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ABSTRACT

Speech spectral continuity is important in speech perception. We
explore in this paper, the use of matrix quantization (MQ) to model
spectral contours and impose time continuity in presence of noise.
It is found that contours fitted over an optimum duration of 90-
100 msec greatly improve speech quality. We show that wiener
filters derived from spectral contour matrices must operate in a
time-varying manner and also propose a technique to achieve it
through interpolation and STFT based reconstruction. In addition
to conventional spectral distortion measures, we compare spectral
transition measure profiles of clean and enhanced speech which
indicate that MQ codebooks combined with time-varying wiener
filtering improve speech enhancement even at 0 dB SNR.

1. INTRODUCTION

In the past, several speech enhancement techniques have been pro-
posed. Early approaches involved short-time spectral domain meth-
ods, which were mostly signal processing techniques. Later, as-
pects of speech production and perception were introduced which
lead to considerable improvements in the performance of speech
technology based systems. Although the all-pole model of speech
production was initially used in speech coding , Lim and Oppen-
heim proposed its use for modeling degraded speech [3]. Math-
ematically, this reduced to a non-causal wiener filter operating in
an iterative mode. Hansen and Clements [4]-[5] pursued this idea
further and introduced spectral constraints and later auditory based
constraints to improve speech recognition performance for single
and dual channed environments. It was found that two types of
constraints were needed : (a) interframe constraints because of
slowly varying speech dynamics (b) intraframe constraints because
of redundancy between spectral parameters. Rule based schemes
were used to incorporate these constraints to enhance speech.

In [2], we have shown that a Vector Quantization (VQ) code-
book of clean speech spectra is effective in imposing spectral con-
straints. As opposed to the rule based approach, here the degraded
spectrum was constrained to belong to a codebook of clean speech
spectra based on minimization of a perceptually relevant distance.
An adaptive variant of this method was proposed in [1] for non-
stationary disturbances. In [1], we also explored the best parame-
ter domain for codebook based constraints and introduced an ini-
tialization step to improve the rate and effectiveness of conver-
gence. Although the VQ codebook based approach is effective
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in imposing intraframes constraints, there is a need to accomodate
within the approach a mechanism to impose interframe constraints.
Matrix Quantization (MQ) techniques have been used primarily
in lower bit-rate speech coding, speech recognition and speaker
identification [9]-[10]. However, no work of application of MQ
in speech enhancement has been reported. VQ by itself does not
incorporate temporal information, therefore, we propose to use a
codebook of spectral vector matrices of clean speech spectra to
impose all constraints. Since this mechanism makes use of actual
clean speech knowledge, which is far too complex to be delineated
through a set of rules, it can be effective in ways that rule based
approaches may fall short of.

This study shows that the use of clean speech continuity dy-
namics can yield considerable improvement in speech quality even
under degraded conditions. We show that for best enhancement
performance, two conditions have to be satisfied - (a) correct choice
of the wiener filter and (b) the use of a perceptually relevant and
time-varying filtering technique, to implement time-varying filter-
ing. We show that the matrix quantized codebook of clean speech
contours is more effective than the VQ codebook of clean speech
spectra since the former incorporates temporal information in ad-
dition to spectral information. Specifically, we address the issue of
optimum matrix order over which the constraints get imposed and
propose a method to construct the matrix from the speech frames
across time and iterations. To realize the second objective, we pro-
pose a novel method to operate the wiener filter in a time-varying
mode, i.e. by using frequency domain interpolation and STFT
based reconstruction of the signal. Other time-varying Wiener fil-
ter formulations exist [7], but they are not suitable for incorpora-
tion into the MQ framework. We then discuss the database used
in the experiments and performance evalution criteria. Finally, the
results and certain inferences are presented.

2. MQ BASED CONSTRAINTS

Fig 1. shows the MQ based enhancement scheme. We model the
noisy signal as x[n] = s[n] + d[n], where x, s and d are noisy signal,
speech and noise respectively. We seek to incorporate constraints
into the main framework of Iterative Wiener filtering (IWF) as pro-
posed by [3]. When VQ codebook based constraints are imposed,
for a given frame, the vocal tract spectrum is replaced by its closest
spectrum from the clean speech codebook [2]. This spectrum then
determines the wiener filter for that particular iteration. Although,
this idea may appear to be effortlessly extendable to the MQ frame-
work by considering a group of frames instead of a single frame,
there are some important issues that need to be addressed - (a)



duration over which these constraints are imposed which in turn
determined the size of the matrix; (b) distance measure between
spectral vectors and that within vectors used in MQ codebook de-
sign and (c) construction of the matrix from frames across time
and iterations.

2.1. Construction of the Matrix

When a block of frames is quantized as a unit, it is referred to as
Matrix Quantization. If N is the block length ( number of con-
tiguous frames ) and p be the all-pole model order, the matrix di-
mension is N X p, which we shall henceforth denote as the N-
matrix. Throughout our investigation, LSFs derived from a pth

order model are used as features due to their good interpolation
property [6]. Before we proceed, we must understand that a ma-
trix consisting of consecutive feature vectors actually represents a
contour in p-dimensional space and it is this contour that we are
constraining to belong to a MQ codebook of clean speech con-
tours. We propose to construct the matrix by the scheme shown in
Fig 1. and as described below.

Let m be the current frame index for the signal x[n], Xm be the
LSF vector associated with frame m. A matrix Xm is constructed
such that

Xm = [Xc
m-N, Xc

m-(N-1), ...X
c
m-1, X

i
m]; (1)

where N is the numder of frames over which the constraints are
applied and the superscript i denoting the iteration count of IWF.
One must note that the special case of i=c is the LSF vector Xc

m at
convergence for frame m. For every m, Xm is created by grouping
N-1 of the past enhanced past frames with the current noisy frame.
We are treating the matrix as a single unit in our search for the
closest matching clean speech contour. For every matrix Xm, we
obtain a closest match clean speech matrix Fm which is further
used in the filtering process to be explained below. This process is
performed iteratively for each frame until convergence is reached
i.e. for consecutive iterations, the same match Fm is obtained from
the codebook.

2.2. Time-varying filtering

Clean speech spectral matrix Fm obtained as above has the follow-
ing composition :

Fm = [F1, F2, ...FN]; (2)

where each vector Fk corresponds to Xm for k=1,2...N. The sin-
gle frame non-causal optimum Wiener filter,we know is defined as
below :

Hm(ω) = bPs(m; ω)/( bPs(m;ω) + bPd(m;ω)); (3)

Incorporating the speech spectra from Fm into the wiener filter
in (3), we obtain a set of N wiener filters Hm(ω) as in (4) :

Hm(ω) = [H1(ω),H2(ω), ...HN(ω)]; (4)

This N filter matrix Hm(ω) corresponds to the N-1 past frames
and the current frame under consideration. However, since the past
N-1 frames have already been enhanced, we are only to filter the
mth frame using HN(ω). Although the quasi-stationary assump-
tion in the analysis stage leads us to operate only HN(ω) on the
mth frame, during synthesis, we must find a way to have filters
smoothly evolve from one to another, rather than jump at frame
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Fig. 1. Matrix Construction and Filtering shown for a particular
case of N=3 ; L - framelength, m- frame index, i - iteration index

boundaries. This is important both perceptually and speech pro-
duction point of view.

The smooth variation between the optimum Wiener filters can
be realized through interpolation. Let H[n, ω) be the interpolated
Wiener filter for each sample n. Then

H[n, ω) =
n{Hm(ω) − Hm−1(ω)}

N − 1
+ Hm−1(ω) (5)

To implement this time-varying Wiener filter, we resort to STFT
(short-time Fourier transform) domain filtering. For the noisy in-
put signal x[n], let the STFT be determined as:

X[n, ω) =

nX

m=−∞

x[m]h[n − m]e−jωm (6)

and the time-varying filter output as

Y [n, ω) = X[n, ω)H[n, ω) (7)

The output signal is obtained through inverse STFT using,

y[n] =
1

2πh[0]

Z π

−π

Y [n, ω)e+jωndω (8)

By using an FIR h[n], we can realize all the above operations using
DFT instead of DTFT. Also, to reduce the computations, we can
perform a coarse interpolation, at say every N1 samples, N1 =
L/10, where L is the framelength.

3. EXPERIMENTAL EVALUATION CRITERIA

The speech database used comprised 60 sentences by 30 male and
30 female speakers for a total of 3600 seconds of speech sampled
at 8 kHz. We reserved 10 sentences of a total of 600 seconds spo-
ken by 5 male and 5 female speakers for testing and the rest for
training. Degraded speech with different SNRs was generated by



digitally adding noise to clean speech. Throughout the analysis
the 10th order all-pole model with a frame length L= 20 msec was
used for feature extraction. For clustering, the matrix was con-
structed comprising N consecutive frames with a N-1 frame over-
lap between consecutive matrices. This was done to capture as
many variations of the contour as possible from the given speech
data. Matrix Quantization was performed using the LBG algo-
rithm with the Eucledean distance and matrix centroid as com-
puted in [8]. In order to expedite the search process, we built tree-
structured MQ Codebooks. In order to take into account the in-
crease in dimensionality, codebooks of sizes 128, 256, 512, 1024,
2048 and 4096 for N=1,3,5,7 and 9 respectively. In the Wiener fil-
tering stage, non-overlapping frames of 20 msec duration are used.

The effectiveness of interframe constraints through the MQ
codebook can be assessed in different ways. In this paper, we use
3 different measures to evaluate the performance, each providing
valuable insight into the power level, spectral shape and spectral
dynamics of the speech signal - (a) Average Segmental SNR : It
is widely reported in enhancement related experiments and is spe-
cially relevant here since the MSE paradigm is common to both
the wiener filter and Segmental SNR. (b) Average Log-likelihood
ratio (LLR) : It is a frequency domain performance measure that
gives a perceptually relevant distance between 2 spectra. Since
we are interested in the shape of the vocal tract spectrum rather
than its power level, this is particularly relevant in our work. (c)
Spectral transition measure (STM) profile : In order to evaluate
the performance with respect to the evolution of vocal tract spec-
tra over time, we analyse the RMS Log-spectral distance between
successive frames. We would expect the distance to vary over time
to reflect the degree of stationarity of the speech signal. We are,
in effect, comparing the contours of the enhanced speech to that
of the clean speech. Since this measure has a temporal dimension,
it gives a perspective that simple spectral distortion measures lack
about the temporal information [11].

4. RESULTS AND DISCUSSION

Table 1. shows the results of investigation of the optimum du-
ration over which constraints are to be imposed. Both average
segmental SNR and average log-likelihood ratio values averaged
over the entire test set are shown. It is clear that when constraints
are imposed over a period of 100 msec ( L= 20msec and N=5 ),
best performance is obtained. As we move away from 100 msec
on either side, the segmental SNR values fall and LLR values in-
crease indicating poorer enhancement for high as well as lower
values of N. This is seen to be consistent across both the perfor-
mance measures. This is to be expected ; since on one hand, MQ
over smaller duration does not really impose time constraints and
on the other, constraints over longer duration cause over-fitting of
a contour which in turn results in higher distortion. It should be
stressed here that the duration over which constraints are imposed
is more important than value of N. We found that even with smaller
frames, constraints over a duration of 90-100 msec is required for
best performance.

Clean, noisy and enhanced speech spectrograms shown in Fig. 2.
Fig 2(a) shows the clean spectrogram and (b) shows the spectro-
gram of noisy speech at 5 dB SNR. Enhanced speech with N=1
(VQ) and N=5 are shown for comparison. We can see that: (i) with
N=1 enhancement, spectrogram appears fragmented, due to the

Table 1.
Average Segmental SNR and Average LLR for MQ based

constraints for values of N at 0 dB input SNR
Speech Type Av.Seg.SNR(dB) Av.LLR
Noisy Speech 3.13 0.87
Enhanced N=1 6.62 0.39
Enhanced N=3 6.80 0.29
Enhanced N=5 7.20 0.19
Enhanced N=7 6.97 0.23
Enhanced N=9 6.85 0.27

True LPC 8.10 0.09
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Fig. 2. Clean, Noisy and Enhanced speech spectrograms for
”Arthur also ex ” : (a) Clean Speech Utterance (b) Noisy Utter-
ance ( 5dB SNR ) (c) Enhancement with N=1 (d) Enhancement
with N=5

vectors being independently estimated. This is not seen for N=5
where the spectrogram is more continuous and the formant con-
tours resemble that of clean speech. This is achieved because of
implicit constraints in MQ and TV-filtering. (ii) Higher frequency
regions are poorly represented in VQ enhancement, whereas this
is not the case when MQ is used. This phenomenon can again be
attributed to the fact that in MQ, a matrix may consist of vectors of
different spectra and energy. Therefore, although local SNR may
be low, the neighbouring regions of higher SNR aid the process of
better contour fitting when the quantization is made at the matrix
level. A consequence of better enhancement in the high frequency
region is the improvement in perceptual intelligibility of enhanced
speech.
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Fig. 3. STM profiles for clean and enhanced utterance for ”Is a
material hole ” : (a) Clean Speech waveform (b) clean speech
STM profile (c) Enhancement with N=1 (d) Enhancement with
N=5 (e) Enhancement with N=9

Fig 3. shows a set of plots of spectral transition measure
(STM) profile for the same utterance enhanced with different val-
ues of N. Fig. 3(a) shows the plot for clean speech. From the clean
speech plot, it can be noted that the STM takes on large values
in non-stationary regions ( stops, plosives etc. ) and small values
in stationary vowel regions. After enhancement, we require that
a similar profile is followed. Fig. 3 (c)-(e) shows the STM pro-
file for enhancement with MQ constraints imposed over different
durations. Due to the fact the quantized spectra are imposed, one
must expect larger variations after enhancement than in the clean
speech STM profile. Therefore, larger the value at a point, faster
the spectrum changes in that region. In particular, for N=1, we
note that the profile is not smooth and has lot of jumps indicating
rapidly changing spectra. This is due to the fact that filters op-
erating on adjacent frames are chosen independently and operate
independently. However, with N=5 ( duration of 100 msec ), the
STM profile resembles the clean speech STM profile. This is be-
cause in a MQ based framework, the filters are chosen as a unit and
the filtering process is time-varying and integrated with neighbour-
ing filters. Larger or smaller values of N show poor resemblence
indicating that constraints are not effective.

5. CONCLUSION

Enhancing spectral contours rather than just spectra can result in
a significant improvement in speech quality. We showed that the
spectral vector matrices can be used to represent the contours in
the MQ framework and can be used to impose spectral continuity
constraints on them. An optimum duration of this contour was de-
termined to be around 90-100 msec. We showed that it is essential
to operate the Wiener filter not just iteratively but also in a time-
varying manner and proposed a filtering method that combines fre-
quency domain interpolation and STFT based reconstruction.
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