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Abstract

In many vision problems, instead of having fully labeled
training data, it is easier to obtain the input in small groups,
where the data in each group is constrained to be from the
same class but the actual class label is not known. Such
constraints give rise to partial equivalence relations. The
absence of class labels prevents the use of standard dis-
criminative methods in this scenario. On the other hand,
the state-of-the-art techniques that use partial equivalence
relations, e.g., Relevant Component Analysis, learn projec-
tions that are optimal for data representation, but not dis-
crimination. We show that this leads to poor performance in
several real-world applications, especially those with high-
dimensional data. In this paper, we present a novel discrim-
inative technique for the classification of weakly-labeled
data which exploits the null-space of data scatter matrices
to achieve good classification accuracy. We demonstrate the
superior performance of both linear and nonlinear versions
of our approach on face recognition, clustering, and image
retrieval tasks. Results are reported on standard datasetsas
well as real-world images and videos from the web.

1. Introduction
Fully supervised classification requires the class labels

to be known while training, which usually involves tedious
manual labeling. For many applications, it is much easier
to obtain training data which is only ‘weakly’ labeled. For
example, for face recognition in video, one can use a coarse
face tracker to detect small video clips such that each clip
contains the images of the same individual (Figure 1, top),
but the identity of the individual is not known. Similarly, for
image retrieval, one can construct a training set by group-
ing images into small groups such that images within each
group are ‘similar’, but the actual class of the group is not
known (Figure 1, bottom). Preparing such a set is much
simpler than labeling each image with a distinct class label.

In this paper, we address the problem of learning classi-
fiers using weakly-labeled training data, in which the train-
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Figure 1. An illustration of the form of weakly-labeled training
data with partial equivalence relations for face recognition (top
row) and image retrieval (bottom row). The input data consists
of groups (shown in ellipses), each containing data from the same
class but the actual class label is not known. Note that different
groups may share the same class label as shown in columns (A)
and (D), which contain images of the same person (top row) and
of the ‘flower’ class (bottom row).

ing input is given in the form of small groups. The data in
each group comes from the same class but the actual class
labels are not known. Such a scenario yields pairwise rela-
tions,i.e., ‘X is similar to Y’ for all the points X and Y that
belong to the same group. However, it is important to note
that it doesnot give relations of type ‘X is dissimilar to Z’
if X and Z come from different groups. This is because two
different groups may have the same (unknown) class label,
as shown in Figure 1 for groups (A) and (D). We call the
relations in this scenariopartial equivalence relations. We
use the term ‘partial’ to emphasize that we do not have ac-
cess to any pairs that contain points from different classes.

In the presence of partial equivalence relations, standard
discriminative techniques cannot be used due to the absence
of class labels in the training data. Moreover, the lack of ac-
cess to both ‘similar’ and ‘dissimilar’ pairs in the training
data precludes the use of many promising techniques that



work with equivalence relations [14][17][6]. These tech-
niques discriminatively learn a distance metric for cluster-
ing or classification when bothsimilar anddissimilarpairs
are given. In the absence ofdissimilar pairs, Xinget al.
[17] suggest treating the data pairs that are notsimilar as
thedissimilar pairs. But, such heuristics have been shown
to give lower accuracy in comparison to the techniques that
use onlysimilar pairs [1].

In vision, Shental et al. [11] introduced learning with
partial equivalence relations under a paradigm named Ad-
justment Learning. They proposed a promising approach
called Relevant Component Analysis (RCA), which finds
a linear transformation of the data such that irrelevant vari-
ability in the data is reduced. A nonlinear extension of RCA
called kernel RCA was proposed by Tsanget al. [12]. Even
though RCA has been shown to perform well in several ap-
plications, it suffers from two main problems. First, similar
to Principal Component Analysis (PCA), RCA finds pro-
jections that are good for data representation or compres-
sion. These projections may not be good for class discrimi-
nation (see Section 3 for more details). Second, in the case
of high-dimensional data with insufficient samples, linear
RCA becomes ill-posed. In fact, the issue of scatter matri-
ces becoming singular is not restricted to small-sample-size
problems. Kernel RCA always suffers from the singularity
problem no matter how much training data is available be-
cause the size of the kernel matrix grows in proportion to
the number of training samples [12].

In vision applications, data often lies in a high-
dimensional space. For instance, in face recognition, it is
common to represent faces as vectors of pixel intensities or
Gabor jets, yieldingO(103) to O(105) dimensions. The
same is true in image retrieval, where images are typically
represented using color, texture and shape features in high
dimensions. The method suggested in [11] to overcome the
singularity problem is based on intermediate PCA-based di-
mensionality reduction step. This yields inferior resultsas
we show later in Section 5 and Section 6. In [12], the au-
thors suggest regularization of scatter matrices which re-
quires picking the ‘right’ value of the regularization coeffi-
cient for good performance. This is usually done by hand-
tuning the coefficient. Recently, Gaussian Mixture Model
(GMM) based formulations have been developed for partial
equivalence relations [10] but they become impractical for
high-dimensional data due to the singularity problem.

In this work we take a different approach and argue that
instead of getting rid of the singularities, these can be ex-
ploited to overcome both the shortcomings of RCA. In fact,
we show that the null-space based techniques proposed in
vision literature for fully supervised classification problems
[3][7] can be naturally extended to address the problem of
classification with weakly-labeled data. The key advantage
of our technique is that it results in projections that are good

for class discrimination unlike RCA. In addition, our formu-
lation does not involve hand-tuned free parameters such as
the number of principal components in RCA, or the regu-
larization coefficient in kernel RCA.

In this paper, we focus on discriminatively learning lin-
ear or nonlinear transformations using weakly-labeled train-
ing data such that a Nearest Neighbor (NN) classifier in the
transformed space gives good classification accuracy. One
important family of algorithms that learns a transformation
or embedding of unlabeled data includes Locally Linear
Embedding (LLE) [9] and Semi-Definite Embedding (SDE)
[16]. However, it is not clear how to modify these unsuper-
vised methods to make use of the partial equivalence rela-
tionships given in the input. RCA (along with its kernel
extensions [12]) is the most popular technique to learn pro-
jections using partial equivalence relations, but it does not
learn discriminative projections as discussed above.

To summarize, our paper(i) proposes an algorithm to
discriminatively learn a linear or nonlinear transformation
using partial equivalence relations, (ii) extends null-space
based analysis to weakly-labeled data, and (iii) demon-
strates superior performance on standard as well as real-
world web data for recognition, clustering and retrieval.

After defining the problem formally in the next section,
we briefly discuss the RCA technique in Section 3. Our
null-space based technique is described in Section 4. Sec-
tions 5 and 6 show the experiments on standard and real-
world web datasets, respectively.

2. Problem formulation
Suppose input data is given byX = {xi}

N
i=1

where
xi ∈ ℜd, and each point takes one of theC class labels.
Let Hc be the set of all the data with class labelc such that,⋃

c Hc = X. We are not given the class labels during train-
ing. Instead, we are provided with groups such that data
in a group share the same class label. Let there beR such
groups,{Xr}

R
r=1

, such that
⋃

r Xr = X, andR ≥ C. Let
Nr be the number of points in groupr. Our goal is to find
a transformation ofX such that a NN classifier gives good
classification accuracy in the transformed space.

Since our technique builds upon traditional Fisher’s Lin-
ear Discriminant Analysis (LDA), we start with a brief re-
view of LDA to set the notation. When all the class labels
are available during training, LDA proposes to find the pro-
jection matrixŴ that minimizes the within-class scatter,
Sw, and maximizes the between-class scatter,Sb, by maxi-
mizing the following ratio [4],

Ŵ = arg max
W

|WT SbW |

|WT SwW |
, (1)

where|.| denotes the matrix determinant and,

Sw =
C∑

c=1

∑

x∈Hc

(x − µc)(x − µc)
T , (2)



Sb =

C∑

c=1

Nc(µc − µ)(µc − µ)T . (3)

Hereµ is the mean of the total inputX, µc is the mean and
Nc is the number of points in classc, andC is the number
of classes. IfS−1

w exists, the columns of̂W are simply the
eigenvectors ofS−1

w Sb. If data from different classes is dis-
tributed normally with equal covariances, it is easy to show
that LDA returns the optimal directions that maximize the
class separation [4]. Even when data does not follow this
generative model, the LDA criterion returns useful discrim-
inative projections. In our case, since we do not have access
to the class labels, LDA cannot be applied directly to learn
the desired projections.

3. Relevant Component Analysis (RCA)
RCA assumes the data from each class to be distributed

as Gaussian,i.e. Xc ∼ N (µc,Σc) ∀ c = 1, . . . , C. Fur-
ther, the class covariances are assumed to be equal,i.e.
Σc = Σ ∀ c, andΣ is estimated as the weighted average of
empirical class covariances resulting inΣ ≈ 1

N Sw. Since
the class labels are not known, RCA approximatesSw with
the within-group scatter matrix,Sg, defined using the group
data{Xr}R

r=1
as,

Sg =
R∑

r=1

∑

x∈Xr

(x − µr)(x − µr)
T , (4)

whereµr is the mean of the setXr. In RCA, the optimal
projection matrix is given by the whitening transformation,
i.e., ŴT = Σ−1/2 = Λ−1/2V T , where matricesV andΛ
contain the eigenvectors and the eigenvalues ofSg. Classi-
fication is performed by using a NN classifier in the trans-
formed space with Euclidean distance.

The above process is very similar to the idea of data
whitening usually performed with PCA except that in PCA
one uses total scatter of the data instead of within-group
scatter used in RCA. The projections of RCA are hence
optimized for representation or compression of data in a
group. Another interpretation of RCA is that it maximizes
the constrained mutual information between the input vec-
tor and its projection as explained in [1]. However, this ar-
gument also points to the fact that RCA is optimal for data
compression, not for class discrimination.

3.1. RCA in high dimensions
In the previous discussion on RCA, the matrixSg was as-

sumed to be full-rank. When this is not true, RCA proposes
to project the data on the topm eigenvectors of the total
scatter matrix, wherem is the effective rank ofSg. This is
equivalent to using PCA for dimensionality reduction be-
fore computing the whitening transformation,̂W . How-
ever, a potential problem in doing so is that the intermediate
PCA step may discard dimensions that contain important

discriminative information. This can also be seen from the
form of the whitening transform estimated by RCA given
in the previous section. Ideally, the dimensions for which
the eigenvalues ofSg are zero (i.e., the null space ofSg)
should be given infinite weight while computing the trans-
formed data. However, PCA gets rid of those dimensions.
Our null-space method, instead, exploits the null space of
Sg to compute discriminative projections.

4. Null-Space Projections with Partial Equiva-
lence Relations (NP-PER)

Our work on null-space projections is inspired by the
work of Huang et al. [7] in the context of finding the best
LDA projections given fully labeled data. However, since
we do not have access to the class labels, we make the same
assumption as made in RCA and approximate within-class
scatter,Sw, with Sg defined in (4). Similar to LDA, we
would like to find those transformations that minimize the
within-group scatter (Sg) after projection since the data in
each group belongs to the same class. However, since any
two input groups may contain data from the same class, the
between-group scatter,Sḡ, defined as,

Sḡ =

R∑

r=1

Nr(µr − µ)(µr − µ)T , (5)

is not a good approximation of the between class scatter,
Sb. Hence, unlike LDA, it is incorrect to look for the di-
rections that maximizeSḡ after projection. Nevertheless, it
is obvious that after projection,Sḡ should not collapse to
zero. In such a case, the projected means ofall the groups
would coincide, and no discrimination would be possible
between different classes. Hence, in this work, we look for
the projectionsW that optimize the following function:

Ŵ = arg min
W

|WT SgW | (6)

Subject to |WT SḡW | > 0, and

‖wj‖
2 = 1 for j = 1, . . . ,m

wherewj ’s are the columns of the projection matrixW .
The unit norm constraints onwj ’s are imposed as scale is
arbitrary.

4.1. Nonlinear extension
For many real-world problems, a linear solution given by

(6) may not be powerful enough. To allow more expressive
nonlinear transformations, we use the kernel methods simi-
lar to [8][15]. LetΦ be a nonlinear mapping of the original
feature vectorx into a high-dimensional spaceF . Let SΦ

g

andSΦ
ḡ be the new scatter matrices inF , obtained by sim-

ply replacingx with Φ(x) in (4) and (5), respectively. Then,
the optimal linear discriminant,̂WΦ, in F can be computed
by replacingSg andSḡ in (6) bySΦ

g andSΦ
ḡ . Note that the



linear discriminant inF induces a nonlinear discriminant in
the original input space.

Generally, the mappingΦ induces a very high (possibly
infinite) dimensional space and directly solving (6) inF is
not feasible. Instead, we exploit popular kernel methods
to solve (6) by using a Mercer kernelk(. , .), for which,
k(x1, x2) = Φ(x1)·Φ(x2). From the theory of Reproducing
Kernel Hilbert Space (RKHS), the optimal solution of (6) in
F lies in the span of all the training samples,i.e.,

wΦ

j =

N∑

i=1

αijΦ(xi) for j = 1, . . . ,m. (7)

Let us define a new feature vector for each input,xi, as
yi = [k(x1, xi), k(x2, xi), . . . , k(xN , xi)]

T . Also, let Sy
g

andSy
ḡ be the new scatter matrices computed using features

yi in (4) and (5). Then, using the dot product property of
Mercer kernels, one can show thatWΦT SΦ

g WΦ = αT Sy
g α,

andWΦT SΦ
ḡ WΦ = αT Sy

ḡ α [8]. Hence, the optimization
problem in (6) can be expressed in the kernel spaceF as,

α̂ = arg min
α

|αT Sy
g α| (8)

Subject to |αT Sy
ḡ α| > 0, ‖αj‖

2 = 1 for j = 1, . . . ,m.

4.2. Optimization
To computeα̂ in (8), the first thing to note is that, since

Sg is positive semidefinite, the objective function satisfies
|αT Sy

g α| ≥ 0. The constraints given in (8) eliminate the
possibility of the trivial solution,α̂ = 0. However, the
objective function can still attain the absolute minimum of
zero if α̂ lies in the null space ofSy

g , provided such a null-
space exists. To check this, we first analyze the ranks of the
two scatter matricesSy

g andSy
ḡ . From the definition ofSy

g

andSy
ḡ , it is easy to show that

rank(Sy
g ) ≤ N−R and rank(Sy

ḡ ) ≤ R−1, (9)

whereN is the number of input samples, andR is the num-
ber of data groups. Since both of these matrices are of size
N × N , it is clear that they are rank-deficient. It is im-
portant to note that in the linear version of NP-PER,Sg is
rank-deficient only ifd > N −R. But in the kernel version,
it will always be rank-deficient no matter how much train-
ing data is provided. This is because the size ofSy

g also
increases as the number of training samples is increased.

Thus, the objective in (8) is minimized (i.e. takes value0)
if αj ∈ Null(Sy

g ), ∀ j, whereNull(A) is the null-space of
matrixA. But, to satisfy the constraints in (8), it is required
thatαj /∈ Null(Sy

ḡ ), ∀ j. In other words, the eigenvectors
that are inNull(Sy

g )
⋂

Null(Sy
ḡ ) should be discarded. Let

us define the total scatter of the features,{yi}
N
i=1

, as:

Sy
t =

N∑

i=1

(yi − µy)(yi − µy)T , (10)

= Sy
g + Sy

ḡ ,

where µy = (1/N)
∑

i yi. Following the reasoning in
[7], since all the matrices in (10) are positive semidefinite,
Null(Sy

t ) = Null(Sy
g )

⋂
Null(Sy

ḡ ). From (10),Sy
t has at

mostN−1 nonzero eigenvalues becauserank(Sy
t ) ≤ N−1.

Let P y
t be the matrix containing the eigenvectors corre-

sponding to nonzero eigenvalues ofSy
t . Thus, by projecting

Sy
g onto P y

t , one can get rid of the null space ofSy
ḡ . Let

Qy
g be the matrix that contains the eigenvectors correspond-

ing tozeroeigenvalues of the projected within-group scatter
matrix,P yT

t Sy
g P y

t . In other words,Qy
g spans the null-space

of P yT
t Sy

g P y
t . Then, the desired projections are given by

the columns ofQy
g in the projected space,i.e., α̂ = P y

t Qy
g .

Interpreted geometrically, NP-PER finds the projection
directionsα̂ such that the data in each group collapses to
the group mean, while ensuring that the means of different
groups do not overlap. The former property is useful for a
NN classifier because the data in each group comes from
a single class. The latter property, which results from the
constraints in (8), makes sure that class discrimination is
possible by keeping the group means separated.

4.3. Optimal number of projection vectors
What should be the optimal number of projections,m?

For the high-dimensional case in RCA, Shental et al. [11]
recommend taking the effective rank ofSg, i.e., the number
of singular values that are ‘significantly’ larger than zero, as
m. The accuracy of RCA is quite susceptible to the choice
of m as we will show later in the experiments in Section 5.1.
The kernel extension of RCA also suffers from a similar
problem. On the contrary,m is fixed for NP-PER (and its
nonlinear extension) for a given input.

To see this, first note thatrank(P yT
t Sy

g P y
t )=rank(Sy

g ),
becausePt spans the range ofSy

t , and the null space ofSy
t

is the common null space ofSy
g andSy

ḡ [18]. The number
of optimal projection vectors,m, is given by the dimension
of Null(P yT

t Sy
g P y

t ). Hence,

m = rank(Sy
t ) − rank(Sy

g ). (11)

When all the input samples are linearly independent, the
inequalities in (9) become strict equalities. In this case,the
optimalm is given as,m = (N − 1) − (N − R) = R − 1.
It is interesting to note thatm is independent of the original
dimension,d, and the number of input samples,N .

4.4. Effect of group size
In the NP-PER analysis, we have approximated the

within-class scatter,Sw, with within-group scatter,Sg, sim-
ilar to [11]. The same holds for kernel NP-PER, except the
inputs{xi} are replaced by their kernel mapped versions
{yi} as described in Section 4.1. Comparing (2) and (4),
the error in approximation is:

Sw − Sg =

N∑

i=1

(µci
− µri

)(µci
− µri

)T , (12)



whereci is the actual class label of inputxi, andri is the
group to which dataxi belongs. Clearly, the error depends
on how accurately a group mean approximates its true (un-
known) class mean. As the group size,Nr, increases, the
error in approximation goes down.

WhenNr → ∞, ∀ r , one can show using Cheby-
shev’s inequality for the weak law of large numbers for two
different sample means thatP (|µci

− µri
| > ǫ) → 0 for

anyǫ > 0. Thus, in the infinite data case, NP-PER will be
equivalent to fully supervised improved null-space LDA de-
scribed in [18] even when explicit class labels are unknown.

4.5. Computational issues
The computation of the optimal projection matrix,α̂, in

kernel NP-PER involves three steps. First, computing the
kernel mappingyi for each inputxi, which isO(N2d). Sec-
ond, computing the vectorsP y

t spanning the range of the
total scatterSy

t . SinceSy
t is of sizeN × N , P y

t can be
obtained by doing eigen-analysis or SVD, which isO(N3).
In fact, if the inputs are known to be linearly independent,
this step can be skipped. This is because, in that case, the
rank ofSy

t is (N−1) andP y
t can be obtained by simply dis-

carding the last column ofSy
t [15]. The final step involves

computing the null space ofP y
t Sy

g P y
t , whose complexity is

upper bounded byO((N−1)3).
The above computations are affordable for moderateN .

For largeN , one may adopt iterative procedures for solving
SVD as described in [5]. Note that the computational efforts
needed for kernel NP-PER are equivalent to those for kernel
RCA, since kernel RCA also needs to compute the kernel
mapping, the topm eigenvectors ofSy

t , and the SVD of the
projectedSy

g . Linear RCA and linear NP-PER also have
equivalent computational complexities.

5. Experiments on standard datasets

5.1. Classification

We use three standard face datasets (Yale, FERET and
ORL) to compare the face recognition performance of four
linear techniques: Eigenfaces [13], Fisherfaces [2], RCA
[11] and our null-space method, NP-PER, and two nonlin-
ear techniques: kernel RCA (kRCA) and kernel NP-PER
(kNP-PER). The comparisons with Eigenfaces and Fisher-
faces are meant to demonstrate how the performance of lin-
ear projection methods vary when data is unlabeled (Eigen-
faces) to when data is fully labeled (Fisherfaces). Since
both RCA and NP-PER use weakly labeled data, their per-
formance is expected to fall between these two extremes.
The RCA and NP-PER methods are compared by varying
the number of groups, and the number of images in each
group. During testing, for each projected test image, its
nearest neighbor (in the Euclidean sense) from the projected
training set is used for classification.

The Yale database [2] consists of156 face images of15
individuals. These images are randomly split into a training
set containing105 images (7 images per class) and a test set
containing the remaining51 images. From each image, a
tightly-cropped face is extracted and warped to a standard
size of48 × 48 pixels, yielding a vector of dimensiond =
2304. To deal with illumination variations, the output image
is further normalized such that each pixel has zero mean and
unit variance within a local5 × 5 pixel window.

We compared RCA, NP-PER and their kernel versions
for three different group sizes:Nr = 3, 5, 7. For each
size, we assigned the maximum possible data from the train-
ing set to groups. The groups were populated by randomly
picking data from each class. For each of the above training
sets, we first computed the optimal linear transformation,
Ŵ , for RCA and NP-PER as described in Sections 3 and
4, respectively. Note that̂W for linear NP-PER is obtained
by simply setting the transformed featuresyi = xi ∀ i. The
optimal number of projections,m, for NP-PER is fixed and
computed using (11). For RCA, we chose them that gave
minimum error on the training set. ThêW for Eigenfaces is
learned only once for the whole training set, as it is indepen-
dent of sampling variations in the groups. Also, Fisherfaces,
being a fully supervised technique, is applied only when all
the data from each class is contained within one group,i.e.
whenNr = 7.

The classification performance of different linear meth-
ods on the Yale set is given in the left plot in Figure 2. It
shows the mean error rate and one standard deviation error
bars obtained by repeating the experiments with100 ran-
dom group realizations. Since Eigenfaces and Fisherfaces
do not depend on group selection, their results do not show
any error bars. As expected, Eigenfaces (PCA) gives the
poorest error rate, as it does not make use of the partial
equivalence relations given in the data. For each value of
Nr, it is clear that the proposed NP-PER algorithm yields a
lower error rate than RCA, verifying that the null space of
the within-group scatter matrix contains useful discrimina-
tive information. As the size of each group increases from
3 to 5, the errors for both RCA and NP-PER are expected
to decrease. However, as shown in the plot, the RCA error
increases. This may be due to the fact that forNr = 5, only
about71% of input data could be used for training while
Nr = 3 allows the use of about86% of the data.

WhenNr = 7, since all the training data from a class
is assigned to a single group, both RCA and NP-PER give
better results than for any otherNr. In this case, NP-PER is
equivalent to the improved null-space LDA [18], which per-
formed similar to Fisherfaces and better than RCA. Fisher-
faces performs better than RCA because Fisherfaces explic-
itly looks for those directions that also maximize between-
class scatter,Sb, unlike RCA, which ignores it.

The right plot in Figure 2 shows the dependency of RCA
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Figure 2. Results on Yale dataset. Left: Mean error rates on test set
as a function of group size. Error bars show standard deviation for
100 random experiments repeated with different group samples.
Note that for maximumNr, there is no variability in the results as
all the data from a class is assigned to a single group. Right: Plot
showing strong dependence of mean training error rates for RCA
on the dimension,m, of the projected vector.
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Figure 3. Graphs comparing the mean classification error rates for
each algorithm on the ORL and the FERET test sets.

training error on the dimension,m, of the projected vec-
tor. For different choices ofm, the performance of RCA
varies significantly for all the group sizes. We picked the
best number (m = 20) for the experiments with the Yale
set, which gave almost the same accuracy asm = 50, but at
a lower computational cost. Note that for NP-PER, one does
not need to search overm, as it is always fixed for a given
Nr, as shown in (11). For Eigenfaces and Fisherfaces,m
was fixed to be the same as for RCA in all the experiments.

Next, we compared the performance of the nonlinear
versions of RCA and NP-PER, kRCA and kNP-PER, on
the Yale set (Figure 4, left graph). A Gaussian kernel,
k(x1, x2) = exp(−‖x1−x2‖

2/σ2) was used, which per-
formed better than the cosine kernel suggested in [15]. The
bandwidth,σ, was selected using cross-validation. Com-
paring Figures 2 and 4, both kNP-PER and kRCA perform
better than linear NP-PER and RCA, respectively. Also,
kNP-PER outperforms kRCA significantly for all the group
sizes.

We also conducted the above sets of experiments on two
other standard datasets: ORL and FERET. The training set
contained240 images (40 individuals) for ORL, and717
images (239 individuals) for FERET, while the test sets
contained158 and473 images, respectively. For the ORL
data (6 images per individual), experiments were run with
Nr = 2, Nr = 4, andNr = 6. For the FERET data (3
images per individual),Nr = 2 andNr = 3 were used for
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Figure 4. Performance comparison for the nonlinear versions of
RCA (kRCA) and NP-PER (kNP-PER) on different test sets.

Table 1. Results of K-means clustering applied to Yale data for
different algorithms and three different group sizes. Results are
averaged over100 random K-means initializations for each of the
100 random group samples.

kRCA kNP-PER
Purity Accuracy Purity Accuracy

Nr (%) (%) (%) (%)

3 94.2 (±3.7) 96.0 (±2.2) 98.3 (±2.4) 98.8 (±1.7)
5 96.9 (±3.0) 97.9 (±2.0) 99.7 (±1.2) 99.8 (±0.7)
7 93.5 (±4.2) 95.7 (±2.5) 97.7 (±2.9) 98.4 (±1.6)

the experiments. The dimensionm for RCA was chosen
for each dataset in the same way as for the Yale set. The
performance of the different methods is compared on both
datasets in Figure 3 and Figure 4. The plots show better per-
formance for NP-PER and kNP-PER in comparison to the
other methods for different group sizes.

5.2. Clustering

In this section, similar to [11], we compare the perfor-
mance of K-means clustering on the Yale dataset. First, the
data is transformed nonlinearly using kRCA and kNP-PER,
and then clustering is performed in the transformed space.
The K-means clusters are learned by fixing the number of
clusters,K, to be the same as the number of individuals in
the training set. Thus, the ideal clustering should assign all
the images of an individual to a single cluster. Similarly, all
the images in a cluster should be from one individual.

Similar to [11], we compare the clustering performance
using two measures,Purity andAccuracy. Purity measures
the frequency of data belonging to the same cluster shar-
ing the same class labels, while Accuracy measures the fre-
quency of data from the same class appearing in a single
cluster. Thus, the ideal clustering will have100% Purity
and100% Accuracy.

The clustering results for the two algorithms are shown
in Table 1. kNP-PER achieves higher Purity and Accuracy
than kRCA for all group sizes. In comparison to these tech-
niques, PCA yields very low rates of Purity (70.6% (±8.5))
and Accuracy (82.2% (±8.9)), since it does not exploit the
partial equivalence relations in the data.



Figure 5. An illustration of group extraction from videos. Each
row shows10 example frames from a group. The left most im-
age displays the first frame while the rest of the images display
the extracted faces from the subsequent frames warped using thin-
plate splines. Note the variations in expression and pose within
and across chunks.

6. Experiments on web data

6.1. Face recognition in videos

To evaluate the null-space method on a real world
dataset, we applied it to the problem of face recognition
in videos. For this, we used a corpus of17 videos down-
loaded from the Web that contained8 different individuals.
For each video, first a face detector is applied to each frame.
Next, a landmark detector finds13 landmarks on each face,
that are used to warp the face to a standard size of48 × 48
pixels using thin-plate splines. A sequence of frames, for
which the face does not move more than a threshold be-
tween frames, is taken as a data group. Each such group
contains pose and expression variations of an individual’s
face. Example face variations in a group for some of the
individuals used in this study are shown in Figure 5. Each
group is also manually labeled with the individual’s name
for testing purposes.

Overall,960 frames were used for training (120 frames
per individual), and1440 frames for testing (180 frames per
individual). While training, the group sizes were varied to
be 7, 15, 30 and60. Note that, for these sizes, the train-
ing set always contained more than one group for each in-
dividual. The training times for linear NP-PER and RCA
were244 sec and237 sec, respectively. Their kernel ver-
sions were faster to train due to the fact thatN < d, with
kRCA taking183 sec and kNP-PER198 sec. Figure 6 com-
pares the performance of both linear and nonlinear versions
of RCA and NP-PER. It is interesting to note that NP-PER
gives the least error forNr = 7, while kNP-PER performs
the best for all other group sizes.

6.2. Image retrieval

The final set of tests was conducted on an image retrieval
task. In this task, the image feature vector is projected us-
ing kRCA or kNP-PER, and then the K-nearest neighbor
scheme is used for retrieval. The dataset consisted of3000
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Figure 6. Comparison of linear and kernel NP-PER and RCA tech-
niques on face recognition in web videos. NP-PER and kNP-PER
perform better than RCA and kRCA, respectively for allNr.

Figure 7. Example query terms and some of the images returned
by a web search engine, that composed the retrieval dataset.

images, obtained using100 popular text queries (30 im-
ages per query) from Google Image Search. A few query
terms and example images returned by the search engine
are shown in Figure 7. This is a very challenging set as
the images for a query vary significantly in their visual ap-
pearance. Furthermore, images from different queries may
appear very similar, e.g., forfootballandsoccer.

From each image, two types of features are extracted.
The global color histogram in the LUV space is used for
color features. A bin size of16 in each dimension yields
a 4096 dimensional color feature vector. To represent tex-
ture, the input image is divided into a grid of16×16 blocks.
Then, the first four DCT coefficients are kept for each block,
yielding a 1024 dimensional texture feature vector. The
combination of both types of features gave ad = 5120 di-
mensional feature vector.

To visualize the complexity of the dataset with increas-
ing number of queries, we conducted experiments on re-
duced datasets containing20, 50 and70 queries in addition
to the full set of100 queries. Each dataset is split into a
training and a test set of equal size. Random groups of size
Nr = 5 are generated for each query for training. The train-
ing time on the100 query set was242 sec for kRCA and
263 sec for kNP-PER. During testing,K nearest neighbors
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Figure 8. Average number of correct retrievals in topK neigh-
bors for four datasets corresponding to increasing number of query
terms (or classes): 20, 50, 70 and 100. The retrieval problem be-
comes harder as the number of query terms increase.

are found for each test image and the retrieval performance
is measured by the average number of correctly retrieved
images out of theseK images. Figure 8 compares the re-
trieval performance for kRCA and kNP-PER on the four
datasets. The plots indicate that as the number of queries are
increased from20 to 100, the number of average retrievals
falls from5 to 1.2 in the top15 matches. This clearly shows
that the retrieval task becomes more complex as the num-
ber of queries is increased. kNP-PER performs better than
kRCA, and the advantage is more evident for largerK.

7. Conclusions and future work

We have presented a null-space based technique which
learns discriminative linear or nonlinear transformations us-
ing only weakly-labeled data. The proposed approach has
been shown to outperform the state-of-the-art techniques
for learning with partial equivalence relations on recogni-
tion, clustering and retrieval tasks. In the future, we in-
tend to apply the proposed technique for large scale retrieval
and classification of web data using partial equivalence re-
lations. For this, we plan to explore fast iterative matrix
eigen-analysis methods to handle large amounts of data.
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