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ABSTRACT

A clean speech VQ codebook has been shown to be effective in im-
posing intraframe constraints in Iterative Wiener Filtering (CCIWF)
for speech enhancement. However, for time-varying noises,the
performance is sub-optimum. We propose a smoothed noise up-
date technique that uses the estimated signal spectrum for subse-
quent signal estimation. This leads to a more effective solution
than the soft-decision based noise estimate found in literature. Fur-
ther, the CCIWF performance is improved using codebook con-
straints in the LAR domain instead of LPC domain. Also, a new
iteration initialization method is proposed which resultsin better
enhancement in over 70% of the frames. Thus, we show that a
combination of a robust parameter space, an effective initializa-
tion and continuous spectrum update significantly improvesthe
performance of speech enhancement. Speech recognition results
show that the new combination provides 10-20% increase in word
recognition scores whereas simple spectral subtraction results in
an actual decrease in recognition score.

1. INTRODUCTION

In [1], Lim and Oppenheim proposed the iterative Wiener filter-
ing (IWF) technique for speech enhancement where the estima-
tion of the all-pole parameters of speech in additive white gaussian
noise was posed as a two step sequential MAP estimation prob-
lem. In [4], Hansen and Clements showed that constraints in the
parameter estimation are essential in order to retain speech-like
characteristics of enhanced speech. In [5], a clustering based ap-
proach namely the codebook constrainted iterative Wiener filter-
ing scheme (referred henceforth as CCIWF) was proposed as an
alternative method of imposing constraints. Here, the all-pole pa-
rameters are constrained to belong to a codebook of clean speech
vectors. Apart from successfully defining a convergence criterion,
this approach was quite effective in taking care of several types of
speech constraints such as those between the formants and those
due to speaker variability.

In all the above approaches only non-stationary noise is con-
sidered. However, in many practical applications the noiseis time-
varying and hence leads to sub-optimum results. Several tech-
niques are found in literature [7]-[8] that address this problem.
Most of them concentrate on avoiding explicit speech/non-speech
classification and resort to measures of recursively estimating the
noise psd. In [7]-[8], it is claimed that MCRA( minima controlled
recursive averaging ) andaposterioriSNR based recursive estima-
tion are effective. Instead, we propose that an estimate of the noise

spectrum could be obtained by using the estimated signal spec-
trum and signal subtraction ( similar to noise subtraction ). The
noise spectral estimate can be appropriately smoothed either tem-
porally or through model-fitting. This leads to an adaptive noise
estimator with least assumptions about the signal and noisechar-
acteristics. In particular, since we are using an optimum signal
estimator through CCIWF, the noise psd is sufficiently accurate
for time-varying noise speech enhancement.

This paper (i) explores the adaptation of the CCIWF technique
for non-stationary disturbances. (ii) proposes the spectral sub-
traction initialization (SSI) method which improves the enhance-
ment performance with respect to parameter estimation and con-
vergence. (iii) employs different LP parameters within CCIWF
and identifies the best suited and most robust parameter domain
through objective measures of enhancement and speech recogni-
tion tests.

2. NOISE UPDATE ALGORITHM (NUA)

Fig 1. shows the adaptive CCIWF scheme. We model the noisy
signal asx = s + d, wherex, s and d are noisy signal, speech
and noise respectively. In the IWF technique, the speech signal s
is modeled as a response of an all-pole system and the approach
adopted is to solve for the MAP estimate of the signal, givenx. In
situations where background noise psdPd(ω) is time-varying, the
conventional method is to update the noise psd estimate in non-
speech regions. This method has two major limitations : firstly, a
speech/non-speech classification is required which in itself is chal-
lenging in noisy conditions ; secondly, this method is basedon the
assumption that sufficient non-speech duration is available to up-
date the noise estimate which may not be the case. Moreover, the
noise itself could be changing within a non-speech region. Thus, a
poor estimate ofPd(ω) limits the performance of the wiener filter.

We have devised a simple and straightforward adaptive tech-
nique that tracks the changing noise characteristics. Since we are
able to estimate the signal spectrum iteratively and the Wiener fil-
ter is optimum in estimating the signal, the noise spectrum in each
frame can be estimated using signal subtraction ( under the as-
sumption that the speech and noise processes uncorrelated). This
provides the means of estimating the time-varying spectrum. How-
ever, we can assume that noise is less time-varying than speech and
hence, for each frame, the noise estimate is obtained by averaging
the noise power spectrum of the last L frames as shown below. For
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Fig. 1. CCIWF adapted for non-stationary disturbances i - itera-
tion index

each frame m,

P̂d(m; ω) =
1

L
(Σj=m−L

j=m−1
(F (j; ω).W (m))) (1)

where,

F (j; ω) = Px(j; ω) − P̂s(j; ω); ifPx(j; ω) > P̂s(j; ω) (2)

F (j; ω) = Px(j; ω); otherwise (3)

Parameterω is the frequency index,̂Pd(ω), Px(ω), P̂s(ω) are the
noise psd estimate, noisy signal psd and the speech psd estimates
of CCIWF respectively; and W(m) denotes the weighting func-
tion. To start the successive estimation, the noise psd estimate is
obtained from an assumed initial non-speech duration of 0.2sec-
onds. The speech psd estimate is obtained with every iteration
of CCIWF (Fig 1). The smoothing parameterL depends on the
degree of non-stationarity of the noise. Ideally, the smaller the
value of L, the better is the algorithm able to track rapidly vary-
ing noise. In addition, the weighting function W(m) chosen as a
tapering window takes into account the higher correlation of the
nearby frames rather than farther frames. Although, the algorithm
makes no assumption regarding the type of noise, it is found to
give robust performance for a variety of real world noises.

3. SPECTRAL SUBTRACTION BASED INITIALIZATION
(SSI)

The sequential MAP estimation implies that for each frame we
begin with an assumed set of initial values for vectora denoted
asao, based on which the speech vectorŝ1 is estimated through
the Wiener filter. The current estimateŝ1 is in turn used to cal-
culate the next estimate ofa. This procedure is continued until
convergence is achieved. In [5], H(ω) is started as unity which is
highly suboptimum. This gives rise to two possibilities. Firstly,
the iterations might converge such that the resulting filteris not
perceptually the best. Secondly, even if they do converge toan
optimum filter, the number of iterations will be large. Therefore,
an initialization method which can direct the course of iterations
towards better and quicker convergence is required. We propose a

spectral subtraction based initialization (SSI) method toaddresses
the above issues. For each frame, power spectral subtraction [2] is
performed to obtain the enhanced speech estimate. Following LPC
analysis, the above estimate givesao which determinesHo(ω).
Clearly, thisHo(ω) is better than starting with a unity WF and
therefore, leads to better convergence properties of CCIWF.

4. ROBUST PARAMETER DOMAIN SEARCH

The effectiveness of CCIWF consists in approximating the opti-
mum filter through a codebook of clean speech vectors. Therefore,
the parameter space used to represent these vectors has a signifi-
cant bearing on the successive approximations. Line Spectral Fre-
quencies (LSF), Reflection Coeffecients (RC) and Log Area Ratios
(LAR), though share a one-to-one mapping, have different cluster-
ing properties due to the non-linear relationships betweenthem.
Hence, each has been used with varied success in speech coding
and recognition. In this study, we explore the different parameter
spaces for CCIWF and identify the best performing parameter. The
widely used IS distance measure is used for creating LPC code-
books. The Eucledean Distance (ED) is used for LAR and RC
codebooks. For LSPs, we use the Eucledean Distance (ED) and
also two other perception based weighted Eucledean distances -
the Mel-Frequency Warping (MFW) based distance which is mod-
eled on the auditory system and the Inverse Harmonic Mean (IHM)
based distance. The IHM based distance is perceptually relevant
since it weighs each LSF in the inverse proportion of its close-
ness to its neighbours due to the better chance of it representing
formants[6].

5. EXPERIMENTAL EVALUATION CRITERIA

The speech data comprised of ten sentences by 6 male and 4 female
speakers for a total of 170 sec. of speech sampled at 8 kHz. We
reserved 4 sentences of 28 sec. spoken by 2 male and 2 female
speakers for testing and the rest for training. Degraded speech
with different SNRs was generated by digitally adding noiseto
clean speech. For codebook generation, a10th order LPC model
was used to extract features by quasi-stationary analysis with 75%
overlap between consecutive frames of length 20 msec. Clustering
was performed using the LBG algorithm for the various parameter
spaces with the above mentioned distance measures. Codebooks
of size 128 were used since they were found to be adequate in
earlier investigations of CCIWF[5]. In the Wiener filteringstage,
non-overlapping frames of 20 msec duration are used.

The estimation of the all-pole parameters of the clean speech
from degraded speech plays a key role in enhancement through
IIWF. The performance, therefore can be evaluated in terms of
both signal enhancement as well as robust parameter estimation.
We used the average segmental SNR [5] and Log Likelihood ratio
as the objective measures of CCIWF performance in our exper-
iments. To quantify intelligibility, we used a HMM-based mul-
tispeaker Isolated Word Recognition (IWR) system on enhanced
speech. The system used a MFCC front-end and a 10-word vo-
cabulary. In all, 210 utterances of each word, uttered thrice by
each of the 70 speakers used. Of these, 140 utterances were used
for training HMMs on clean speech samples and remaining 70 for
testing. During testing, clean speech samples were degraded with
10 dB and 5 dB SNR and recognition tests were performed after
enhancement via different techniques.



6. RESULTS AND DISCUSSION

6.1. NUA performance

The adaptive behaviour of the Noise Update Algorithm (NUA) is
shown in Fig 2(a) for fire engine noise. NUA is consistently able to
track even variations of over 10 dB/sec. The performance of non-
adaptive CCIWF and the adaptive CCIWF using NUA in terms of
MSE betweeen the enhanced and the clean speech is shown in Fig
2(b). It is found that in all frames, the NUA performs better than
the non-adaptive CCIWF with the MSE being upto 7 dB lower in
some frames. As the noise deviates from the initial estimate, the
performance of the CCIWF degrades, whereas the NUA adapts to
the changing noise characteristics. Although NUA is not able to
adapt fast enough in regions where noise is highly non-stationary
due to the averaging effect, it still performs better than the non-
adaptive CCIWF in all frames. We experimented with different
smoothing parameters, weighting factors and non-stationary dis-
turbances like waterflow, crowd babble, and door creak noise. It
is found that L in the range of 4-7 and a uniform weighting across
L past frames is adequate for a wide range of noise types. The
upper-bound of L is dependent on the degree of non-stationarity
of noise and is not a function of signal presence/SNR. However,
if apriori knowledge of noise characteristics is available, further
tuning of these parameters can result in a better performance.
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Fig. 2. Fire Engine Noise (a) Noise tracking by NUA : — Actual
Noise Power , + Estimated Noise through NUA (b) Enhancement
performance : — Mean Square Error (MSE) between clean speech
and Enhancement without adaptive noise estimate , - - MSE be-
tween clean speech and Enhancement with adaptive noise estima-
tion through NUA showing consistent advantage.

6.2. SSI performance

The purpose of spectral subtraction based initialization is to di-
rect the course of iterations towards better convergence. Table 1
contrasts the results of SSI andHo = 1 unity filter initialization.
Interestingly, on comparing the results at the end of the first itera-
tion to those at convergence, it is observed that SSI nearly obviates
the need for iterations. It is found that over 70 % frames converged
to vectors in the codebook that provided a better match than that
resulting from unity initialization. From Fig 3, it is clearthat in
over 90 % of the cases, SSI does better than unity filter initial-
ization. As expected, in our experiments we found that the rel-
ative improvement of SSI over unity initialization increases with

increasing noise levels. With the number of iterations decreasing
by about 15-20% and both objective measures showing improved
parameter estimation, SSI clearly aids better and quicker conver-
gence.
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Fig. 3. Input and Ouput Segmental SNR values for SSI and Unity
filter Initialization; - o - Input Seg.SNR , - - Output Seg. SNRfor
CCIWF with Unity filter Initialization , — CCIWF after SSI

Table 1.
Comparison between SSI and unity filter initialization for 0dB

input SNR
Speech Type Avg.Seg.SNR Avg. LLR

Unity SSI Unity SSI
Degraded speech 3.862 3.862 0.557 0.557
Post-Iteration 1 7.822 9.682 0.337 0.313

Post-Convergence 9.614 9.977 0.329 0.310

6.3. Optimum parameter space results

Tables 2 and 3 summarize the performance of the various param-
eter sets for 2 different input SNRs. The average segmental SNR
measures in Table 2 show that LAR yields the best performance
for both 0 dB and 5 dB input SNR. This result is consistent with
the higher correlation that LAR based Eucledean distance has with
the Diagnostic Acceptability Measure (DAM) in comparison with
other LP measures [3]. Moreover, LLR measures shown in Table3
are least for LARs and are therefore consistent with corresponding
highest segmental SNR values in Table 2. The theoritical limit for
performance via MAP estimation obtained when original undis-
torted co-efficients are used in the wiener filter is shown in both
Tables 2 and 3. It can be be seen that the performance of LAR
based CCIWF approaches the theoritical limit. Further, even the
’worst’ performing parameter set is found to be superior to the
spectral subtraction [2] technique, both in terms of objective mea-
sures and artifacts like musical noise, which, unlike in spectral
subtraction, are not found in enhancement through CCIWF. Thus,
while spectral subtraction alone is not effective, in combination
with CCIWF, results in an effective solution.

6.4. IWR performance

Since enhancement techniques are used as a preprocessor in sev-
eral robust speech recognition systems, enhancement algorithms



Table 2.
Average Segmental SNR measure for CCIWF with different LP

parameter sets for 0 dB and 5 dB input SNR
Parameter Set Avg. Seg.SNR Avg.Seg.SNR

(Distance measure) (0 dB SNR) (5 dB SNR)

Noisy Speech 3.862 6.979
LAR (ED) 9.723 12.194
RC (ED) 9.203 11.735
LPC (IS) 9.614 12.184

LSF (IHM) 8.565 11.283
LSF (MFW) 8.627 11.328
LSF (ED) 8.435 11.060

Spectral Subtraction 7.185 9.916
True LPC 11.011 12.994

Table 3.
Avg. Log likelihood measures (LLR) for CCIWF with differentLP

parameter sets for 0 dB and 5 dB input SNR
Parameter Set LLR LLR

(Distance measure) (0 dB SNR) (5 dB SNR)

Noisy Speech .5568 .4321
LAR (ED) .320 .266
RC (ED) .324 .282
LPC (IS) .330 .279

LSF (IHM) .341 .284
LSF (MFW) .327 .283
LSF (ED) .342 .308
True LPC .107 .089

can be evaluated by studying the recognition performance ofthe
enhanced speech. Table 4 presents results for IWR after enhance-
ment via different techniques and in parameter domains. Firstly,
as is expected, it can be noted that with increasing noise, the per-
formance falls from 89% for clean speech to as low as 46.28% at
5 dB SNR. On comparing CCIWF with spectral subtration, it is
clear that CCIWF scores better in each and every parameter do-
main. Within CCIWF, the RCs and LARs perform better than all
other parameters at 10dB with RC performing marginally better
than LAR at 5 dB. Overall, the result is in agreement with SNR
and LLR measures in Tables 3 and 4 which further reinforces the
fact that the Log Area Ratio provides maximum robustness with
respect to noise. Since the CCIWF technique iteratively searches
a match for noisy vector in the clean speech codebook, it can be
stated that the LAR based Eucledean distance performs best be-
cause it provides the best mapping between a given vector and
its noisy counterpart. Interestingly, spectral subtraction performs
worse than degraded speech, something that might be attributed to
the artifacts like musical noise that the former introduces.

7. CONCLUSION

This study enhances the performance of the CCIWF technique for
non-stationary disturbances. A new noise estimation algorithm is
proposed that uses the optimum signal estimate of the CCIWF to
calculate subsequent noise psd through signal subtraction. We also
explored different parameter domains and found that the LARs

Table 4.
Recognition Scores post-CCIWF for different LP parameter sets

for 10 dB and 5 dB input SNR
Parameter Set Recog. Rate Recog. Rate

(10 dB SNR) (5 dB SNR)

Noisy Speech 62.7 46.2
LAR (ED) 75.4 65.4
RC (ED) 75.4 66.8
LPC (IS) 74.5 62.7

LSF (IHM) 70.2 53.2
LSF (MFW) 68.5 54.8
LSF (ED) 69.2 53.8
Spec. Sub. 56.8 43.2

best map the clean speech feature to its noisy counterpart and
therefore are best suited for enhancement through CCIWF. Fur-
ther, we also showed improvement in enhancement and conver-
gence through a new initialization criterion. The scope forfu-
ture work lies in incorporation of interframe constraints into the
CCIWF framework which is currently under study.
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