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ABSTRACT

A clean speech VQ codebook has been shown to be effective inim

posing intraframe constraints in Iterative Wiener Fithgr{CCIWF)
for speech enhancement. However, for time-varying noites,

performance is sub-optimum. We propose a smoothed noise up

date technique that uses the estimated signal spectrunutises
quent signal estimation. This leads to a more effectivetmoiu
than the soft-decision based noise estimate found intitexaFur-

ther, the CCIWF performance is improved using codebook con-

straints in the LAR domain instead of LPC domain. Also, a new
iteration initialization method is proposed which restftdetter

spectrum could be obtained by using the estimated signat spe
trum and signal subtraction ( similar to noise subtractioMhe
noise spectral estimate can be appropriately smootheelr ¢ém-
porally or through model-fitting. This leads to an adaptieésa
estimator with least assumptions about the signal and hise

acteristics. In particular, since we are using an optimugmadi
estimator through CCIWF, the noise psd is sufficiently aataur
for time-varying noise speech enhancement.

This paper (i) explores the adaptation of the CCIWF techmiqu
for non-stationary disturbances. (ii) proposes the spestub-
traction initialization (SSI) method which improves thehance-

enhancement in over 70% of the frames. Thus, we show that ament performance with respect to parameter estimation and ¢

combination of a robust parameter space, an effectivealiziti-
tion and continuous spectrum update significantly impraes
performance of speech enhancement. Speech recognitioitsres
show that the new combination provides 10-20% increase id wo
recognition scores whereas simple spectral subtractisultsein
an actual decrease in recognition score.

1. INTRODUCTION

In [1], Lim and Oppenheim proposed the iterative Wiener ffilte

vergence. (iii) employs different LP parameters within @&
and identifies the best suited and most robust parameteridoma
through objective measures of enhancement and speecmiecog
tion tests.

2. NOISE UPDATE ALGORITHM (NUA)

Fig 1. shows the adaptive CCIWF scheme. We model the noisy

ing (IWF) technique for speech enhancement where the estima Signal asx = s + d, wherex, s andd are noisy signal, speech

tion of the all-pole parameters of speech in additive whitesgian

and noise respectively. In the IWF technique, the speectakig

noise was posed as a two step sequential MAP estimation probS modeled as a response of an all-pole system and the approac

lem. In [4], Hansen and Clements showed that constraintsen t
parameter estimation are essential in order to retain bplédex
characteristics of enhanced speech. In [5], a clusterisgdap-
proach namely the codebook constrainted iterative Wieltter-fi

adopted is to solve for the MAP estimate of the signal, gixelmn
situations where background noise g3gdw) is time-varying, the
conventional method is to update the noise psd estimaternn no
speech regions. This method has two major limitations :Ifijrat

ing scheme (referred henceforth as CCIWF) was proposed as arfPeech/non-speech classification is required which itf issehal-

alternative method of imposing constraints. Here, thealé pa-
rameters are constrained to belong to a codebook of cleatispe
vectors. Apart from successfully defining a convergendeigoin,
this approach was quite effective in taking care of seversd of
speech constraints such as those between the formantsas®l th
due to speaker variability.

In all the above approaches only non-stationary noise is con
sidered. However, in many practical applications the nisisiene-
varying and hence leads to sub-optimum results. Severh} tec
nigues are found in literature [7]-[8] that address thishtem.
Most of them concentrate on avoiding explicit speech/rueesh
classification and resort to measures of recursively estignthe
noise psd. In [7]-[8], it is claimed that MCRA( minima conttead
recursive averaging ) araposterioriSNR based recursive estima-
tion are effective. Instead, we propose that an estimatesafidise

lenging in noisy conditions ; secondly, this method is basethe
assumption that sufficient non-speech duration is availabup-
date the noise estimate which may not be the case. Morebweer, t
noise itself could be changing within a non-speech regidmusT a
poor estimate of;(w) limits the performance of the wiener filter.

We have devised a simple and straightforward adaptive tech-
nique that tracks the changing noise characteristics.eSirecare
able to estimate the signal spectrum iteratively and then@riél-
ter is optimum in estimating the signal, the noise spectmgsich
frame can be estimated using signal subtraction ( under g¢he a
sumption that the speech and noise processes uncorrelatsid)
provides the means of estimating the time-varying spectiou-
ever, we can assume that noise is less time-varying thacispee
hence, for each frame, the noise estimate is obtained baginer
the noise power spectrum of the last L frames as shown below. F
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Fig. 1. CCIWF adapted for non-stationary disturbances i - itera-
tion index

each frame m,

Pa(miw) = T (OEnH(FGr@)Wm) (1)

where,
F(j;w) = Po(j;w) = Pu(j;w);if Pa(fsw) > P(jiw)  (2)
F(j;w) = Py(j;w); otherwise 3)

Parametew is the frequency index?; (w), P (w), Ps(w) are the
noise psd estimate, noisy signal psd and the speech psdagsgim
of CCIWF respectively; and W(m) denotes the weighting func-
tion. To start the successive estimation, the noise psthatdiis
obtained from an assumed initial non-speech duration o66c2
onds. The speech psd estimate is obtained with every ierati
of CCIWF (Fig 1). The smoothing parametel depends on the
degree of non-stationarity of the noise. Ideally, the semnalhe
value of L, the better is the algorithm able to track rapidirys

ing noise. In addition, the weighting function W(m) chosenaa
tapering window takes into account the higher correlatibthe
nearby frames rather than farther frames. Although, theréhgn
makes no assumption regarding the type of noise, it is foond t
give robust performance for a variety of real world noises.

3. SPECTRAL SUBTRACTION BASED INITIALIZATION
(SSh)

The sequential MAP estimation implies that for each frame we
begin with an assumed set of initial values for veaalenoted
asa,, based on which the speech vec§gris estimated through
the Wiener filter. The current estimadeg is in turn used to cal-
culate the next estimate e This procedure is continued until
convergence is achieved. In [5], &(is started as unity which is
highly suboptimum. This gives rise to two possibilities.rsfly,
the iterations might converge such that the resulting fikemot
perceptually the best. Secondly, even if they do converganto
optimum filter, the number of iterations will be large. There,
an initialization method which can direct the course ofatems
towards better and quicker convergence is required. Weosmp

spectral subtraction based initialization (SSI) methodddresses
the above issues. For each frame, power spectral subtrg2}ics
performed to obtain the enhanced speech estimate. FoldvAC
analysis, the above estimate gives which determinesd,(w).
Clearly, this H,(w) is better than starting with a unity WF and
therefore, leads to better convergence properties of CCIWF

4. ROBUST PARAMETER DOMAIN SEARCH

The effectiveness of CCIWF consists in approximating thg-op
mum filter through a codebook of clean speech vectors. Theref

the parameter space used to represent these vectors hafia sig
cant bearing on the successive approximations. Line Spdéot-
guencies (LSF), Reflection Coeffecients (RC) and Log AreioRa
(LAR), though share a one-to-one mapping, have differarstet-

ing properties due to the non-linear relationships betwiteem.
Hence, each has been used with varied success in speecly codin
and recognition. In this study, we explore the differentapaeter
spaces for CCIWF and identify the best performing param@tes
widely used IS distance measure is used for creating LPC-code
books. The Eucledean Distance (ED) is used for LAR and RC
codebooks. For LSPs, we use the Eucledean Distance (ED) and
also two other perception based weighted Eucledean desanc
the Mel-Frequency Warping (MFW) based distance which is-mod
eled on the auditory system and the Inverse Harmonic Meawi)IH
based distance. The IHM based distance is perceptuallyargle
since it weighs each LSF in the inverse proportion of its &los
ness to its neighbours due to the better chance of it repirgen
formants|[6].

5. EXPERIMENTAL EVALUATION CRITERIA

The speech data comprised of ten sentences by 6 male andlé fema
speakers for a total of 170 sec. of speech sampled at 8 kHz. We
reserved 4 sentences of 28 sec. spoken by 2 male and 2 female
speakers for testing and the rest for training. Degradeécspe
with different SNRs was generated by digitally adding ndise
clean speech. For codebook generation) order LPC model
was used to extract features by quasi-stationary analygisi&%
overlap between consecutive frames of length 20 msec. &€ingt

was performed using the LBG algorithm for the various patame
spaces with the above mentioned distance measures. Cdseboo
of size 128 were used since they were found to be adequate in
earlier investigations of CCIWF[5]. In the Wiener filteristage,
non-overlapping frames of 20 msec duration are used.

The estimation of the all-pole parameters of the clean $peec
from degraded speech plays a key role in enhancement through
IIWF. The performance, therefore can be evaluated in terins o
both signal enhancement as well as robust parameter estmat
We used the average segmental SNR [5] and Log Likelihood rati
as the objective measures of CCIWF performance in our exper-
iments. To quantify intelligibility, we used a HMM-based mu
tispeaker Isolated Word Recognition (IWR) system on enédnc
speech. The system used a MFCC front-end and a 10-word vo-
cabulary. In all, 210 utterances of each word, uttered ¢hbg
each of the 70 speakers used. Of these, 140 utterances veere us
for training HMMSs on clean speech samples and remaining 70 fo
testing. During testing, clean speech samples were ded)raitle
10 dB and 5 dB SNR and recognition tests were performed after
enhancement via different techniques.



6. RESULTSAND DISCUSSION

6.1. NUA performance

The adaptive behaviour of the Noise Update Algorithm (NUg\) i
shown in Fig 2(a) for fire engine noise. NUA is consistentlieab
track even variations of over 10 dB/sec. The performanceonf n
adaptive CCIWF and the adaptive CCIWF using NUA in terms of
MSE betweeen the enhanced and the clean speech is shown in Fi
2(b). Itis found that in all frames, the NUA performs bettearn

the non-adaptive CCIWF with the MSE being upto 7 dB lower in
some frames. As the noise deviates from the initial estipthee
performance of the CCIWF degrades, whereas the NUA adapts to
the changing noise characteristics. Although NUA is noedbl
adapt fast enough in regions where noise is highly nonestaty

due to the averaging effect, it still performs better tham tlon-
adaptive CCIWF in all frames. We experimented with différen
smoothing parameters, weighting factors and non-statyodis-
turbances like waterflow, crowd babble, and door creak ndise

is found that L in the range of 4-7 and a uniform weighting asro

L past frames is adequate for a wide range of noise types. The
upper-bound of L is dependent on the degree of non-stattgnar
of noise and is not a function of signal presence/SNR. Howeve
if apriori knowledge of noise characteristics is available, further

increasing noise levels. With the number of iterations elasing

by about 15-20% and both objective measures showing imgdrove
parameter estimation, SSI clearly aids better and quickaver-
gence.
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Fig. 3. Input and Ouput Segmental SNR values for SSI and Unity
filter Initialization; - o - Input Seg.SNR , - - Output Seg. SR
CCIWF with Unity filter Initialization , — CCIWF after SSI

tuning of these parameters can result in a better perforenanc Table 1.
Comparison between SSI and unity filter initialization fat®
72 ‘Ac(ua\ No‘\se VS‘ Esllmal‘ed Noise ‘ - input SNR
o % Speech Type | Avg.Seg.SNR Avg. LLR
a0 Unity [ SSI | Unity [ SSI
B4 Degraded speech 3.862 | 3.862 | 0.557 | 0.557
R i AT At Post-lteration1 | 7.822 | 9.682 | 0.337 | 0.313
) I S U Post-Convergencé 9.614 | 9.977 | 0.329 | 0.310

Frames

@

6.3. Optimum parameter space results

Tables 2 and 3 summarize the performance of the various param
eter sets for 2 different input SNRs. The average segmeitBIl S
measures in Table 2 show that LAR yields the best performance
for both 0 dB and 5 dB input SNR. This result is consistent with

) ) ) ) ) ) the higher correlation that LAR based Eucledean distanssiita

Fig. 2. Fire Engine Noise () Noise tracking by NUA : — Actual he piagnostic Acceptability Measure (DAM) in comparisoithw
Noise Power , + Estimated Noise through NUA (b) Enhancement oiher LP measures [3]. Moreover, LLR measures shown in Table
performance : — Mean Square Error (MSE) between clean speechye |east for LARs and are therefore consistent with comeding

and Enhancement without adaptive noise estimate , - - MSE be-pighest segmental SNR values in Table 2. The theoriticat fion
tween clean speech and Enhancement with adaptive noisesesti  performance via MAP estimation obtained when original sndi
tion through NUA showing consistent advantage. torted co-efficients are used in the wiener filter is showndthb
Tables 2 and 3. It can be be seen that the performance of LAR
based CCIWF approaches the theoritical limit. Furthernewe
‘'worst’ performing parameter set is found to be superiortie t
spectral subtraction [2] technique, both in terms of oljjeanea-
sures and artifacts like musical noise, which, unlike incéa
subtraction, are not found in enhancement through CCIWEsTh
while spectral subtraction alone is not effective, in camaltion

with CCIWF, results in an effective solution.

Frames

6.2. SSI performance

The purpose of spectral subtraction based initializat®toi di-
rect the course of iterations towards better convergenedleTL
contrasts the results of SSI aifl, = 1 unity filter initialization.
Interestingly, on comparing the results at the end of theifesa-
tion to those at convergence, it is observed that SSI nebxliates
the need for iterations. It is found that over 70 % frames eoged
to vectors in the codebook that provided a better match than t
resulting from unity initialization. From Fig 3, it is cledhat in
over 90 % of the cases, SSI does better than unity filter Initia
ization. As expected, in our experiments we found that the re
ative improvement of SSI over unity initialization increaswith

6.4. IWR performance

Since enhancement techniques are used as a preprocesser in s
eral robust speech recognition systems, enhancementtafger



Table 2.

Table 4.

Average Segmental SNR measure for CCIWF with different LP  Recognition Scores post-CCIWF for different LP parametts s

parameter sets for 0 dB and 5 dB input SNR

Parameter Set | Avg. Seg.SNR| Avg.Seg.SNR
(Distance measure) (0 dB SNR) (5 dB SNR)
Noisy Speech 3.862 6.979
LAR (ED) 9.723 12.194

RC (ED) 9.203 11.735

LPC (IS) 9.614 12.184

LSF (IHM) 8.565 11.283
LSF (MFW) 8.627 11.328
LSF (ED) 8.435 11.060
Spectral Subtractior 7.185 9.916
True LPC 11.011 12.994

Table 3.

Avg. Log likelihood measures (LLR) for CCIWF with differeRt
parameter sets for 0 dB and 5 dB input SNR

Parameter Set LLR LLR
(Distance measure) (0 dB SNR)| (5 dB SNR)
Noisy Speech .5568 4321
LAR (ED) .320 .266
RC (ED) .324 .282
LPC (1S) .330 .279
LSF (IHM) 341 .284
LSF (MFW) .327 .283
LSF (ED) .342 .308
True LPC 107 .089

can be evaluated by studying the recognition performandaeof

enhanced speech. Table 4 presents results for IWR aftenegha

ment via different techniques and in parameter domainsstlir
as is expected, it can be noted that with increasing noisepéei-

formance falls from 89% for clean speech to as low as 46.28% at [3]
5 dB SNR. On comparing CCIWF with spectral subtration, it is
clear that CCIWF scores better in each and every parameter do
main. Within CCIWF, the RCs and LARs perform better than all
other parameters at 10dB with RC performing marginally dvett
than LAR at 5 dB. Overall, the result is in agreement with SNR
and LLR measures in Tables 3 and 4 which further reinforces th
fact that the Log Area Ratio provides maximum robustnesh wit

respect to noise. Since the CCIWF technique iterativelycbes

a match for noisy vector in the clean speech codebook, it ean b
stated that the LAR based Eucledean distance performs best b
cause it provides the best mapping between a given vector and

its noisy counterpart. Interestingly, spectral subtmacperforms
worse than degraded speech, something that might be &dilibm
the artifacts like musical noise that the former introduces

7. CONCLUSION

This study enhances the performance of the CCIWF technimue f

non-stationary disturbances. A new noise estimation éltgaris

proposed that uses the optimum signal estimate of the CCBNVF t

calculate subsequent noise psd through signal subtrastieralso

explored different parameter domains and found that the $ AR

for 10 dB and 5 dB input SNR

Parameter Sef Recog. Rate| Recog. Rate

(10dB SNR)| (5dB SNR)
Noisy Speech 62.7 46.2
LAR (ED) 75.4 65.4
RC (ED) 75.4 66.8
LPC (IS) 74.5 62.7
LSF (IHM) 70.2 53.2
LSF (MFW) 68.5 54.8
LSF (ED) 69.2 53.8
Spec. Sub. 56.8 43.2

best map the clean speech feature to its noisy counterpdrt an
therefore are best suited for enhancement through CCIWF. Fu
ther, we also showed improvement in enhancement and conver-

gence through a new initialization criterion. The scope ffor
ture work lies in incorporation of interframe constraintsoi the
CCIWF framework which is currently under study.
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