) 14.0 (±0.6)

Col-Sampling Isomap 12.0 (±0.4) 15.3 (±0.6)
Laplacian Eigenmaps 12.7 (±0.7) 16.6 (±0.5)

Table 4. K-nearest neighbor classification error (%) of face pose
applied to PIE-10K subset for different algorithms. Results are
averaged over10 random splits of training and test sets. K=1 gives
lower error.

Nyström IsomapCol-Sampling IsomapLaplacian Eigenmaps
9.8 (±0.2) 10.3 (±0.3) 11.1 (±0.3)

Table 5. 1-nearest neighbor classification error (%) of face pose
applied to PIE-35K for different algorithms. Results are averaged
over10 random splits of training and test sets.

various locations in the manifold. It is interesting to see
that embeddings tend to cluster the faces by pose. These
results support the good clustering performance observed
using Isomap on PIE data. Also, two groups (bottom left
and top right) with similar poses but different illuminations
are projected at different locations. Additionally, since2D
projections are very condensed for18M points, one can ex-
pect more discrimination for higherk, e.g., k = 100.

In Figure9, the top right figure shows the shortest paths
on the manifold between different public figures. The im-
ages along the corresponding paths have smooth transitions
as shown in the bottom of the figure. In the limit of infi-
nite samples, Isomap guarantees that the distance along the
shortest path between any pair of points will be preserved as
Euclidean distance in the embedded space. Even though the
paths in the figure are reasonable approximations of straight
lines in the embedded space, these results suggest that18M



Figure 9.2D embedding of Webfaces-18M using Nyström Isomap
(Top row). Darker areas indicate denser manifold regions. Top
Left: Face samples at different locations on the manifold. Top
Right: Approximate geodesic paths between different celebrities.
The corresponding shortest-paths are shown in bottom four rows.

faces are perhaps not enough samples to learn the face man-
ifold exactly.

6. Conclusions and future work

We have presented large scale nonlinear dimensionality
reduction using unsupervised manifold learning. The exper-
imental results reveal that Isomap coupled with Nyström ap-
proximation can effectively extract low-dimensional struc-
ture from datasets containing millions of images. One of
the drawbacks of Isomap is the assumption that centering
of the dissimilarity matrix yields an SPSD matrix. This is
not always true for dissimilarities that are not Euclidean dis-
tances. The presence of negative eigenvalues deteriorates
the performance of the Column-sampling method more than
the Nystr̈om method. We plan to explore this issue further in
the future. In addition, we plan to systematically investigate
the effects of different data preprocessing methods such as
face alignment, on manifold learning.
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