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Abstract

In many vision problems, instead of having fully labeled
training data, it is easier to obtain the input in small grajp
where the data in each group is constrained to be from the
same class but the actual class label is not known. Such
constraints give rise to partial equivalence relations.eTh
absence of class labels prevents the use of standard dis-
criminative methods in this scenario. On the other hand,
the state-of-the-art techniques that use partial equivede
relations, e.g., Relevant Component Analysis, learn proje
tions that are optimal for data representation, but not dis-
crimination. We show that this leads to poor performance in
several real-world applications, especially those withhri
dimensional data. In this paper, we present a novel discrim- (A) (B) © (D)

Inative t_echnlque_ for the classification of Weakly-labe_led Figure 1. An illustration of the form of weakly-labeled training
data which exploits the null-space of data scatter matrices yata with partial equivalence relations for face recognition (top
to achieve good classification accuracy. We demonstrate thgow) and image retrieval (bottom row). The input data consists
superior performance of both linear and nonlinear versions of groups (shown in ellipses), each containing data from the same
of our approach on face recognition, clustering, and image class but the actual class label is not known. Note that different
retrieval tasks. Results are reported on standard dates®ts groups may share the same class label as shown in columns (A)

well as real-world images and videos from the web. and (D), which contain images of the same person (top row) and
of the ‘flower’ class (bottom row).

ing input is given in the form of small groups. The data in
each group comes from the same class but the actual class

Fully supervised classification requires the class labelslabels are not known. Such a scenario yields pairwise rela-
to be known while training, which usually involves tedious tions,i.e., ‘X is similar to Y’ for all the points X and Y that
manual labeling. For many applications, it is much easier belong to the same group. However, it is important to note
to obtain training data which is only ‘weakly’ labeled. For that it doesnot give relations of type ‘X is dissimilar to Z'
example, for face recognition in video, one can use a coarsef X and Z come from different groups. This is because two
face tracker to detect small video clips such that each clip different groups may have the same (unknown) class label,
contains the images of the same individual (Figure 1, top), as shown in Figure 1 for groups (A) and (D). We call the
but the identity of the individual is not known. Similarlyrf relations in this scenaripartial equivalence relationsWe
image retrieval, one can construct a training set by group-use the term ‘partial’ to emphasize that we do not have ac-
ing images into small groups such that images within eachcess to any pairs that contain points from different classes
group are ‘similar’, but the actual class of the group is not  In the presence of partial equivalence relations, standard
known (Figure 1, bottom). Preparing such a set is much discriminative techniques cannot be used due to the absence
simpler than labeling each image with a distinct class label of class labels in the training data. Moreover, the lack ef ac

In this paper, we address the problem of learning classi-cess to both ‘similar’ and ‘dissimilar’ pairs in the traigin
fiers using weakly-labeled training data, in which the train data precludes the use of many promising techniques that

1. Introduction



work with equivalence relations [14][17][6]. These tech- for class discrimination unlike RCA. In addition, our formu
niques discriminatively learn a distance metric for cluste lation does not involve hand-tuned free parameters such as
ing or classification when botsimilar anddissimilar pairs the number of principal components in RCA, or the regu-
are given. In the absence dfssimilar pairs, Xinget al. larization coefficient in kernel RCA.

[17] suggest treating the data pairs that are sigtilar as In this paper, we focus on discriminatively learning lin-
the dissimilar pairs. But, such heuristics have been shown ear or nonlinear transformations using weakly-labeledtra

to give lower accuracy in comparison to the techniques thating data such that a Nearest Neighbor (NN) classifier in the
use onlysimilar pairs [1]. transformed space gives good classification accuracy. One

In vision, Shental et al. [11] introduced learning with important family of algorithms that learns a transformatio
partial equivalence relations under a paradigm named Ad-Of embedding of unlabeled data includes Locally Linear
justment Learning. They proposed a promising approachEmbedding (LLE) [9] and Semi-Definite Embedding (SDE)
called Relevant Component Analysis (RCA), which finds [16]. However, itis not clear how to modify these unsuper-
a linear transformation of the data such that irrelevanit var Vised methods to make use of the partial equivalence rela-
ability in the data is reduced. A nonlinear extension of RCA tionships given in the input. RCA (along with its kernel
called kernel RCA was proposed by Tsatgl. [12]. Even  extensions [12]) is the most popular technique to learn pro-
though RCA has been shown to perform well in several ap-Jections using partial equivalence relations, but it does n
plications, it suffers from two main problems. First, sianil  learn discriminative projections as discussed above.
to Principal Component Analysis (PCA), RCA finds pro- ~ T0 summarize, our papgf) proposes an algorithm to
jections that are good for data representation or Compres_discriminatively learn a linear or nonlinear transformati
sion. These projections may not be good for class discrimi- Using partial equivalence relations, (ii) extends nulbsp
nation (see Section 3 for more details). Second, in the casé®ased analysis to weakly-labeled data, and (iii) demon-
of high-dimensional data with insufficient samples, linear Strates superior performance on standard as well as real-
RCA becomes ill-posed. In fact, the issue of scatter matri- World web data for recognition, clustering and retrieval
ces becoming singular is not restricted to small-sampgle-si ~ After defining the problem formally in the next section,
problems. Kernel RCA always suffers from the singularity We briefly discuss the RCA technique in Section 3. Our
problem no matter how much training data is available be- null-space based technique is described in Section 4. Sec-
cause the size of the kernel matrix grows in proportion to tions 5 and 6 show the experiments on standard and real-
the number of training samples [12]. world web datasets, respectively.

In vision applications, data often lies in a high-
dimensional space. For instance, in face recognition, it is
common to represent faces as vectors of pixel intensities or  SUPPOse input data is given by = {z;}, where
Gabor jets, yieldingD(103) to O(10°) dimensions. The  Zi € R4, and each point takes one of tiieclass labels.
same is true in image retrieval, where images are typically Let /. be the set of all the data with class labeluch that,
represented using color, texture and shape features in highJ. H. = X. We are not given the class labels during train-
dimensions. The method suggested in [11] to overcome thelNd- Instead, we are provided with groups such that data
singularity problem is based on intermediate PCA-based di-in & group share the same class label. Let ther& lsecch
mensionality reduction step. This yields inferior resalss ~ 9roups,{ X, }/., such thatJ, X, = X, andR > C. Let
we show later in Section 5 and Section 6. In [12], the au- [V be the number of points in group Our goal is to find
thors suggest regularization of scatter matrices which re-a transformation oX" such that a NN classifier gives good
quires picking the ‘right’ value of the regularization chef ~ classification accuracy in the transformed space.
cient for good performance_ This is usua"y done by hand- Since our teChnique builds upon traditional Fisher's Lin-
tuning the coefficient. Recently, Gaussian Mixture Model €ar Discriminant Analysis (LDA), we start with a brief re-
(GMM) based formulations have been developed for partial view of LDA to set the notation. When all the class labels

equivalence relations [10] but they become impractical for aré available during training, LDA proposes to find the pro-
high_dimensiona' data due to the Singu|arity prob'em. JeCt|0n matrix W that minimizes the Wlthln-C|aSS Scattel’,

Sw, and maximizes the between-class scaigrby maxi-
mizing the following ratio [4],

2. Problem formulation

In this work we take a different approach and argue that
instead of getting rid of the singularities, these can be ex-
ploited to overcome both the shortcomings of RCA. In fact, W = argmax WL S,W|
we show that the null-space based techniques proposed in w (WIS, W|’
vision literature for fully supervised classification pleims . .

[3][7] can be naturally extended to address the problem of wherel.| denotes tge matrix determinant and,
classification with weakly-labeled data. The key advantage S, = Z Z (& — pe) (@ — pe)T, @)
of our technique is that it results in projections that aredyo

@)

c=1zeH,.
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Herey is the mean of the total input, y. is the mean and
N, is the number of points in clags andC' is the number
of classes. IfS;;! exists, the columns dfi’ are simply the
eigenvectors of,; ' S,. If data from different classes is dis-
tributed normally with equal covariances, it is easy to show
that LDA returns the optimal directions that maximize the
class separation [4]. Even when data does not follow this
generative model, the LDA criterion returns useful diserim

discriminative information. This can also be seen from the
form of the whitening transform estimated by RCA given
in the previous section. Ideally, the dimensions for which
the eigenvalues of, are zero ite., the null space ob,)
should be given infinite weight while computing the trans-
formed data. However, PCA gets rid of those dimensions.
Our null-space method, instead, exploits the null space of
S, to compute discriminative projections.

4. Null-Space Projections with Partial Equiva-
lence Relations (NP-PER)

inative projections. In our case, since we do not have access Our work on null-space projections is inspired by the

to the class labels, LDA cannot be applied directly to learn
the desired projections.

3. Relevant Component Analysis (RCA)

work of Huang et al. [7] in the context of finding the best
LDA projections given fully labeled data. However, since
we do not have access to the class labels, we make the same
assumption as made in RCA and approximate within-class

RCA assumes the data from each class to be distributedscatter, S,,, with S, defined in (4). Similar to LDA, we

as Gaussian,e. X, ~ N (i, %) Ve=1,...,C. Fur-
ther, the class covariances are assumed to be egeal,
Y. =X V¢, andX is estimated as the weighted average of
empirical class covariances resultingdn~ %Sw. Since
the class labels are not known, RCA approximatgsanith

the within-group scatter matrix,,, defined using the group
data{X,} | as,

R
Sg=_ > (@—p)(z—p)7,

r=1zcX,

(4)

wherey,. is the mean of the seX,.. In RCA, the optimal
projection matrix is given by the whitening transformation
e, WI = %-1/2 = A-1/2yT where matrice$” and A
contain the eigenvectors and the eigenvalueS,ofClassi-
fication is performed by using a NN classifier in the trans-
formed space with Euclidean distance.

The above process is very similar to the idea of data
whitening usually performed with PCA except that in PCA
one uses total scatter of the data instead of within-group
scatter used in RCA. The projections of RCA are hence
optimized for representation or compression of data in a
group. Another interpretation of RCA is that it maximizes
the constrained mutual information between the input vec-
tor and its projection as explained in [1]. However, this ar-
gument also points to the fact that RCA is optimal for data
compression, not for class discrimination.

3.1. RCA in high dimensions

In the previous discussion on RCA, the mat$ixwas as-
sumed to be full-rank. When this is not true, RCA proposes
to project the data on the top eigenvectors of the total
scatter matrix, where. is the effective rank ob,;. This is
equivalent to using PCA for dimensionality reduction be-
fore computing the whitening transformatiof;. How-
ever, a potential problem in doing so is that the intermediat
PCA step may discard dimensions that contain important

would like to find those transformations that minimize the
within-group scatter§,) after projection since the data in
each group belongs to the same class. However, since any
two input groups may contain data from the same class, the
between-group scatte$;, defined as,

R
Sg =3 No(ur — ) (pr — )",

r=1

®)

is not a good approximation of the between class scatter,
Sp. Hence, unlike LDA, it is incorrect to look for the di-
rections that maximizé&; after projection. Nevertheless, it

is obvious that after projectiorfy; should not collapse to
zero. In such a case, the projected mearallathe groups
would coincide, and no discrimination would be possible
between different classes. Hence, in this work, we look for
the projectiondV that optimize the following function:

W= argmv[i/n|WTSgW| (6)
Subject to wTs;w| >0, and
|wil? = 1forj=1,....m

wherew;’s are the columns of the projection matrik.
The unit norm constraints om;’s are imposed as scale is
arbitrary.

4.1. Nonlinear extension

For many real-world problems, a linear solution given by
(6) may not be powerful enough. To allow more expressive
nonlinear transformations, we use the kernel methods simi-
lar to [8][15]. Let® be a nonlinear mapping of the original
feature vector: into a high-dimensional spacg. Let Sj
and Sg be the new scatter matricesf, obtained by sim-
ply replacingz with () in (4) and (5), respectively. Then,
the optimal linear discriminant}’®, in F can be computed
by replacingS, andsS; in (6) by S;’ and.S. Note that the



linear discriminant inF induces a nonlinear discriminant in
the original input space.

Generally, the mapping induces a very high (possibly
infinite) dimensional space and directly solving (6)Anis

where 1Y (1/N)>,vy:. Following the reasoning in
[7], since all the matrices in (10) are positive semidefinite
Null(S}) = Null(S¥) (" Null(SY). From (10),S{ has at
mostN—1 nonzero eigenvalues becausak(SY) < N—1.

not feasible. Instead, we exploit popular kernel methods Let P/ be the matrix containing the eigenvectors corre-

to solve (6) by using a Mercer kerngl. ,.), for which,
k(x1,29) = ®(x1)-P(x2). From the theory of Reproducing
Kernel Hilbert Space (RKHS), the optimal solution of (6) in
F lies in the span of all the training samples,,

N
w;b = Zaij@(mi) for j=1,...,m. @)
i=1

Let us define a new feature vector for each input, as
Yi = [ki(l'l,l‘i), k:(:(:g,xi), ey k:(xN,xi)]T. Also, let Sg

sponding to nonzero eigenvaluessf. Thus, by projecting

S¥ onto P/, one can get rid of the null space §f. Let

QY be the matrix that contains the eigenvectors correspond-
ing to zeroeigenvalues of the projected within-group scatter
matrix,PtyTSgPty. In other words(Q¥ spans the null-space

of PtyTSgPty. Then, the desired projections are given by

the columns of)? in the projected spacee., & = Ptng.
Interpreted geometrically, NP-PER finds the projection

directionsa such that the data in each group collapses to

andsS? be the new scatter matrices computed using featuresthe group mean, while ensuring that the means of different

y; in (4) and (5). Then, using the dot product property of
Mercer kernels, one can show th&t*” STW® = o’ SYa,
andW*TSTW?® = o' SYa [8]. Hence, the optimization
problem in (6) can be expressed in the kernel spaess,

®)

Subjectto|a” SYa| > 0, [la;||> =1 forj=1,...,m.

& = argmin|a’ SYa
«

4.2. Optimization

To computex in (8), the first thing to note is that, since
S, is positive semidefinite, the objective function satisfies
la”SYa| > 0. The constraints given in (8) eliminate the
possibility of the trivial solution,i 0. However, the
objective function can still attain the absolute minimum of
zero if & lies in the null space aof?, provided such a null-

groups do not overlap. The former property is useful for a

NN classifier because the data in each group comes from
a single class. The latter property, which results from the

constraints in (8), makes sure that class discrimination is
possible by keeping the group means separated.

4.3. Optimal number of projection vectors

What should be the optimal number of projections?
For the high-dimensional case in RCA, Shental et al. [11]
recommend taking the effective rank $f, i.e., the number
of singular values that are ‘significantly’ larger than zexs
m. The accuracy of RCA is quite susceptible to the choice
of m as we will show later in the experiments in Section 5.1.
The kernel extension of RCA also suffers from a similar
problem. On the contraryp is fixed for NP-PER (and its

space exists. To check this, we first analyze the ranks of thenonlinear extension) for a given input.

two scatter matricesg and Sg . From the definition 01’93
andsS?, itis easy to show that

rank(SY) < N—-R and rank(Sy) < R—1, (9)
whereN is the number of input samples, aRds the num-

ber of data groups. Since both of these matrices are of size

N x N, it is clear that they are rank-deficient. It is im-
portant to note that in the linear version of NP-PER,is
rank-deficient only it > N — R. But in the kernel version,
it will always be rank-deficient no matter how much train-
ing data is provided. This is because the size5pfalso
increases as the number of training samples is increased.
Thus, the objective in (8) is minimized€. takes valu®)
if aj € Null(SY), Vj, whereNull(A) is the null-space of
matrix A. But, to satisfy the constraints in (8), it is required
thato; ¢ Null(Sy), V j. In other words, the eigenvectors
that are inNull(SY) () Null(SY) should be discarded. Let
us define the total scatter of the featurpg,}? ,, as:

N

> i — )i — )",

i=1

SY 4+ 57

s (10)

To see this, first note thatink(Py" SYP}) =rank(S),
because’; spans the range ¢, and the null space df}
is the common null space &Y andS} [18]. The number
of optimal projection vectorsn, is given by the dimension
of Null(P/"SyPY). Hence,

m = rank(SY) — rank(SY). (11)

When all the input samples are linearly independent, the
inequalities in (9) become strict equalities. In this cake,
optimalm is givenasyjm = (N —1) — (N —R) =R — 1.

It is interesting to note that is independent of the original
dimensiong, and the number of input samplé¥,

4.4. Effect of group size

In the NP-PER analysis, we have approximated the
within-class scatter§,,,, with within-group scattery,, sim-
ilar to [11]. The same holds for kernel NP-PER, except the
inputs {x;} are replaced by their kernel mapped versions
{y:} as described in Section 4.1. Comparing (2) and (4),
the error in approximation is:
N

Sw — Sg = Z(Mci - MH)(IMU@' - /’[‘T'i)T’

i=1

(12)



wherec; is the actual class label of input, andr; is the The Yale database [2] consists 66 face images of 5
group to which data:; belongs. Clearly, the error depends individuals. These images are randomly split into a trajnin
on how accurately a group mean approximates its true (un-set containing 05 images { images per class) and a test set
known) class mean. As the group siZé,, increases, the containing the remaining1 images. From each image, a
error in approximation goes down. tightly-cropped face is extracted and warped to a standard

When N, — oo, V r, one can show using Cheby- size of48 x 48 pixels, yielding a vector of dimensioh=
shev’s inequality for the weak law of large numbers for two 2304. To deal with illumination variations, the outputimage
different sample means th&t(|u., — ur,| > €) — 0 for is further normalized such that each pixel has zero mean and
anye > 0. Thus, in the infinite data case, NP-PER will be unit variance within a local x 5 pixel window.
equivalent to fully supervised improved null-space LDAde-  wWe compared RCA, NP-PER and their kernel versions
scribed in [18] even when explicit class labels are unknown. for three different group sizesN, = 3,5,7. For each

] ) size, we assigned the maximum possible data from the train-

4.5. Computational issues ing set to groups. The groups were populated by randomly

The computation of the optimal projection matrix, in picking data from each class. For each of the above training
kernel NP-PER involves three steps. First, computing the sets, we first computed the optimal linear transformation,
kernel mappingy; for each inputz;, which isO(NQd)_ Sec- W, for RCA and NP-PEB as described in Sections 3 and
ond, computing the vectorB’ spanning the range of the 4, respectively. Note that” for linear NP-PER is obtained
total scatterSy. SinceSy is of size N x N, P/ can be by simply setting the transformed featurgs= z; v i. The
obtained by doing eigen-analysis or SVD, whiclDIEN?). optimal number of projectionsy, for NP-PER is fixed and
In fact, if the inputs are known to be linearly independent, computed using (11). For RCA, we chose thethat gave
this step can be skipped. This is because, in that case, th@inimum error on the training set. Th& for Eigenfaces is
rank of S is (N—1) and P/ can be obtained by simply dis-  learned only once for the whole training set, as itis indepen
carding the last column o} [15]. The final step involves  dent of sampling variations in the groups. Also, Fisher$ace
computing the null space d?tySgPty, whose complexity is ~ being a fully supervised technique, is applied only when all
upper bounded b ((N —1)3). the data from each class is contained within one groap,

The above computations are affordable for modefate ~ WhenN,. = 7.
For largeN, one may adopt iterative procedures for solving The classification performance of different linear meth-
SVD as described in [5]. Note that the computational efforts ods on the Yale set is given in the left plot in Figure 2. It
needed for kernel NP-PER are equivalent to those for kernelshows the mean error rate and one standard deviation error
RCA, since kernel RCA also needs to compute the kernelbars obtained by repeating the experiments Wwiilh ran-
mapping, the topn eigenvectors of}, and the SVD of the  dom group realizations. Since Eigenfaces and Fisherfaces
projectedsSy. Linear RCA and linear NP-PER also have do not depend on group selection, their results do not show

equivalent computational complexities. any error bars. As expected, Eigenfaces (PCA) gives the
poorest error rate, as it does not make use of the partial
5. Experiments on standard datasets equivalence relations given in the data. For each value of
o N, itis clear that the proposed NP-PER algorithm yields a

5.1. Classification lower error rate than RCA, verifying that the null space of

We use three standard face datasets (Yale, FERET andhe within-group scatter matrix contains useful discriain
ORL) to compare the face recognition performance of four tive information. As the size of each group increases from

linear techniques: Eigenfaces [13], Fisherfaces [2], RCA 3 10 5, the errors for both RCA and NP-PER are expected
[11] and our null-space method, NP-PER, and two nonlin- Fo decrease. However, as shown in the plot, the RCA error
ear techniques: kernel RCA (kRCA) and kernel NP-PER increases. This may be due to the fact thatYor= 5, only
(kNP-PER). The comparisons with Eigenfaces and Fisher-about71% of input data could be used for training while
faces are meant to demonstrate how the performance of lin/Vr = 3 allows the use of abo% of the data.

ear projection methods vary when data is unlabeled (Eigen- When N, = 7, since all the training data from a class
faces) to when data is fully labeled (Fisherfaces). Sinceis assigned to a single group, both RCA and NP-PER give
both RCA and NP-PER use weakly labeled data, their per-better results than for any othaf.. In this case, NP-PER is
formance is expected to fall between these two extremesquivalent to the improved null-space LDA [18], which per-
The RCA and NP-PER methods are compared by varyingformed similar to Fisherfaces and better than RCA. Fisher-
the number of groups, and the number of images in eachfaces performs better than RCA because Fisherfaces explic-
group. During testing, for each projected test image, its itly looks for those directions that also maximize between-
nearest neighbor (in the Euclidean sense) from the prajecte class scatters;, unlike RCA, which ignores it.

training set is used for classification. The right plot in Figure 2 shows the dependency of RCA
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Figure 2. Results on Yale dataset. Left: Mean error rates on test set_ ¢ . for th i . ¢
as a function of group size. Error bars show standard deviation for 7/9Ure 4. Performance comparison for the nonlinear versions o

100 random experiments repeated with different group samples. RCA (KRCA) and NP-PER (kNP-PER) on different test sets.

Note that for maximunV,., there is no variability in the results as Table 1. Results of K-means C|ustering apphed to Yale data for
all the data from a class is assigned to a single group. Right: Plotdifferent algorithms and three different group sizes. Results are
showing strong dependence of mean training error rates for RCAaveraged ovet00 random K-means initializations for each of the
on the dimensiony, of the projected vector. 100 random group samples.

ORL  mEigenface FERET kRCA kNP-PER
* — - * — Purity Accuracy Purity Accuracy
- 25 Il fisherface - . Eal;:f:se N,. (%) (%) (%) (%)
r o 3] 94.2 (£3.7)]96.0 (£2.2) | 98.3 (£2.4)|98.8 (£L.7)
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the experiments. The dimension for RCA was chosen
Ei 3. Graph ina th lassificafi tos for each dataset in the same way as for the Yale set. The
Igure . -rapns comparing the mean classiiication error rates Orpen‘ormance of the different methods is compared on both
each algorithm on the ORL and the FERET test sets. L .
datasets in Figure 3 and Figure 4. The plots show better per-
formance for NP-PER and kNP-PER in comparison to the

training error on the dimensionn, of the projected vec- other methods for different group sizes.

tor. For different choices ofn, the performance of RCA
varies significantly for all the group sizes. We picked the
best numberi, = 20) for the experiments with the Yale
set, which gave almost the same accuracy.as 50, but at
a lower computational cost. Note that for NP-PER, one does
not need to search ovet, as it is always fixed for a given ~mance of K-means clustering on the Yale dataset. First, the
N,., as shown in (11). For Eigenfaces and Fisherfapes, data is transformed nonlinearly using kRCA and kNP-PER,
was fixed to be the same as for RCA in all the experiments. and then clustering is performed in the transformed space.
Next, we compared the performance of the nonlinear The K-means clusters are learned by fixing the number of
versions of RCA and NP-PER, kRCA and kNP-PER, on clusters, kK, to be the same as the number of individuals in
the Yale set (Figure 4, left graph). A Gaussian kernel, the Fraining set. Thu_s,_ the ideal qlustering shouI.d gsslign a
k(x1,20) = exp(—|z1 —x22/0?) was used, which per- the images pf an individual to a single clustgr. .S|.m|larly, a
formed better than the cosine kernel suggested in [15]. Theth€ images in a cluster should be from one individual.
bandwidth,o, was selected using cross-validation. Com-  Similar to [11], we compare the clustering performance
paring Figures 2 and 4, both kNP-PER and kRCA perform using two measure®urity andAccuracy Purity measures
better than linear NP-PER and RCA, respectively. Also, the frequency of data belonging to the same cluster shar-
KNP-PER outperforms kRCA significantly for all the group ing the same class labels, while Accuracy measures the fre-
sizes. guency of data from the same class appearing in a single
We also conducted the above sets of experiments on twoeluster. Thus, the ideal clustering will have0% Purity
other standard datasets: ORL and FERET. The training se@nd100% Accuracy.
contained240 images 40 individuals) for ORL, andr17 The clustering results for the two algorithms are shown
images 239 individuals) for FERET, while the test sets in Table 1. kNP-PER achieves higher Purity and Accuracy
containedl58 and473 images, respectively. For the ORL than kRCA for all group sizes. In comparison to these tech-
data (6 images per individual), experiments were run with niques, PCA yields very low rates of Purit§0(6% (£8.5))
N, = 2, N, = 4, andN, = 6. For the FERET data (3 and Accuracy§2.2% (£8.9)), since it does not exploit the
images per individual))V,, = 2 andN,. = 3 were used for  partial equivalence relations in the data.

5.2. Clustering

In this section, similar to [11], we compare the perfor-
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Figure 6. Comparison of linear and kernel NP-PER and RCA tech-

Figure 5. An illustration of group extraction from videos. Each Mdues onface recognition in web videos. NP-PER and kNP-PER
row shows10 example frames from a group. The left most im- Perform better than RCA and kRCA, respectively for/sil.

age displays the first frame while the rest of the images display
the extracted faces from the subsequent frames warped using thin-
plate splines. Note the variations in expression and pose within
and across chunks.
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6. Experiments on web data

football

6.1. Face recognition in videos

To evaluate the null-space method on a real world
dataset, we applied it to the problem of face recognition
in videos. For this, we used a corpus1df videos down-
loaded from the Web that contain8dlifferent individuals.

For each video, first a face detector is applied to each frame.
Next, a landmark detector find$ landmarks on each face,
that are used to warp the face to a standard siz of 48
\Fl)vlﬁﬁ:lﬁ ijﬁénfg]a;[:f;n dggenz?llr:iié ﬁqzregl:ﬁgﬁeaifh?’;rﬂgij’ Loer_Figure 7. Example query terms and some of thg images returned

. by a web search engine, that composed the retrieval dataset.
tween frames, is taken as a data group. Each such group
contains pose and expression variations of an individual’'s
face. Example face variations in a group for some of the
individuals used in this study are shown in Figure 5. Each
group is also manually labeled with the individual's name
for testing purposes.

Overall, 960 frames were used for trainingZ0 frames
per individual), and 440 frames for testing180 frames per
individual). While training, the group sizes were varied to
be 7, 15, 30 and60. Note that, for these sizes, the train-
ing set always contained more than one group for each in-
dividual. The training times for linear NP-PER and RCA
were 244 sec and237 sec, respectively. Their kernel ver-
sions were faster to train due to the fact that< d, with
kRCA taking183 sec and kKNP-PERIS8 sec. Figure 6 com-
pares the performance of both linear and nonlinear version
of RCA and NP-PER. It is interesting to note that NP-PER
gives the least error faW,. = 7, while KNP-PER performs
the best for all other group sizes.

fairy

soccer

images, obtained using00 popular text queries3() im-
ages per query) from Google Image Search. A few query
terms and example images returned by the search engine
are shown in Figure 7. This is a very challenging set as
the images for a query vary significantly in their visual ap-
pearance. Furthermore, images from different queries may
appear very similar, e.g., féootball andsoccer

From each image, two types of features are extracted.

The global color histogram in the LUV space is used for
color features. A bin size of6 in each dimension yields

a 4096 dimensional color feature vector. To represent tex-
ture, the input image is divided into a grid I x 16 blocks.
Then, the first four DCT coefficients are kept for each block,
Syielding a 1024 dimensional texture feature vector. The
combination of both types of features gavé & 5120 di-
mensional feature vector.

To visualize the complexity of the dataset with increas-
ing number of queries, we conducted experiments on re-
duced datasets containigg, 50 and70 queries in addition
to the full set of100 queries. Each dataset is split into a

The final set of tests was conducted on an image retrievaltraining and a test set of equal size. Random groups of size
task. In this task, the image feature vector is projected us-N, = 5 are generated for each query for training. The train-
ing KRCA or kNP-PER, and then the K-nearest neighbor ing time on thel00 query set wag42 sec for KRCA and
scheme is used for retrieval. The dataset consistae@if 263 sec for KNP-PER. During testings’ nearest neighbors

6.2. Image retrieval
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Figure 8. Average number of correct retrievals in tGpneigh-

(3]

(4]
(5]
(6]

(7]

bors for four datasets corresponding to increasing number of query
terms (or classes): 20, 50, 70 and 100. The retrieval problem be- (8]

comes harder as the number of query terms increase.

are found for each test image and the retrieval performance [9]

is measured by the average number of correctly retrieved
images out of thes&” images. Figure 8 compares the re-

trieval performance for KRCA and kNP-PER on the four [10]

datasets. The plots indicate that as the number of queges ar
increased fron20 to 100, the number of average retrievals
falls from5 to 1.2 in the top15 matches. This clearly shows

[11]

that the retrieval task becomes more complex as the num-
ber of queries is increased. kNP-PER performs better than

kRCA, and the advantage is more evident for larger

7. Conclusions and future work

[12]

1
We have presented a null-space based technique whictg 3]

learns discriminative linear or nonlinear transformasios-

ing only weakly-labeled data. The proposed approach has[14]
been shown to outperform the state-of-the-art techniques

for learning with partial equivalence relations on recegni

tion, clustering and retrieval tasks. In the future, we in- [15]

tend to apply the proposed technique for large scale refriev
and classification of web data using partial equivalence re-

lations. For this, we plan to explore fast iterative matrix [16]

eigen-analysis methods to handle large amounts of data.
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