
Approximately run nonlinear RNNs in O(log T) parallel time with a mathematically tractable construction

Linear Dynamical Systems as a Core Computational Primitive

Our additive corrections are inspired by a

multiplicative approximation technique in

control theory. It has been used to analyze

continuous nonlinear systems, and to

develop controllers. Both are easier to

analyze tractable than generic RNNs.

• Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent

neural networks. In International Conference on Machine Learning, pages 1120–

1128, 2016. (Unitary RNNs for the copy and add problems)

• Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over

sequence length. In International Conference on Learning Representations, 2018.

(Algorithm for parallel linear recurrence)

• María Tomás-Rodríguez and Stephen P Banks. Linear, time-varying

approximations to nonlinear dynamical systems: with applications in control and

optimization, volume 400. Springer Science & Business Media, 2010. (Multiplicative

approximation technique from control theory)

Shiva Kaul <skkaul@cs.cmu.edu>

2. Projected SIMO LDS

0. Nonlinear RNN

• Takes O(T) time to run for T steps

• Not mathematically tractable

1. Stack of Corrected MIMO LDS

The first layer is a plain LDS. Subsequent layers

have an additive corrections ෨𝑘𝑡, which is the

deviation between linear and nonlinear steps.

Provably consistent: nonlinear RNN is

exactly recovered for large enough △

3. Canonicalization

2b. Concatenated SIMO LDS

4. Diagonalization

Original, random projections, big and small averages

When LDS are parameterized by their (log) eigenvalues, a unitary

constraint is trivial. This is helpful for capturing long dependencies, as

in the copy problem (above) and the add problem (below).

transforms (A,B) to structured form

Our construction, called LDStack, is always

faster than standard GPU implementations of

RNNs. On long sequences, it is even faster than

the highly-optimized CuDNN LSTM. We expect

these performance results to improve, since our

implementation – research code in both Python

and CUDA - is not yet optimized.

• Memory use scales linearly with the height of the stack

• Has 𝑂(𝑛2𝑑) parameters rather than 𝑂(𝑛2 + 𝑛𝑑)

• Conditioning of Vandermonde diagonalization

• Tradeoffs of additive versus multiplicative corrections?

Key References

Future Work

Linear recurrence takes only O(log T) parallel time

~

