
Approximately run nonlinear RNNs in O(log T) parallel time with a mathematically tractable construction

Linear Dynamical Systems as a Core Computational Primitive

Our additive corrections are inspired by a

multiplicative approximation technique in 

control theory. It has been used to analyze 

continuous nonlinear systems, and to 

develop controllers. Both are easier to 

analyze tractable than generic RNNs.
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2. Projected SIMO LDS

 

0. Nonlinear RNN

• Takes O(T) time to run for T steps

• Not mathematically tractable

1. Stack of Corrected MIMO LDS

The first layer is a plain LDS. Subsequent layers 

have an additive corrections ෨𝑘𝑡, which is the 

deviation between linear and nonlinear steps.

Provably consistent: nonlinear RNN is 

exactly recovered for large enough △

3. Canonicalization

2b. Concatenated SIMO LDS

4. Diagonalization

Original, random projections, big and small averages

When LDS are parameterized by their (log) eigenvalues, a unitary 

constraint is trivial. This is helpful for capturing long dependencies, as 

in the copy problem (above) and the add problem (below).  

transforms (A,B) to structured form

Our construction, called LDStack, is always 

faster than standard GPU implementations of 

RNNs. On long sequences, it is even faster than 

the highly-optimized CuDNN LSTM. We expect 

these performance results to improve, since our 

implementation – research code in both Python 

and CUDA - is not yet optimized.

• Memory use scales linearly with the height of the stack

• Has  𝑂(𝑛2𝑑) parameters rather than 𝑂(𝑛2 + 𝑛𝑑)

• Conditioning of Vandermonde diagonalization

• Tradeoffs of additive versus multiplicative corrections?
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Linear recurrence takes only O(log T) parallel time
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