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Abstract

A learning algorithm is agnostic if it doesn’t presume a perfect model of how input data
produce output data. Such algorithms are difficult to design, even for the basic task of
classifying data as well as the best linear separator. This has led to a persistent rift
between practice and theory: popular algorithms, such as SVMs and logistic regression,
are susceptible to noise; provable agnostic algorithms involve brute-force sampling (which
uses too much time) or fitting polynomials (which uses too much data.)

We recently introduced a new classification algorithm, KG, which is both practical and
agnostic. It revisits basic elements of learning: 1. What functions should the algorithm
fit? Smooth lists of halfspaces are a novel generalization of halfspaces. They are more
flexible than halfspaces, but do not require more data to train in the worst case. 2. How
should the algorithm fit such a function to the data? The algorithm involves ‘immutable’
iterations which are fundamentally different than update rules such as gradient descent,
multiplicative weights, or perceptrons. KG achieves promising experimental performance
for both natural and artificial problems.

We seek to deepen our theoretical understanding of the algorithm and expand its prac-
tical applications. The main question we shall answer is: when is KG provably fast? It
eventually converges to the correct solution for a wide variety of input distributions. How-
ever, these intersect with a litany of hardness results, so restricting the input distribution
seems necessary. Based on experimental evidence and the mechanics of the algorithm, we
believe it is possible the algorithm runs in polynomial time when the inputs are normally
distributed. If so, this algorithm would solve a notorious problem in computer science:
learning logarithmically-sparse parities with noise. This would resolve a variety of chal-
lenges in learning theory, such as learning DNFs (encountered in 1984 by Valiant) and
learning log-juntas (the subject of a prize offered in 2003 by Blum). As exciting as this
possibility seems, it does not contradict known hardness results, nor does it upset the con-
sensus on related problems in cryptography or complexity theory. We propose to gain more
experimental and theoretical evidence for this possibility.

In practice, many classification tasks involve multiple classes. When the number of
classes is large, we do not believe fast agnostic classification is possible. We posit stronger
lower bounds for classification with a growing number of classes which depend on P 6= NP
rather than weaker conjectures about refuting random constraint satisfaction problems. We
believe the problem remains challenging even when the inputs are normally distributed.
This is due to close relations with the learning with errors (LWE) problem, which underpins
much of modern cryptography. The difficulty of LWE and its variants depends heavily on
its parameters, including the dimension of the inputs, the amount of data, the number
of classes, and the amount of noise. For some choices, it is as hard as worst-case lattice
problems; for others, it may be solved in polynomial time. We propose a generalization



of KG for multiple classes. It may substantially improve upon logistic regression and
multiclass SVM for many practical applications. It may also experimentally validate the
range of safe parameters for lattice-based cryptography.

1. Introduction

This thesis studies classifiers. From initial conditions or inputs, these produce binary out-
comes: either positive or negative. For example, the input may be a sample of skin tissue,
or a curriculum vitae, or a financial asset; the positive outcomes may be a benign diagnosis,
or acceptance of an application, or a rise in price. These outcomes may depend on observed
input quantities, such as the presence of discoloration, or the number of awards conferred,
or historical prices. They may also depend on unobserved quantities, in which case they
are (apparently) random. Fixing an observed input x, P (y|x) is the conditional probability

distribution of the outcome.
Perhaps the most basic hypotheses are linear. These represent inputs x as n-dimensional

vectors; each component xi is an observed numerical quantity. A linear classifier is defined
by a vector w which operates upon inputs only via an inner product 〈w, x〉 =

∑n
i=1wixi.

The archetypal linear classifier is a halfspace, which returns an output y ∈ {−1, 1} according
to the sign of the inner product. That is, inputs are separated into positive and negative
classes by a line passing through the origin.

H0-1 = {h0-1
w (x) = sgn(〈w, x〉) = 2 · 1(〈w, x〉 ≥ 0)− 1 : w ∈ Rn} (1)

The imposition of linearity is not actually a restriction, since high-dimensional linear func-
tions may, in principle, describe essentially any phenomenon. By limiting the the number
of dimensions n, linear classifiers become practically realizable, and their inaccuracies more
acute.

A hypothesis should correctly predict the outcome given a new input. This is only rea-
sonable if the new input is related to previous inputs. This motivates an assumption about
how data are observed: the inputs are independently and identically generated according
to a probability distribution D. The accuracy of a classifier c is measured by its correlation,
which is a rescaled negation of its error probability:

χ(c) = 1− 2 P
(x,y)∼D

(c(x) 6= y) (2)

The correlation depends only on the conditional means of the outputs:

χ(c) = E
x

(c(x)yx) where yx = E (y|x) ∈ [−1, 1]

Relative to a perfect correlation of 1 (corresponding to an error probability of 0), the
imperfection of a set of hypotheses is:

opt = max
h∈H

χ(h) ≤ 1 (3)

opt < 1 is the purview of agnostic learning, a term coined by (Kearns et al., 1992) which
emphasizes H isn’t believed to be ideal. Learning versus H on D means maximizing χ: ob-
taining c with χ(c) close to opt. The following task, called ‘agnostically learning halfspaces’
or ‘learning versus halfspaces’, is the goal of this thesis.
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D is a known distribution on inputs x ∈ Rn and yx : Rn → [−1, 1] are unknown outputs.
The correlation of the best halfspace is:

opt = max
w∈Rn

χ(h0-1
w ) = max

w∈Rn
E
x

(
h0-1
w (x)yx

)
< 1

For any multiplicative error α ∈ (0, 1) and additive error ε ∈ (0, 1), given m indepen-
dent and identically distributed data (x1, y1), . . . , (xm, ym), produce a classifier c which
satisfies χ(c) ≥ (1− α)opt− ε using poly(n, 1/α, 1/ε) data and time.

Figure 1: Agnostically learning halfspaces on a distribution D.

1.1. Outline of this proposal

This thesis studies a new algorithm, KG, for agnostic classification. The first part introduces
the algorithm in the context of previous work.

• Section 2 reviews previous methods with a critical eye; each is blocked by a substantial
barrier for agnostic learning.

• Section 4 describes KG, which involves new classifiers and a new algorithm. Two
theorems show KG is agnostic and uses an optimal amount of data.

The main part of the thesis studies the possibility of fast agnostic classification. This
problem is intimately tied to learning parities with noise, a challenging open problem. We
conjecture:

• learning versus halfspaces on normally distributed inputs (and therefore learning
logarithmically-sparse parities with noise) is fast, whereas

• learning versus halfspaces on generally distributed inputs (and learning non-sparse
parities with noise) is slow.

We support these conjectures with the following evidence.

• Section 3 examines the hardness of learning versus halfspaces through reductions from
combinatorial optimization. Our conjectures are compatible with broad consensus in
computer science theory.

• Section 4.4 experimentally evaluates KG on a variety of noisy classification problems
from learning theory. It avoids barriers that previous methods do not.

The last part of the thesis concerns multiclassification with q > 2 classes.

• section 6.1 reviews Voronoi diagrams, the multiclass analogue of halfspaces.

• section 6.2 reviews previous algorithms for multiclassification.

• section 7 generalizes KG for multiclassification.
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Multiclassification is of considerable practical interest. However, we believe fast agnostic
multiclassification isn’t generally possible. Section 7.1 supports this conjecture with reduc-
tions from hard problems:

• min-sum clustering reduces to learning versus Voronoi diagrams from statistical queries.

• learning with errors (with recommended values for the modulus, noise rate and noise
distribution, and a potentially non-sparse secret) reduces to learning versus Voronoi
diagrams.

We seek to apply KG to practically interesting problems and gain insight about the hardness
of multiclassification.

As a whole, this thesis presents a novel classification algorithm of practical and theoret-
ical interest. We propose to understand its powers and limitations, and hope to gain insight
into classification itself.

2. Previous algorithms

The most basic agnostic learning algorithm picks the halfspace h0-1
v which maximizes corre-

lation with the data. That is, v is the maximizer of an empirical correlation χ̂(h0-1
v ) defined

by the empirical distribution D:

χ̂(c) = Ê
x

(c(x)yx) =
1

m

m∑
i=1

c(xi)yi (4)

This algorithm needs a minimal amount of data, as theorem 1 (below) elaborates. However,
it needs a large amount of time: the maximization is NP-hard, even to approximate (Ben-
David and Simon, 2000). This difficulty motivates modifying the objective and trading
data for time by choosing c 6∈ H; the latter flexibility is called improper learning. This
leads to four prevalent methods of learning versus linear classifiers. They are distinguished
primarily by the respective sets from which c is chosen. For different real-valued functions
f , they choose c(x) = sgn(f(x)). As f becomes more complicated, the required amount of
data increases; however, the optimization over f becomes simpler, so the required amount
of time may decrease.

• Relaxation (such as logistic regression): let f(x) = 〈w, x〉 be a linear function, making
c a halfspace. Instead of directly maximizing χ(sgn(〈w, ·〉)), upper bound the sign
function with a convex function, and minimize a ‘relaxed’ objective. Relaxation is
often involved in more complicated schemes such as deep learning.

• Sampling: let f(x) be a random value in {−1, 1}, equal to sgn(〈w, x〉) with probability
based on |〈w, x〉|; this makes c a smooth halfspace. Randomly sample many w from
a simple distribution in a brute-force manner, and pick the one which maximizes
correlation.

• Boosting (such as AdaBoost): let f be a convex or linear combination of base classi-
fiers: f(x) =

∑
t atct(x). The resulting c is called an ensemble. Minimize a (typically)

convex function of f by iteratively appending new summands to f . Picking a new
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summand is called weak learning, and is left unspecified for a separate algorithm to
perform.

• Lifting (such as kernel SVM and L1 polynomial regression): let f be an element of
a high-dimensional reproducing kernel Hilbert space. Choose the space so that every
linear classifier h roughly corresponds to some element f . Maximizing χ over all f
also maximizes χ over all h. The latter objective is non-convex, whereas the former
objective is linear.

(Other classifiers, such as decision trees and nearest-neighbor rules, are popular, but are not
as promising for learning versus linear classifiers.) The success of these methods depends
crucially on the value of opt. If opt = 1 — that is, a halfspace is perfectly consistent with
the data — all of the above methods work correctly and use a reasonable amount of time
and data. When opt < 1, none of the aforementioned methods are satisfactory. Relaxation
might not work correctly, no matter how much time and data are available; in practice,
this method succumbs to noisy data or imperfect models. Sampling needs too much time,
though recent techniques improve upon trivial brute-force search. Boosting needs a separate
learning algorithm which must work under very general conditions; designing one is baffling
in both theory and practice. Lifting works correctly, but needs an exponential amount of
time and data; in practice, this method is slow or overfits.

This section critically reviews each of these methods. A growing body of evidence
suggests they are not promising for learning versus halfspaces. Nonetheless, each method
contributes a critical component to our new algorithm:

• section 2.1: averaging the data to produce a useful halfspace,

• section 2.2: smoothing halfspaces to obtain a differentiable function,

• section 2.3: gradually reweighting the data to produce a new correlation,

• section 2.4: restricting the distribution of the inputs.

2.1. Halfspaces via relaxation

Halfspaces are convenient because they are easy to represent (as n numbers) and do not
need much data to train. The following result is a consequence of the fundamental theorem
of statistical learning due to Vapnik and Chervonenkis.

Theorem 1 Let ε ∈ (0, 1) and m ≥ Õ(n/ε2). For any distribution D on Rn and any
outputs yx : Rn → [−1, 1]:

• the empirical and true correlations of any halfspace are close: supw∈Rn |χ(hw)− χ̂(hw)| ≤
ε.

• learning is achievable by empirical correlation maximization: if w maximizes χ̂(hw),
then χ(hw) ≥ opt− ε.

(Shalev-Shwartz and Ben-David (2014) theorems 6.8 and 9.2).
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To avoid the nonconvexity of eq. (4), the most popular classification algorithms instead
minimize a convex upper bound on −χ. With binary outputs, each term −sgn(〈w, x〉)yx =
sgn(−〈w, x〉 yx) may be written in terms of the margin 〈w, x〉 yx, the amount by which w
is correct. Upper bound each nonconvex sgn(·) with a convex ‘loss’ function ` : R → R.
Using a piecewise-linear ‘hinge’ function leads to support vector machines, perceptrons, and
winnow (Zhang, 2001); the cross-entropy function leads to logistic regression; Mahalanobis
distances lead to linear discriminant analysis (Park and Park, 2005). A linear approximation
(though not an upper bound) leads to a simple joint average of the data:

E
x

(x · yx)

This is the most elemental vector in relaxation. If it is zero, then all relaxations fail in the
sense that the minimizer of the convex loss is always zero. Two applications of convexity
contradict the existence of a solution w with lower loss:

0 < `(0)−E
x

(`(〈w, x〉 yx)) ≤ `(0)− `(E
x

(〈w, x〉 yx)) ≤ −`′(0)E
x

(〈w, x〉 yx) = −`′(0)0 (5)

(The first inequality is the assumption to be contradicted; the second is the zeroth order
definition of convexity; the third is the first-order definition of convexity. Substituting the
zero joint average yields the contradiction.) When the inputs are standard normals, the
average coincides with the Fisher linear discriminant (Fisher, 1936), perhaps the first linear
classifier ever used. It was rediscovered as the ‘averaging algorithm’ (Servedio and Valiant,
2001) and tolerates some noise in the outputs when the inputs are distributed uniformly on
the sphere. Among convex relaxations, it is the most robust to certain kinds of noise (van
Rooyen and Krishna Menon, 2015).

Since the margin f(x)yx is signed, it is sensitive to misclassification: if |f(x)| is large,
flipping the sign of yx affects the relaxation substantially more than the correlation. Un-
fortunately, this makes relaxation susceptible to to noisy outliers. For any convex `, the
resulting h0-1

w may be poor, even if a halfspace is almost consistent with the data. There are
distributions for which χ(h0-1

w ) ≤ ε even though opt ≥ 1−ε, for arbitrarily small ε (Ben-david
et al., 2012). Similar results hold even when the inputs are distributed uniformly on the
circle (Awasthi et al. (2015a) theorem 6) or are far from the separating hyperplane (Long
and Servedio, 2010, 2011). The joint average may have poor correlation even if the inputs
are normally distributed.

Theorem 2 Let D be the normal distribution. There are outputs yx for which, despite
being consistent with a halfspace except for some probability (1 − β)/2 = η > 0, the joint
average is suboptimal: χ(h0-1

w ) ≤ opt−Ω(β(1−β)/(1 +β)) (Awasthi et al. (2015a) theorem
5.)

These results, along with experiments in section 4.4, show small amounts of coordinated
noise can pull w away from the optimum.

Mitigating noisy outliers has been extensively studied.

• (Kalai et al., 2008) eliminates inputs that are too close to one another,

• (Klivans et al., 2009) eliminates inputs directions of ‘suspiciously’ high variance,
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• (Awasthi et al., 2014) reweights inputs rather than removing them, and doesn’t bother
with inputs that are close to boundary.

These algorithms fortify relaxation against noise. However, as section 3 elaborates, they
tolerate just some η fraction of the outputs to be inconsistent with a halfspace, and η cannot
be arbitrarily close to 1/2.

2.2. Smooth halfspaces via sampling

Maximizing eq. (4) with random, brute-force search takes nO(1/ε) time. The recent technique
of (Zhang et al., 2015) cleverly eliminates the exponential dependence on the dimension n.
Like relaxation, it approximates eq. (4), but obtains smoothness (in the sense of Lipschitz
continuity) rather than convexity. It replaces the sign function sgn(a) in halfspaces with
a smooth ‘sigmoid’ function ψ of slope at most L. A typical choice is the logistic sigmoid
function 1

1+e−4La . The resulting smooth halfspaces take values in [−1, 1]:

H = {hw(x) = ψ(〈w, x〉) = |hw(x)| · h0-1
w (x) : w ∈ Rn} (6)

The magnitude of the output can be used as a probability for a randomized classifier which
operates as follows:

With probability |hw(x)|, return sgn(〈w, x〉). Otherwise guess −1 or 1 uniformly
at random.

The correlation of hw equals the correlation of this randomized classifier. The correlation
of a smooth halfspace is closely related to the margin correlation of a halfspace, which is
the probability an input is correctly classified and farther than γ from the boundary:

χγ(w) = E
(x,y)∼D

(1(〈w, x〉 ≥ 0) 6= y ∧ |〈w, x〉| ≥ γ) (7)

The margin parameter γ is essentially the inverse of the slope L. Their quantitative rela-
tionship is examined in (Shalev-Shwartz et al., 2011; Ben-David and Simon, 2000; Birnbaum
and Shalev-Shwartz, 2012).

Smoothness makes the required amount of data independent of the dimension. This is
quantified by Rademacher complexity: the expected maximum correlation, taken over a set
of functions F , with m uniformly random outputs σ1, . . . , σm on m inputs x1, . . . , xm drawn
from D.

R(F) = E
x1,...,xm∼D
σ1,...,σm∼{−1,1}

(
sup
f∈F

1

m

m∑
i=1

f(xi)σi

)
:= E
D̂,σ

(
sup
f∈F

Ê
x

(f(x)σx)

)
(8)

Bounding the Rademacher complexity bounds the required amount of data.

Theorem 3 With probability 1− δ over the sample D̂ ∼ D:

m ≥ 8 log(1/δ)

(4R(F)− ε)2
=⇒ sup

f∈F
|χ(f)− χ̂(f)| ≤ ε

(Boucheron et al. (2005) Theorem 3.2).
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1 For t = 1, . . . , T :
2 Randomly subsample m̃ < m inputs
3 Uniformly sample ỹ from {−1, 1}m̃
4 Set wt = argmin

||w||≤1
Ẽ
x,y

(
(〈w, x〉 − ỹ)2

)
5 Return w = argmax

1≤t≤T
χ̂(hwt)

Figure 2: The least-squares initialization algorithm of (Zhang et al., 2015).

The Rademacher complexity may be bounded by the slope, independently of the dimension
and distribution of the inputs.

Theorem 4 For any L > 0 and inputs ||x|| ≤ β,

RL = sup
D
R(H) ≤ Lβ

√
2

m

(Kakade et al. (2008) Theorem 1 and Example 3.1.1).

This theorem ensures a small (m̃ < m) subsample of data are representative of all the data.
If m̃ is small enough, it is plausible to randomly guess outputs ỹ that match those of h0-1

v

on the subsample; if this happens, ||wt − v|| is small, making χ̂(hv)− χ̂(hwt) small. This is
the basis of the least-squares initialization algorithm of (Zhang et al., 2015).

Theorem 5 Let D be any distribution on inputs ||x|| ≤ 1. Define opt relative to smooth
halfspaces with vectors ||w|| ≤ 1 and a sigmoid ψ of slope L. The least-squares initializa-
tion algorithm returns w satisfying χ(hw) ≥ opt − 22L · ε using m = O(1/ε2) data and
poly(m,n, e(2/ε2) log(1/ε), log(1/δ)) time (Zhang et al. (2015) theorem 2).

Unlike relaxation, the smooth approximation of eq. (4) is reliable; the algorithm learns
versus halfspaces as L → ∞. However, even for fixed L, no algorithm finds a smooth
halfspace with high correlation in polynomial time.

Theorem 6 Let ψ be a piecewise-linear function with L = 1, and define opt relative to
smooth halfspaces with vectors ||w|| ≤ 1. If RP 6= NP, finding w satisfying χ(hw) ≥ opt− ε
in randomized poly(n, 1/ε) time is impossible. (Zhang et al. (2015) proposition 1)

2.3. Ensembles via boosting

A natural way to expand the set of hypotheses, and thereby trade between data and time,
is by combining multiple hypotheses. Smooth halfspaces, as defined in section 2.2, are
particularly amenable to combination. The Rademacher complexity of the convex hull
of H equals that of H, so theorem 4 holds for averages of smooth halfspaces (Bartlett
and Mendelson, 2003). For general hypotheses (with potentially unbounded Rademacher
complexity), the additional amount of data required for combinations depends upon the
algorithm producing the combinations (Telgarsky, 2012).
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Boosting is a high-level approach for (linearly) combining hypotheses as f =
∑

t atht.
It is not the basis of any state-of-the-art algorithms for agnostically learning halfspaces.
Instead of reviewing quantitative guarantees, this section highlights some qualitative aspects
of boosting which differ from our new algorithm. As in relaxation or sampling, boosting
approximates the objective eq. (4) with a ‘potential’ function. f is iteratively constructed
by:

• finding a hypothesis which decreases the potential (‘weak learning’), and

• increasing the probability of data which are misclassified (‘reweighting’).

Nonconvex potentials retain a substantial computational burden; for example, the reweight-
ings in BrownBoost (Freund, 2001) and ArchBoost (Hanbo Li and Bradic, 2015) can be
hard to compute. Convex potentials are vulnerable to the hazards described in section 2.1;
they are susceptible to noisy outliers since they lead to reweightings based on the margin
of misclassification (Long and Servedio, 2010). This includes multiplicative weights, the
archetypal reweighting scheme:

yx → e−β〈wt,x〉yxyx (9)

for a small step size β > 0.
A joint distribution over inputs and outputs is weakly learnable if there is a nontrivial

hypothesis: maxh∈H χt(h) > 0. The weak learning assumption is that for some edge γ > 0,
all reweighted distributions are weakly learnable. Weak learning algorithms are challenging
to design. This difficulty has a mathematical explanation if the potential function is convex,
since boosting is interpretable as a primal-dual algorithm for minimizing the potential over
all f . The dual attempts to find a distribution which is uncorrelated with all h. All
dual-feasible distributions are not weakly learnable; that is, the weak learning assumption
(i.e. when boosting ‘works’) implies a degeneracy of the dual problem (Telgarsky, 2012).
In learning terminology, boosting relies on linear separability (Shalev-Shwartz and Singer,
2010).

Gradually reweighting the inputs can fortify boosting against noise (Domingo and
Watanabe, 2000; Servedio, 2003). This approach underlies a variety of agnostic boost-
ing algorithms (Ben-David et al., 2001; Kanade and Kalai, 2009; Chen et al., 2015). The
empirical correlation χ̂ weights each input equally. A reweighting is smooth if it does not put
substantial weight on any single input. Smooth boosting algorithms involve only smooth
correlations; the dual optimization typically involves projection onto the set of smooth dis-
tributions (Barak et al., 2009). Weak learnability of smooth distributions is equivalent to
separability of nearly all of the data (Shalev-Shwartz and Singer, 2010). Unfortunately,
if the amount of noise is large, smooth boosting algorithms are slow; section 3 includes
quantitative assessments.

2.4. Polynomials via lifting

Lifting is currently the only general, systematic way to design agnostic learning algorithms.
It reduces algorithm design to function approximation, and underlies the fastest algorithms
for learning versus intersections of halfspaces (Harsha et al., 2013; Kane et al., 2013), dis-
junctions (Feldman and Kothari, 2014), submodular functions (Cheraghchi et al., 2012),
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polynomial threshold functions (Harsha et al., 2014; Diakonikolas et al., 2010), and convex
sets (Klivans et al., 2008). For learning versus (smooth) halfspaces in n dimensions up to
a (1− α)-approximation of opt, it uses poly(m,n, 1/ε) time for different, super-polynomial
amounts m of data.

• Versus halfspaces on uniformly distributed inputs, with α = 0, polynomial regression
uses m = poly(n1/ε2) data (Kalai et al., 2008).

• Versus smooth halfspaces on generally distributed inputs, for 10 ≤ α ≤ L, τ = L/α,

and some constant C, kernel SVM uses roughly m = O( exp(Cτ min(τ,logL))
ε2

) data (Birn-
baum and Shalev-Shwartz, 2012).

• Versus halfspaces on uniformly distributed inputs, polynomial regression combined

with ‘localization’ uses m = poly

(
n

log3(1/α)

α2 , log(1
ε )

)
data (Daniely, 2014).

Lifting is a venerable idea; the same basic algorithm has been used since the 1960s, and
much of it was proposed by Gauss and Legendre in the early 1800s. The main step is fitting
a degree-d polynomial f (i.e., an element of Pd) to the data:

min
f∈Pd

`(f) = E
(x,y)∼D

(
(f(x)− y)2

)
(10)

It is easy to bound the amount of time this takes. Equation (10) is a convex optimization
problem, whose size is exponential in d, when f is represented as a vector of coefficients,
one for each monomial. It can be solved in polynomial time if d is a constant.

By contrast, the justification for replacing the hypotheses H with Pd is a challenging,
ongoing research topic. It is addressed by various notions of polynomial approximation. The
threshold degree of h is the minimal degree d required to express h(x) = sgn(f(x)). If it is
constant for all h ∈ H, and opt = 0, then polynomial regression ultimately finds a correct
f . In this scenario, eq. (10) is solved by Rosenblatt’s 1957 perceptron, arguably the first
learning algorithm (Rosenblatt, 1957). Minsky and Papert initiated the study of threshold
degree (Minsky and Papert, 1972). Their lower bounds, especially for parity functions,
were largely responsible for an artificial intelligence ‘winter’ from 1974—1980 (Russell and
Norvig, 2003).

In 1993, Linial, Mansour and Nisan proposed a more forgiving notion of approximation
in terms of the distribution of the inputs (Linial et al., 1993):

∀h ∈ H, ∃f ∈ Pd s.t. E
x∼Dx

(
(h(x)− f(x))2

)
≤ α2 (11)

They showed depth-∆, size-s boolean circuits satisfy eq. (11) (for polynomially large α)
when Dx is the uniform distribution on the boolean hypercube. They utilize a connection
between eq. (11) and the Fourier-analytic properties of H on the uniform distribution.
This approach has been successfully extended to product distributions (Blais et al., 2010),
permutation-invariant distributions (Wimmer, 2010), and Markov random fields (Kanade
and Mossel, 2015). In 2005, Kalai, Klivans, Mansour, and Servedio slightly modified the
polynomial regression algorithm for agnostic learning (Kalai et al., 2008). They replace the
L2 distance in eq. (10) with the L1 distance.
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1. Fit a degree-d polynomial p to the data:

min
p∈Pd

`(p) = E (|p(x)− yx|) (12)

2. If the outputs are binary, with the convention that −1 and 1 are true and false, use p
as a threshold in c(x) = sgn(p(x) + t). Choose t to minimize `(c).

They demand a similarly modified approximation:

∀h ∈ H, ∃p ∈ Pd s.t. E
x∼D

(|p(x)− yx|) ≤ α (13)

Equation (11) implies eq. (13); recently, (Kane et al., 2013) showed how to directly prove
eq. (13) when D is log-concave. A simple argument shows `(c) ≤ 1

2`(f), so minimization of
eq. (12) is appropriate. The triangle inequality yields `(f) ≤ E

(x,y)∼D
(|y − h(x)|+ |h(x)− f(x)|).

Combining the previous inequalities and picking h ∈ H to achieve `(h) = opt yields
`(c) ≤ opt + α/2.

In 2010, Shalev-Shwartz, Shamir, and Sridharan replaced Pd with infinite degree polyno-
mials of bounded norm (Shalev-Shwartz et al., 2011). Fitting such a polynomial is tractable.
Rather than minimizing ` directly, draw m data and formulate an ‘empirical’ objective:

min
f∈PB

ˆ̀(f) =

m∑
i=1

|f(xi)− yi| (14)

ˆ̀→ ` as m increases. PB is a ball in a Hilbert space spanned by elements {φ(x) : x ∈ Rn}
whose inner products can be easily computed: 〈φ(x), φ(x′)〉 = 1

1− 1
2
〈x,x′〉 . An important

consequence is that the solution of eq. (14) can be written as f(xi) =
∑m

j=1 cj 〈φ(xi), φ(xj)〉.
By precomputing the inner products 〈φ(xi), φ(xj)〉 and optimizing over the coefficients cj ,
eq. (14) becomes a convex optimization problem of size m. With the power of infinite-degree
polynomials, (Shalev-Shwartz et al., 2011) obtains a non-probabilistic approximation akin
to those studied before (Linial et al., 1993). Their analysis is limited to smooth halfspaces
(recall eq. (6)) with sigmoids ψ, unlike (Linial et al., 1993). ψ is called an activation or
transfer function. Approximating hw reduces to approximating the univariate function ψ,
which is amenable to Chebyshev interpolation. In particular, the univariate polynomials

UB =

u :

∞∑
d=0

∑
|α|=d

2du2
α ≤ B


define multivariate polynomials contained in PB:

{f(x) = u(〈w, x〉) : w ∈ Rn, u ∈ UB} ⊆ PB

The univariate polynomials approximate various ψ in the following sense:

∀x,w ∈ Rn, ∃u ∈ UB s.t. |ψ(〈w, x〉)− u(〈w, x〉)| ≤ α
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This univariate-linear analysis is less general than the prior analysis of polynomial regres-
sion.

In practice, L1 polynomial regression, with either Pd or PB, uses too much time and data.
When using Pd, the size of eq. (12) and the required amount of data are both exponential
in d; even d = 2 is usually impractical. When using PB, m is exponential in the Lipschitz
constant of ψ. Efficiently solving problems like eq. (14) is a long-standing goal of ‘kernel
methods’ in machine learning. Many interesting approaches have been developed (Le et al.,
2013; Cotter et al., 2012). However, to the best of our knowledge, no practical method
approximately solves eq. (14) when m is very large.

Limits on the approximation power of Pd are well known. Superconstant degree lower
bounds for parities, linear-size boolean formulae, and ANDs of majorities have been known
since the 1960s (Minsky and Papert, 1972). Constant-degree polynomials cannot approxi-
mate boolean functions where any single input bit has too much ‘influence’ on the output
(Ben-Eliezer et al., 2009). The crucial question is whether the limits of polynomials coincide
with the limits of learning. This is essentially the case when the inputs have independent
(but not necessarily identical) boolean coordinates, and the hypotheses have non-trivial
dimension. Say a function is d-resilient if it is uncorrelated (in the usual sense of eq. (2))
with any degree-d parity function. If all hypotheses are far from d-resilient, then they
may be approximated by degree-d polynomials; if there is a d-resilient hypothesis then ag-
nostic learning requires nΩ(d) statistical queries (Dachman-Soled et al., 2015). This rough
equivalence of polynomial approximation and agnostic learning does not extend to other
distributions; polynomial regression is known to fail when other algorithms succeed. For in-
puts with heavier tails than the (singly-exponential) Laplace distribution, there is an ε such
that no polynomial (of any degree) can approximate the sign function (Bun and Steinke,
2015). When n = 1, empirical risk minimization is efficient (by simple brute-force search)
and successful, but polynomial regression is not.

Lifting generalizes beyond polynomial f to RKHS elements. This generality is beneficial:
disjunctions on permutation-invariant distributions may be approximated by a reasonably-
sized basis of functions, but not by low-degree polynomials (Feldman and Kothari, 2014).
However, even the most general choices of f cannot be effective. The following lower bounds
are phrased in terms of the margin γ (recall eq. (7)).

• Choosing f to be a vector of moderate dimension which minimizes some convex func-
tion subject to convex constraints. If α = 0, then this approach must take exp(1/γ)

time in the worst case. It runs in polynomial time only if α = Ω(

√
1/γ

poly(log 1/γ)) (Daniely

et al., 2012).

• Choosing f to be an element of a reproducing kernel Hilbert space which minimizes
some convex function subject to a norm constraint. If α = 0, then this approach
must take exp(1/γ) time in the worst case. It runs in polynomial time only if α =

Ω( 1/γ
poly(log 1/γ)) (Daniely et al., 2012).

Rather than lifting the nonconvex optimization over w to a high-dimensional convex
optimization, it is possible to lift to a moderate dimension optimization which, though non-
convex, may be easier to solve. This approach has been proposed as a theoretical model of
deep learning:

12



1. Approximate eq. (4) as a deep network fW with parameters W ∈ RN .

2. Find a local optimum of χ(fW ), preferably with a method which avoids saddle points
(Dauphin et al., 2014).

If N is sufficiently large, then most local optima of χ(fW ) seem to have correlation close to
χ(fW ∗) in practice (Dauphin et al., 2014). Under strong assumptions on the relationships of
the parameters, (Choromanska et al., 2014) proves an asymptotic tradeoff between N and
the quality of the local optima. It is not clear if these results can be formally strengthened
for agnostic learning. In practice, deep networks seem susceptible to limited forms of noise
(Goodfellow et al., 2014).

3. Learning versus halfspaces

This section reviews the difficulty of learning versus halfspaces. This problem is meaningful
only if opt > 0 — that is, the binary outputs are consistent with a halfspace with probability
1− η, where η ∈ (0, 1/2) is a ‘noise’ or ‘inconsistency’ rate. If strong assumptions are made
about the manner of inconsistency, then learning is easy. In the following scenarios, the
inconsistent outputs are either completely random or structured in a known way.

• random classification noise flips the sign of each output with probability η ∈ (0, 1/2)
independently of the input. This is the subject of the first model for noise-tolerant
learning (Angluin and Laird, 1988), as well as the first noise-tolerant learning algo-
rithm for halfspaces (Blum et al., 1998).

• if a halfspace has margin correlation γ (recall eq. (7)), then relaxation (with hinge
loss) obtains a halfspace with margin correlation at least γ/2 (Ben-david et al., 2012).

• monotonic noise requires inconsistency to diminish with the margin; that is, noisy
data must be near the decision boundary (Bylander, 1998). The average algorithm
copes with monotonic noise (Servedio and Valiant, 2001).

• single link outputs, wherein yx = u(〈v, x〉) for some v and nondecreasing u, are a
generalization of monotonic noise. Isotonic regression copes with this scenario (Kalai
and Sastry, 2009).

As assumptions about the inconsistent outputs are lifted, learning becomes more challeng-
ing. In the following scenarios, the inconsistency has no discernible structure. A fast
algorithm tolerates the noise rate η if it returns w satisfying χ(hw) ≥ opt − ε in time

poly
(
n, 1

ε ,
1

1−2/eta

)
.

• bounded (Massart) noise flips the sign of yx with probability η(x) ∈ (0, 1/2), which
potentially depends on the input. For inputs distributed uniformly on the sphere,
(Awasthi et al., 2015a) tolerates any η ∈ (0, 1/2).

• adversarial noise: with probability η, data is sampled from an arbitrary (but fixed)
distribution. (Awasthi et al., 2014) tolerates η = Ω(ε/ log2(1/ε)).
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• malicious noise: with probability η ∈ (0, 1/2), both inputs and outputs are provided
by an adaptive adversary. (Since this changes the input distribution, it is more general
than agnostic learning.) (Awasthi et al., 2014) tolerates η = Ω(ε/ log2(1/ε)).

Agnostic learning eschews assumptions about the outputs. If no assumptions are made
about the input distribution D, then learning versus halfspaces is as hard as solving funda-
mental lattice problems.

Theorem 7 Let D be arbitrary and α = 0. Assume the shortest vector problem with
parameter Õ(n1.5) cannot be solved in polynomial time. Learning versus H0-1 in poly(n, 1/ε)
time is impossible. Also, learning versus H in poly(L, 1/ε) time is impossible (Shalev-
Shwartz et al., 2011).

Approximate learning is as hard as refuting random constraint satisfaction problems.

Theorem 8 Let D be uniform on {−1, 1}n and α ∈ (0, 1) be constant. Under the random
k-XOR assumption, learning versus H0-1 in poly(n, 1/ε) time is impossible. (Daniely, 2015)

This theorem avoids the strong random CSP assumption, as used in (Daniely et al., 2013)
and subsequently invalidated in (Allen et al., 2015).

4. Our contributions

This section introduces our new approach to classification, which consists of new classifiers
and a new learning algorithm.

4.1. New classifiers

Recall the construction of smooth halfspaces in section 2.2, which approximate the sign
function sgn(a) with a sigmoid function of slope at most L. Instead of the usual ‘logistic’
sigmoid, KG uses a sigmoid derived from the Laplace distribution:

ψ(a) =

{
1− e−La a ≥ 0

−1 + eLa, otherwise

This function is numerically stable and twice differentiable.

|ψ(a)| = 1− e−L|a|

ψ′(a) = Le−L|a| = L(1− |ψ(a)|)

ψ
′′
(a) = −sgn(a)L2e−L|a|

Despite its simplicity and numerical appeal, the Laplace sigmoid is rare in machine learning
literature. We note that smooth approximations of the sign function are the subject of
continued interest (Kamrul Hasan and Pal, 2015).

Smooth lists of halfspaces are randomized classifiers that naturally generalize smooth
halfspaces. They are defined by lists of vectors w1, . . . , wT . Given an input x, they operate
as follows:
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Figure 3: With L = 6, the Laplace sigmoid (black) and the logistic sigmoid (dashed).

For t = 1, . . . , T :
With probability |hwt(x)| = 1− e−L|〈wt,x〉|, return sgn(〈wt, x〉).

Guess −1 or 1 uniformly at random.

This randomized classifier has the same correlation as the following real-valued function
fw1,...,wT (x), defined recursively:

f∅(x) = 0 fw1,...,wT (x) = hw1(x) + (1− |hw1(x)|)fw2,...,wT (x) (15)

Here is how smooth lists relate to other classifiers.

• Smooth lists are similar to decision lists (Rivest, 1987), which operate as follows:

For t = 1, . . . , T :
If the deterministic function πt(x) = 1, return the fixed value vt ∈ {−1, 1}.

Return 1.

Decision lists are more expressive than smooth lists. For example, if πt are halfspaces,
decision lists are intersections of halfspaces, which cannot be represented as smooth
lists. However, decision lists are not convenient to train. Their complexity grows
with their length, which discourages appending many elements. (This difficulty was
overcome by the notable algorithm of (Blum et al., 1998), which is described in sec-
tion 4.2.) As the next section proves, the complexity of a smooth list is independent of
its length. When opt = 1, previous algorithms learn D versus decision lists, possibly
returning different kinds of classifiers (Klivans and Servedio, 2006).

• If each vt = −1, then a decision list is called a cascade of classifiers (Viola and Jones,
2001). These can be fast to evaluate in applications with imbalanced outputs, such as
computer vision: obvious inputs are classified early, and further processing is reserved
for the occasional output 1. Smooth lists behave similarly, even without imbalanced
outputs: inputs far from decision boundaries tend to be classified earlier. However,
we focus on the time needed to train smooth lists, not evaluate them.

• Feedforward neural networks also involve a sequence of sigmoid functions. Neural
networks typically transform the input x to another vector x′. Smooth lists are more
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comparable to the final classification layer of a neural network, which is typically a
linear classifier learned by relaxation.

• In general, hypotheses are often averaged according to a probability distribution.
Such combination are ensembles, as described in section 2.3. Smooth lists are not
ensembles, since the distribution of which classifier returns depends on the input x.

4.1.1. Decomposition and data

This section shows that an amount of data large enough to agnostically learn linear classifiers
also suffices for smooth lists of halfspaces. Let F be the set of norm-bounded smooth lists:

F = {fw1,... :
∑
t

||wt|| ≤ L}

The proof of the following result is in the appendix. It exploits the distribution independence
of the bounds in section 2.2.

Theorem 9 Recall the Rademacher complexity RL of smooth halfspaces in theorem 4. For
all distributions D,

RL = R(F)

Therefore, under the conditions of theorem 11,

sup
f∈F

(χ(f)− χ̂(f)) ≤ ε

with probability 1− δ over the sample D̂ ∼ D.

The preceding result is tight (with T = 1) but pessimistic. Intuitively, a smooth halfspace
at the end of a list has lower complexity than an independent one, but the bound does not
reflect this. Algebraically, later correlations have decreasing weight (in the lower-magnitude
outputs), but the proof does not exploit this. Further assumptions on D may control the
decreasing weights and lead to a tighter bound.

Smooth lists of halfspaces are useful because of their relation to smooth halfspaces.
Clearly a smooth halfspace is a smooth list of length 1. Interestingly, the smooth halfspace
defined by w can be decomposed into an arbitrary-length smooth list of halfspaces defined
by scalings of w.

Theorem 10 hw = fβ1w,...,βTw for any β1, . . . , βT satisfying βt ≥ 0 and
∑T

t=1 βt = 1.

This decomposition enables an iterative algorithm and competitive analysis.

4.2. New learning algorithm

The KG algorithm (fig. 4) trains smooth lists the same way they are used. It appends a
vector to the list, reweights the data by the probability they would pass to the next vector,
and repeats. Parts of this algorithm are reminiscent of previous ones designed to resist
noise.
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1 For t = 1, . . . , T :
2 wt = 1

m

∑m
i=1 xiyi

3 wt = βt(wt/ ||wt||)
4 yi = e−|〈wt,xi〉|yi
5 Return w1, . . . , wT

1 For t = 1, . . . , T :
2 With probability 1− e−|〈wt,x〉|, return sgn(〈wt, x〉)
3 Return −1 or 1 uniformly at random.

Figure 4: The training algorithm (left) operates upon data {xi, yi}mi=1 for T iterations. It
involves a sequence of positive scales {βt}Tt=1. On each iteration, it computes,
rescales, and stores the average of all the data. It reduces the weight of data which
are similar to this average. The weight is interpreted as a passing probability in
the classification algorithm (right), which operates upon an input x. A stored
average is used to classify an input if they are similar; otherwise, the input is
passed to the next average.

• (Klivans et al., 2009) computes the same average vector wt at each iteration. However,
it forms a combination of halfspaces via boosting rather than a smooth list. The
reweighting differs accordingly.

• (Blum et al., 1998) produces a decision list (as defined in section 4.1) of halfspaces
defined by vectors w1, . . . , wT . It returns sgn(〈wt, x〉) if |〈wt, x〉| is larger than some
threshold, and otherwise proceeds to the next element. It trains each halfspace with
the perceptron algorithm upon a subset of the data which would have (on average)
large margin; it passes the remaining data to subsequent steps. KG smooths the
‘return’ event and picks a vector according to a simpler, more conservative criterion.

Unlike its practical forbears, relaxation and boosting, we have strong evidence that KG is a
correct agnostic learning algorithm. Unlike lifting, it uses an optimal amount of data. We
have a nearly complete proof of the following theorem.

Conjecture 11 Let D be any distribution on bounded inputs ||x|| ≤ 1 and outputs |yx| ≤ 1.
Define opt relative to smooth halfspaces, per eq. (6), with slope L and vectors ||w|| ≤ 1. For
any ε ∈ (0, 1), the algorithm uses m = O(L2/ε2) data and O(m2(T + k)) time, assuming
inner products 〈xi, xj〉 between inputs can be computed in O(k) time. For some positive
sequence {βt}Tt=1, the resulting classifier c satisfies χ(c) ≥ opt− ε for sufficiently large T .

Rather than explicitly computing the averages wt by manipulating the inputs, it is possible
to directly solve for the inner products used to classify and reweight data:

yx ← e−β|〈g,x〉|yx
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This dual update can be expressed in terms of the kernel matrix Kx,x′ = 〈x, x′〉, the norm
of the joint sum G = ||

∑
x x · yx||, and the unit vector g in that direction.

(Ky)x =
∑
x′

Kx,x′yx′

G2 =

〈∑
x

yxx,
∑
x′

yx′x
′
〉

=
∑
x,x′

yxyx′Kx,x′ = yTKy = ||y||2K

〈Gg, x〉 =

〈∑
x′

yx′x
′, x

〉
=
∑
x′

yx′Kx,x′ = (Ky)x

〈g, x〉 = 〈Gg, x〉 /G = (Ky)x/ ||y||K

Each wt is a joint sum gt scaled to norm βt. Taking βt = β → 0 and T → ∞ yields a
continuous limit as a dynamical system. The discrete iteration number t > 0 becomes a

real-valued time. Taking d
dβ y
∣∣∣
β→0

yields the instantaneous change with time:

d

dt
yx =

d

dβ
e−β|〈g,x〉|yx

∣∣∣∣
β→0

= −
|Ky|x√
yTKy

yx (16)

The partial proof of conjecture analyzes this dynamical system.

4.3. Intuitions for the algorithm

Properly learning versus halfspaces means finding a vector that optimizes correlation:

v1 = argmax
w∈Rn

χ(h0-1
w ) (17)

We decompose this hard problem into finding a ‘head’ vector of norm β1 ∈ (0, 1], and
subsequently competing with a ‘tail’ or ‘completion’ vector.

The smooth halfspace hv1 is equivalent to the smooth list with head β1v1 and tail
(1 − β1)v1, for any β1 ∈ [0, 1] (theorem 10). Similarly, a halfspace is equivalent to the
smooth list with head β1v1 and tail Lv1 for L→∞. So, judiciously constructing a smooth
list is at least as good as solving 17. A strictly better classifier could be obtained by picking
vectors which point in different directions. Indulging in this flexibility could ostensibly lead
to overfitting. However, in the worst case, the nonlinear power of smooth lists has essentially
no cost: learning smooth lists does not require more data than learning (smooth) halfspaces
(theorem 9).

The decomposition of fig. 5 involves maximizing two correlations:

• χ1, which is identical to the original χ, and

• χ2, which reweights the data according to whether the head element passed.

The reweighting may be interpreted in two ways: first as conditioning the marginal dis-
tribution of the inputs x, or second as an input-dependent scaling of the outputs yx. We
denote the first as as χ(· | w1 passes) and the second as χ2 (c.f. fig. 4). The amount of
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   v1

β1v1 ∞ v1

w1 v2

β2v2 ∞ v2

w2 v3

β3v3 ∞ v3

w3

Figure 5: A visualization of the algorithm. The optimal smooth halfspace hv1 decomposes
into a smooth list of halfspaces consisting of the head β1v1 and the tail Lv1 for
L→∞. These components are respectively bested by w1, which is chosen by the
algorithm, and v2, which exists but is not known to the algorithm. The algorithm
inductively competes against hv2 , and produces the smooth list highlighted in red.

reweighting depends on just the input — in particular, on the confidence |〈wt, x〉| of wt on
x — not whether it was correctly classified.

For small enough β1, χ1 and χ2 may be independently maximized. No matter how the
head w1 is chosen, we conjecture there is always a tail v2 which is as good as the competing
tail v1. Furthermore, the reweighting never causes the joint average to be zero, so the
algorithm never gets stuck.

The key step is maximizing χ1. This problem is nonconvex, but it has two pliancies:
the solution just needs to match hβ1v1 , and β1 is a variable. This new kind of problem
is called β-competitive optimization. An upper bound on β1 specifies a correct algorithm,
and a lower bound on β1 establishes its convergence rate. Our solution is intuitive: at the
origin, the direction w1 of instantaneous steepest ascent has an initial advantage over all
other directions. It maintains its advantage over v1 for some length β1.

Quantifying β1 involves a new analysis of agnostic learning. Even if the inputs are dis-
tributed simply, the outputs could be chosen by an adversary aiming to erode w1’s advantage
within the shortest possible length. On rotationally invariant inputs, the adversary’s choice
reduces to picking the angle between w1 and v1. Since w1 is just an average of the data, the
angle relates to the correlation of v1: small and large angles make hβ1v1 have high and low
correlation, respectively. In other words, the algorithm’s choice of w1 is a formal constraint
on the adversary’s strategy.

4.4. Experiments

Unlike previous agnostic learning algorithms, the experiments in this section show KG is
empirically fast and practical, even in challenging scenarios. The experiments examine the
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Figure 6: Example data for n = 2.

impact of unsound hypotheses and noisy data, compare the algorithm to the state of the
art, and illustrate learning sparse parities with noise.

4.4.1. Sound hypotheses, noisy data

Even if the outputs are initially consistent with a hypothesis, noise foils relaxation. Reliably
successful relaxation depends on fragile modeling assumptions or carefully preprocessed
data. In this experiment (fig. 7), the inputs are standard normals in R128. The outputs are
generated by a halfspace h0-1

w , where ||w|| = 1, and flipped with probability increasing with
their unsigned margin (their distance from the decision boundary).

yx =

{
sgn(〈w, x〉) with probability exp(−k

√
n |〈w, x〉|)

−sgn(〈w, x〉) otherwise

In high dimension, the overwhelming majority of points have small margin. The parameter
k exponentially increases the flip probability. Such outputs are visualized in fig. 6. A simple
integral (see the technical appendix) calculates:

opt0-1 = −1 + 2 exp

(
k2n

2

)
erfc

(
k
√
n√
2

)
(18)

Relaxation cannot cope with higher levels of noise. Our algorithm converges to the calcu-
lated optimum in a pleasant meeting of theory and experiment.

4.4.2. Unsound hypotheses, no noise

Even if the outputs are deterministically generated from the inputs, relaxation can fail, and
lifting can need too much time and data. In the second experiment (fig. 8), the inputs
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Figure 7: For varying noise levels, correlation varying with the amount of data. SVM
(Pegasos), `2-regularized logistic regression (LIBLINEAR), and our algorithm,
relative to opt0-1, the correlation of the optimal halfspace.

are standard normals of varying extrinsic dimension n. The outputs are generated by a
parity function of fixed intrinsic dimension (sparsity) of k = 3. Relaxation is no better
than random guessing. Kernel SVM with a degree-(k + 1) polynomial is reliable because
it subsumes the degree-k parity function. However, as the extrinsic dimension increases,
it requires an overwhelming amount of data. Our algorithm uses a modicum of data and
reliably achieves a nontrivial correlation.

5. Normally distributed inputs and consequences

Conjecture 11 is unsatisfactory because it does not bound the amount of time used by the
algorithm. We propose to prove such a bound when the inputs are normally distributed.
To summarize the discussion of section 2, the state of the art for this problem is:

• versus smooth halfspaces, sampling uses m = O(L2/ε2) data and poly(m,n, 2O(1/ε2))
time.

• versus halfspaces, lifting uses m = poly

(
n

log3(1/α)

α2 , log(1
ε )

)
data and poly(m,n, 1/ε)

time (Daniely, 2014).

We believe it is possible that KG uses polynomial time in this scenario.

Conjecture 12 With:

• the standard normal distribution (with n iid N(0, 1) coordinates) on inputs x ∈ Rn,

• bounded outputs |yx| ≤ 1,
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Figure 8: Correlation varying with the amount of data. SVM (LIBLINEAR), degree-4
polynomial SVM (LIBSVM), and our algorithm.

• a nonzero joint average E
x∼D

(x · yx),

• opt0-1 defined relative to halfspaces, per eq. (1), whose vectors w have integer compo-
nents and satisfy ||w|| ≤W .

• error parameters α, ε ∈ (0, 1),

• an appropriate setting of βt for T = O(1−α
α ·

W
ε(opt0-1−ε/2)

) iterations,

the algorithm uses m = O(n/ε2) data and O(m ·n ·T ) time to agnostically learn halfspaces,
i.e. produce c satisfying χ(c) ≥ (1− α)opt0-1 − ε.

This does not contradict any of the hardness results described in section 2. However, it
does have consequences for the problem of learning sparse parities with noise, which we now
describe.

Let S be an unknown, size-k subset of {1, . . . , n}. Consider recovering S from this
distribution:
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• the input s is distributed uniformly on the hypercube {−1, 1}n,

• the binary output is the parity on S, i.e.
∏
i∈S si, negated with probability η ∈ [0, 1/2).

When η = 0, recovery is as easy as solving linear equations. When η > 0, it is notori-
ously challenging, and is called learning sparse parities with noise. It is closely related to
fundamental problems in a variety of disciplines.

• cryptography: learning (non-sparse) parities is a common cryptographic hardness
assumption (Pietrzak, 2012).

• coding theory: learning (sparse) parities with noise is equivalent to decoding random
(sparse) linear codes (Blum et al., 2003). Such decoding comprises the best-known
attack against the McEliece cryptosystem, the most promising approach to post-
quantum cryptography (Becker et al., 2012).

• combinatorial optimization: given a system of inconsistent linear equations, each in-
volving just k variables, MAX-k-LIN-2 is the problem of satisfying as many such
equations as possible. It involves sparse data rather than a sparse underlying as-
signment, a dual assumption (Applebaum et al. (2010) footnote 6). It is NP-hard to
approximate and underlies many further hardness results (H̊astad, 2001).

A brute-force algorithm for recovering S uses O(nk) time. The best known algorithm is

only a slight improvement: it uses O
(
n0.8kpoly

(
1

1−2η

))
time (Valiant, 2012) (see also

(Karppa et al., 2016)). Currently, learning sparse parities with noise is “widely believed
to be intractable” (Feldman et al., 2013) and “even an O(nk/2)-time algorithm for LSPN
would be considered a breakthrough result” (Klivans and Kothari, 2014). Under conjecture
12, the KG algorithm, paired with the reduction of (Klivans and Kothari, 2014), would use
polynomial time even when k = O(log n).

Conjecture 13 Under conjecture 12, learning sparse parities with noise uses Õ
(

2c·kn4√n
(1−2η)4

)
time and data for some constant c.

This would be fast enough to solve problems tied to the foundations of learning. The
probably approximately correct model is the first, enduring formalization of learning a
function from data (Valiant, 1984). In 1984, when introducing the model, Valiant considered
learning boolean formulae, with ` terms in disjunctive normal form, from inputs distributed
uniformly on the hypercube. He described it as ‘tantalizing’ and ‘apparently simple.’ It
reduces to learning logarithmically-sparse parities with noise (Feldman et al., 2009).

Conjecture 14 Let D have inputs distributed uniformly on the hypercube, and set opt = 1
relative to n-variable, `-term DNFs. Under conjecture 12, obtaining c satisfying χ(c) ≥
opt− ε uses poly(n, `, 1/ε) time and data.

The best previous algorithm uses O(nlog(`/ε)) time (Verbeurgt, 1990).
The statistical query model prevents learning algorithms from directly sampling data;

it allows only imprecise, real-valued questions about the distribution (Kearns, 1993). (See
appendix A.4 for a precise definition.) This restriction is theoretically mild: a polynomial
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number of queries can typically replace a polynomial amount of data. The main counterex-
ample involves parities. In 1993, when introducing the model, Kearns noted parities cannot
be learned using polynomial queries, even with unlimited time and opt = 1. This still holds
when k = log n (Blum et al., 1994), or if S ⊆ {1, . . . , log n log log n} (Blum et al., 2003).
By contrast, learning the latter kind of parities directly from noisy data uses polynomial
time (Blum et al., 2003). Since the statistical query model doesn’t impede most existing
algorithms, but does render some distributions unlearnable, new algorithms that don’t fit
within the model seem important.

Our algorithm fits the model. (Of course, the parity reduction does not.)

Conjecture 15 Under conjecture 12 and the conditions of conjecture 11, learning versus
smooth halfspaces uses poly(n,L, 1/α, 1/ε, 1/opt) time and statistical queries. Similarly, un-
der the conditions of theorem 12, learning versus halfspaces uses poly(n, β, 1/α, 1/ε, 1/opt0-1)
time and statistical queries.

Under the conjecture, KG would be the first algorithm which fits the statistical query model
but, due to the parity reduction, is critically useful beyond the model’s confines. It suggests
the model is more inclusive than previously thought; perhaps it captures the essence of
learning, and excludes pathologies which may be addressed separately. Statistical queries
accommodate noise-tolerant, privacy-preserving, distributed, and evolutionary learning, so
these endeavors may be more fruitful than previously imagined.

The algorithm would also fast enough to claim a $1000 bounty posted in 2003 by
Blum (Blum, 2003). It concerns k-juntas: boolean functions which depend on only k < n
variables.

Conjecture 16 Under conjecture 12, learning versus log(n)-juntas uses poly(n) time and
data, given opt = 1 and inputs distributed uniformly on the hypercube.

The best known algorithm uses O(n0.6 lognpoly(n)) time (Valiant, 2012).
Though theorem 12 would settle many questions in learning theory, it would not com-

promise the security of any well-studied cryptographic schemes. In particular, the security
of the schemes in (Pietrzak, 2012) depends crucially on non-sparse secrets. Section 7.1.2
examines the importance of sparsity.

6. Agnostic linear multiclassification

The second half of this proposal concerns conditional distributions supported on q > 2
elements. The outputs yx are in the q − 1-simplex, i.e. a distribution over q elements. c(x)
is a distribution conditioned on the input x ∈ Rn. The correlation of c is:

χ(c) = E
x

(〈c(x), yx〉)

This may be rephrased as classification to q > 2 classes. (For brevity, we call this multiclas-
sification, and still call q = 2 classification.) Identify ej , the point distribution on output j,
with the integer j. This maps a conditional distribution over vectors yx to a distribution
over integers jx.

χ(c) = 1− 2P
x

(
P

j∼c(x)
(j 6= jx)

)
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Similarly redefine the margin correlation for a conditional distribution. This is simply that
the output produced for the correct class j is at least γ larger than all the other outputs.

χγ(f) = P
x

(∀j 6= jx, f(x)jx − f(x)j ≥ γ) (19)

6.1. Learning versus Voronoi diagrams

A Voronoi diagram is a multiclassifier which identifies each class j ∈ [q] with a vector Wj .
Given an input x, it returns the closest class:

h0-1
W (x) = argmin

j
||Wj − x||2 = argmax

j
〈Wj , x〉

The last equality assumes the vectors Wj have equal Euclidean norm. If they don’t, the
multiclassifier is sometimes referred to as the ‘multivector construction’, or simply the
functions returned by multiclass support vector machines.

The amount of data needed to learn Voronoi diagrams is bounded in terms of n and q.
The following theorem generalizes theorem 1. It is based on a multiclass generalization of
VC dimension called Natarajan dimension, which is nq for Voronoi diagrams.

Theorem 17 If m ≥ O(nq log(nq) log(q)
ε2

+ log(1/δ)), then

sup
W∈Rq×n

χ(hW )− χ̂(hW ) ≤ ε

with probability 1− δ ((Daniely et al., 2013) lemma 15 and theorem 22).

Rademacher complexity controls the margin correlation of a Voronoi diagram. The following
theorem essentially generalizes theorem 3 and theorem 4. (We shall define smooth Voronoi
diagrams, and anticipate a relationship between margin correlation of a Voronoi diagram
and correlation of a smooth Voronoi diagram.)

Theorem 18 Let the inputs ||x|| ≤ 1 and let ||W ||2,2 ≤ β. Then:

sup
W

χγ(hW )− χ̂γ(hW ) ≥ q

γ

√
βm+

δ√
m

with probability at most e−2δ2 (Maximov and Reshetova (2015) theorem 1).

Recent work suggests a sublinear dependence on q (Lei et al., 2015).

6.2. Previous algorithms

We are not aware of any agnostic multiclassification algorithms besides brute-force search.
In practice, it is popular to reduce multiclassification to classification in the following ways.

• Error-correcting output codes form Q binary classification problems by partitioning
the classes (Dietterich and Bakiri, 1995). Each class q is identified with a binary
code vector of length Q. Given a new input, running each classifier produces a binary
vector of length Q, which is then multiclassified according to the closest code vector.
For example, one-versus-rest involves q classification problems between each class and
all the others. One-versus-one (or ‘all-pairs’) involves q(q − 1)/2 problems between
each pair of classes.
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• A tree multiclassifier identifies each leaf of a binary tree with a different class, and
employs a classifier at all the internal nodes. It applies the root classifier to the input,
recurses along the left or right subtree if the output is respectively negative or positive,
eventually reaches a leaf, and finally returns the associated class.

Such reductions may generate difficult classification problems; these thwart absolute reduc-
tions, which guarantee high multiclass correlation if each of the binary correlations is high.
Fortunately, there are relative reductions which guarantee high multiclass correlation if each
of the binary correlations is relatively high (Beygelzimer et al., 2016). For example, there
are two approaches to training tree classifiers:

• top-down: start at the root and split the data according to the classes of the left sub-
tree and those of the right. Train a classifier separating the left and right data. Finally,
recurse upon the left and right subtrees with the left and right data, respectively.

• bottom-up: associate each leaf node with data of the same class. At each node
directly above the leaves, train a classifier separating the left and right data. Associate
correctly classified data with the node. Recurse until the root is trained.

The bottom-up approach has a relative guarantee, whereas the top-down approach does
not. Unfortunately, such reductions do not preserve agnostic learning guarantees due to the
definition of ‘relative’. The reduction involves learning versus all possible classifiers, not just
over the hypotheses. High correlation is defined relative to the Bayes-optimal correlation.
There is no guarantee that opt (that is, the best hypothesis) is close to this.

Another problem with these reductions is that a code choice or tree shape implicitly
encodes prior knowledge about which classes are separable from one another. In the absence
of such prior knowledge, a random code or tree is typically used. Unfortunately, if n � q,
then with high probability over the code or tree, any resulting multiclassifier has close to 0
correlation (Daniely et al., 2012).

By contrast, (Daniely et al., 2012) is especially supportive of Voronoi diagrams. Voronoi
diagrams, tree multiclassifiers, and one-versus-all have the same Natarajan dimension; in an
asymptotic, worst-case sense, they all use the require the same amount of data. However,
opt is always at least as high for Voronoi diagrams as for the other multiclassifiers, and is
sometimes strictly higher.

7. Proposed generalizations

This section generalizes smooth lists of halfspaces and the KG algorithm to q > 2. A smooth
Voronoi diagram is a randomized multiclassifier defined by a matrix W ∈ Rq×n whose rows
Wj have the same norm. Given an input x, it operates as follows:

Activate each coordinate j ∈ {1, . . . , q} with probability 1− e−L|〈Wj ,x〉|.
If multiple coordinates activate, repeat.
If exactly one coordinate j activates, return ej .
If no coordinates activate, return ej uniformly at random.

A smooth list of Voronoi diagrams is defined by a list of matrices W1, . . . ,WT . Given an
input x, it operates as follows:
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1 For t = 1, . . . , T :
2 For j ∈ {1, . . . , q}
3 Wt,j = 1

m

∑m
i=1 xiyxi,j

4 Wt,j = βtWt,j/ ||Wt,j ||
5 yxi =

∏k
j=1 e

−L|Wt,j |xiyxi
6 Return W1, . . . ,WT

1 For t = 1, . . . , T :
2 With probability 1− e−|〈wt,x〉|, return sgn(〈wt, x〉)
3 Return −1 or 1 uniformly at random.

Figure 9: The proposed training algorithm (left) and multiclassification algorithm (right).

For t = 1, . . . , T :
Activate each coordinate j ∈ {1, . . . , q} with probability 1− e−L|〈Wt,j ,x〉|.
If multiple coordinates activate, repeat.
If exactly one coordinate j activates, return ej .
If no coordinates activate, continue.

Return ej uniformly at random.

The algorithm in figure 9 naturally generalizes the one in section 4.2. We postulate that it
is a correct agnostic learning algorithm.

Conjecture 19 Let D be any distribution on bounded inputs ||x|| ≤ 1 and outputs y in the
q−1-simplex. Define opt relative to smooth halfspaces, per eq. (6), with slope L and vectors
||w|| ≤ 1. For any ε ∈ (0, 1), the algorithm uses m = O(L2q2/ε2) data and O(m · n · q · T )
time. For some positive sequence {βt}Tt=1, the resulting classifier c satisfies χ(c) ≥ opt − ε
for sufficiently large T .

7.1. The hardness of multiclassification

The multiclass generalization of KG may be fast in practice. However, we do not propose
to meaningfully bound the amount of time it takes. We do not believe fast agnostic mul-
ticlassification is achievable by any algorithm, even under restrictions similar to those in
section 5. The difficulty moving from q = 2 to q > 2 echoes the hardness encountered when
moving beyond quadratic forms in many areas of computer science. For example:

• semidefinite programming and polynomial programming (for optimizing over positive,
degree-q polynomials),

• linear and multilinear algebra (for computing the rank, nuclear norm, eigenvalues,
eigenvectors, etc. of a degree-q tensor.)

Surprisingly, for multiclassification, current hardness results for q > 2 are no stronger than
for q = 2; they do not exploit growing q. Furthermore, the hardness of multiclassification
on normally distributed inputs is not understood. Its relationship to learning with errors
with modulus q, the multiclass generalization of learning parities, is not understood, par-
ticularly when the unknown vector is k-sparse. We propose to fill these gaps by formalizing
connections between the following problems.
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• Section 7.1.1 describes how min-sum clustering, a problem that is likely NP-hard to
approximate, reduces to multiclassification with statistical queries. This suggests that
multiclassification is harder than classification in the worst case.

• Section 7.1.2 describes why the distinction between sparse and non-sparse parities,
which underlies the optimism of theorem 12, is irrelevant when q > 2. This suggests
that, even when the inputs are normally distributed, multiclassification remains hard.

7.1.1. Min-sum clustering

A clustering assigns each datum x1, . . . , xm to one of q clusters. An optimal min-sum
clustering minimizes the sum of intracluster distances according to a metric d(·, ·). That is,
the clustering c = C1, . . . , Ck minimizes the following objective:

κ(c) =
1

m

∑
j∈[q]

∑
x,x′∈Cj

d(x, x′)

(For example, consider assigning k tables to m people while minimizing mutual discord.)
If d(·, ·) is the squared Euclidean distance (which is not a metric, but is nonetheless alge-
braically convenient), then κ is equivalent to balanced q-means clustering (e.g. Awasthi
and Balcan (2014) corollary 3):

κ(c) =
∑
j∈[q]

∑
x,x′∈Cj

∣∣∣∣x− x′∣∣∣∣2 =
∑
j∈[q]

2 |Cj |
∑
x∈Cj

||Uj − x||2 = κ(U)

Each Uj is the average of cluster j. This is a center-based clustering because there is a
one-to-one relationship between the clustering c and the means Uj . This problem is not
as well-studied as standard q-means clustering, which omits the cluster sizes. That is, the
q-means objective is:

K(U) =
∑
j∈[q]

∑
x∈Cj

||Uj − x||2

Here is some motivation for the more obscure balanced problem. In practice, imbalanced
clusters may be undesirable; in the aforementioned example, the tables should be of com-
parable size. In theory, q-means clustering is known to be hard to approximate (Lee et al.,
2015; Awasthi et al., 2015b), but no hardness results are known for the balanced variant.
We fill this gap by showing balancing preserves hardness. We conjecture balanced q-means
is hard to approximate to a constant factor.

Conjecture 20 For data x1, . . . , xm ∈ Rn, let c∗ be the best min-sum clustering, i.e. the
minimizer of κ. If P 6= NP, for some ε > 0, finding c satisfying κ(c) ≤ (1 + ε)κ(c∗) is not
possible with poly(m,n, q) time.

Min-sum clusterings may be found by any classification algorithm which accesses data solely
to evaluate its performance – an interface known as ‘correlational statistical queries’ or a
‘zero-order oracle’. (Recall section 5.) We expect the following reduction.

Conjecture 21 For every min-sum clustering objective κ defined by data x1, . . . , xm, there
is a classification correlation χ such that κ(c) = χ(c). On the right hand, c denotes a
classifier; on the left hand side, it denotes the clustering obtained by evaluating the classifier
on the data.
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7.1.2. Learning with errors

Learning with errors (LWE) generalizes learning parities with noise to q > 2 (Regev, 2010).
The problem parameters are the dimension n, the sparsity k, the standard deviation of
error η > 0, and the amount of data m. The secret s is an unknown, k-sparse vector in
Znq = {−q/2, q/2}n which generates the following joint distribution on inputs and outputs:

• the inputs x are distributed uniformly on Znq ,

• the outputs yx = 〈s, x〉 + ξ. The error ξ is a discrete Gaussian, a random variable

supported on Znq whose probability mass is proportional to e−π||ξ/η||
2

.

Given m data drawn from this distribution, search-LWE is recovering s, and decision-LWE
is distinguishing the data from uniformly random values. The relationship between LWE
and agnostic multiclassification remains the same between q = 2 and q > 2:

• decision-LWE with an arbitrary secret reduces to decision-LWE with a uniformly
random secret in Znq . This randomized self-reduction allows any learning algorithm
which succeeds with nontrivial probability to be boosted by repetition.

• search-LWE reduces to decision-LWE (albeit with increased error) by testing whether
each secret coordinate si is nonzero (Micciancio and Peikert (2011) theorem 3.1; see
appendix A.3 for q = 2.) Dropping a nonzero coordinate completely decorrelates
the inputs and outputs, so each test may be implemented as a learning problem: if
nonzero correlation is still achievable after dropping the coordinate, then it is zero.

In analogy to theorem 25 for q = 2, it is reasonable to believe that Voronoi diagrams are
inversely-polynomially-correlated with log-sparse secrets, in the following sense.

Conjecture 22 There is a map φ : Znq → RN from the uniform distribution to the normal
distribution such that, for any k-sparse s ∈ Znq ,

max
W∈Rq×N

P
x∼Znq

(hW (φ(x)) = 〈s, x〉) = Ω(1/poly(n, q, log k))

The parity-preserving transformation of (Brakerski et al., 2013) may help prove this con-
jecture.

The security of much modern cryptography — including schemes for fully homomorphic
encryption, functional encryption, identity-based cryptography, and leakage-resilient cryp-
tography — depends on the difficulty of decision-LWE. It is an appealing foundation for
cryptography because solving random instances reduces to solving worst-case instances of
fundamental lattice problems (Brakerski et al., 2013). LWE is widely believed to require
2Ω(n) time with appropriate choices for the parameters. We are presently concerned with
q > 2 versus q = 2, as well as the sparsity k of s; it seems q � 2 is essential, at which point
k is irrelevant. The importance of large q has been understood since the seminal paper
introducing LWE:

“It seems that in order to prove similar results for smaller values of q, substan-
tially new ideas are required. Alternatively, one can interpret our inability to
prove hardness for small q as an indication that the problem might be easier
than believed.” (Regev, 2009)
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q and η should grow as polynomials of n, otherwise two devastating attacks are possible:

• a ‘structured noise’ attack takes O(exp(q · η)2) time, which is subexponential if q · η <√
n (Arora and Ge, 2011). (Curiously, this attack does not apply when q = 2.)

• if q is exponential in n but η is polynomial, then search-LWE may be solved in
polynomial time (Laine and Lauter, 2015).

A technique called modulus switching reduces q by increasing n or η, and effectively charac-
terizes the hardness of LWE by n log2 q rather than by each parameter individually (Brak-
erski et al., 2013). However, it cannot reduce to q = 2.

Sparsity is not as thoroughly studied; there is no formal reduction from large k to small
k. For numerical reasons, various implementations of fully homomorphic encryption employ
small k. (Somewhat tangentially: the difficulty of a sparse variant of subset sum under-
pinned such schemes, but this dependence has been lifted (Brakerski and Vaikuntanathan,
2014).) (Gentry et al. (2012) section C.1.1) informally argues the best known exploit of
small k is not quantitatively advantageous. It is possible to transform LWE instances by
swapping parts of the secret and error. Since small k implies small norm — sparse secrets
are short — this transformation yields smaller η. The ineffectiveness of this attack is not
surprising; modulus switching justifies the use of a short secret, drawn uniformly in {−1, 1}n
rather than Znq , so long as the dimension is moderately increased from n to n log2 q (Brak-
erski et al. (2013), theorem 4.1). Similarly short error vectors are admissible if m is only
linear in n (Micciancio and Peikert, 2013).

Here are our own intuitions about why sparsity is irrelevant.

Conjecture 23 For every s ∈ Znq , there is a k = O(log n)-sparse z ∈ Znq such that:

E
x∼Znq

(〈s, x〉 〈z, x〉) = Ω(1/poly(n, q))

That is, log-sparse secrets are inversely-polynomially-correlated with non-sparse secrets.

Proof (intuition only): decision-LWE with a uniformly random secret reduces to decision-
LWE with a secret drawn from a distribution with sufficient min-entropy (Goldwasser et al.,
2010). The ‘normal’ form of LWE draws the secret and errors from the same distribution
(Brakerski et al. (2013) lemma 2.12). Decompose a non-sparse discrete Gaussian secret
s ∈ Znq into z, the vector of its log(n)-largest coordinates, and the orthogonal remainder r
of small coordinates. We aim to show z is substantially correlated with s:

E
x∼Znq

(〈z, x〉 〈s, x〉) = Ω(1/n)

An analysis based on the continuous Gaussian is justified since the standard deviation
√
n

is above the ‘smoothing’ value, at which the discrete Gaussian resembles the continuous
Gaussian (Micciancio and Regev, 2007). A log-sparse secret captures more than 1

n -fraction
of the `1 norm of the whole secret. (Just compare the mean of |si| with the integration of
the PDF from τ to ∞, where P (|si| ≥ τ) = log n/n.) The desired correlation lower bound

follows from the Pythagorean theorem.
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The equivalence of sparse and non-sparse secrets does not extend to q = 2, where the
discrete Gaussian is replaced by a Bernoulli random variable with expectation η ∈ (0, 1/2).
An error distribution producing log-sparse (on average) secrets has η = log n/n. This is
a tiny noise rate of standard deviation at most

√
log n. The probability of drawing O(n)

noise-free samples becomes O(1/n), which means Gaussian elimination succeeds in finding
the secret with inverse polynomial probability. This somewhat counterintuitive property —
that LWE is harder than LPN but somehow admits more structure — was also encountered
by Arora and Ge, whose ‘structured noise’ attack on low-noise LWE which does not carry
over to LPN.

Combining the previous correlation conjectures leads to the following (non-quantitative)
conjecture.

Conjecture 24 Agnostically learning Voronoi diagrams with normally distributed inputs
is as hard as learning with errors.

Understanding the concrete, non-asymptotic difficulty of LWE is very important (Albrecht
et al., 2015; Peikert, 2016). It is a largely experimental endeavor; multiclassification exper-
iments with our algorithm may elucidate this difficulty.
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1 For i = 1, . . . , n:
2 f = KG(X−i, Y, ) trains without the i’th coordinate
3 c = χ̂(f) is an independent estimate of χ(f)
4 If c is sufficiently large, keep coordinate i in S.

Figure 10: The reduction of (Klivans and Kothari, 2014).

the empirical Rademacher complexity, in turn defined by the empirical distribution eq. (4).
Recall the definition of smooth lists in eq. (15):

R̂(F) = sup
w1,w2

Ê
x

(hw1(x)σx + (1− |hw1(x)|)hw2(x)σx)

≤ sup
w1

Ê
x

(hw1(x)σx) + sup
w1,w2

Ê
x

((1− |hw1(x)|)hw2(x)σx)

= sup
w1

Ê
x

(hw1(x)σx) + sup
w1,w2

P̂ (w1 passes) Ê
x

(hw2(x)σx | w1 passes)

≤ sup
w1

Ê
x

(hw1(x)σx) + sup
w1,w2

Ê
x

(hw2(x)σx | w1 passes)

The first equality takes the supremum over parameter vectors. The second inequality is
the triangle inequality. w1 affects the second correlation only through reweighting of the
outputs, which is equivalently written in terms of conditional expectation. Conditioning
the probability of input x on the event ‘w1 passes’ means multiplying the probability of x
by 1 − |hw1(x)|, the probability that w1 passes on x, and normalizing by the overall pass
probability Ê

x
(1− |hw1(x)|) = P̂ (w1 passes). The final inequality drops the pass probability

of at most 1. Apply the worst-case bound theorem 4 to the different distributions to bound
the Rademacher complexity:

R(F) ≤ Rβ +R1−β = R1

A.2. Proof of theorem 10

Assume a = 〈w, x〉 ≥ 0; the case a < 0 is symmetric.

fβw,(1−β)w(x) = (1− e−βa) + (1− (1− e−βa))(1− e−(1−β)a)

= 1− e−βa + e−βa(1− e−(1−β)a)

= 1− e−βa−(1−β)a

= hw(x)

A.3. Proofs of theorems 13, 14, and 16

The algorithm for learning sparse parities with noise uses the reduction of (Klivans and
Kothari, 2014). Their reduction separately determines if each coordinate i ∈ {1, . . . , n}
belongs to S. If i 6∈ S, dropping the i’th coordinate si of the input has no effect on the
outputs. If i ∈ S, the outputs become uncorrelated with the inputs. If a classifier achieves
nontrivial correlation when si is dropped, then i 6∈ S. Suppose a weak learner produces
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such a classifier whenever possible. To distinguish between the two cases, learn a classifier
and estimate its correlation on a separate sample of data. The potential correlation is close
to zero, so a large amount of data is required.

Weak learning can be implemented by learning versus halfspaces on standard normal
inputs. Map the original distribution – with boolean inputs and noisy parity outputs – to
a new distribution D with standard normal inputs and a nontrivial value of opt0-1 relative
to halfspaces.

• Map the boolean input s to a standard normal input x by multiplying each coordinate
with a half-normal random variable. Note si = sgn(xi).

• Under this mapping, the parity is nontrivially correlated with a halfspace having small
integer components. Their lemma 6:

Lemma 25 For every odd k,

max
w∈{0,1}n

E
x

(
h0-1
w (x)

(∏
i∈S

sgn(xi)

))
≥ 2−Θ(k)

The maximum is taken over ‘majority’ halfspaces. Note ||w|| ≤
√
n.

• Map the outputs to yx = ysgn(x). If c has correlation θ with the parity on the new
inputs, then its correlation with the new outputs is

χ(c) = (1− η)θ + η(−θ) = (1− 2η)θ.

With opt0-1 ≥ (1− 2η)2Θ(−k), the reduction is summarized by their lemma 5:

Theorem 26 Let ε = opt0-1/2. If obtaining c satisfying χ(c) ≥ opt0-1− ε uses τ time and
data, then learning sparse parities with noise uses Õ(n/opt0-1) + Õ(n) · τ time and data 1.

?? obtains χ(c) ≥ (1− α)opt0-1 − ε. Divide ε equally:

ε = α · opt0-1︸ ︷︷ ︸
ε/2

+ ε︸︷︷︸
ε/2

Apply ?? with opt0-1 = (1 − 2η)2−Θ(k), W =
√
n, α = 1/4, and ε = (1 − 2η)2−Θ(k)/4 to

obtain:

τ ≤ O

(
2Θ(k)n7/2

(1− 2η)4

)
Combine with theorem 26 and drop lower-order terms to prove theorem 13.

Theorem 14 and theorem 16 directly use the reductions of (Feldman et al., 2009). Their
theorems 2 and 3:

Lemma 27 Suppose learning sparse parities with noise uses τ(n, k, 1
1−2η ) time and data.

Then:

1. This mildly rephrases absolute error in terms of correlation: E
x,y

(|c(x)− y|) = 2P
x,y

(c(x) 6= y) = 1−χ(c).
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• under the conditions of theorem 14, learning length-` DNFs uses Õ( `
4

ε2
·τ(n, logB,B)3)

time, where B = Õ(`/ε).

• under the conditions of theorem 16, learning k-juntas uses O(2kk · τ(n, k, 2k−1) time.

With theorem 13, obtain these times for DNFs and juntas, respectively:

Õ

`4
ε2

(
`4

ε4
n9/2 `

Θ(1)

εΘ(1)

)3
 Õ

(
2kk · 2θ(k)n9/224(k−1)

)

A.4. Proof of theorem 15

A statistical query is a real-valued function of a datum q(x, y) : Rn×{−1, 1} → [−1, 1]. It is
issued along with a tolerance τ which is bounded by an inverse polynomial of the problem
size. The response is a value r satisfying E

x,y
(|q(x, y)− r|) ≤ τ . The algorithm uses the

data only to compute empirical gradients ĝt, which are estimates of true gradients gt. By
issuing n queries, one for each dimension, each gt may be crudely estimated to any inverse
polynomial accuracy. A polynomial number of queries thereby replaces direct access to
data. (Feldman et al., 2015) describes a more efficient estimation algorithm. Recall the
notation of ??:

gt,i = 〈gt, ei〉 = Et
x,y

(〈x, ei〉 yi) = E
x,y


q(x)︷ ︸︸ ︷t−1∏

j=1

(1−
∣∣hwj (x)

∣∣)
 · 〈x, ei〉 ·y︸ ︷︷ ︸

q(x,y)


Note the expectation may be written as E

x,y
(q(x, y)) = χ(q) for a function of just the input.

Such correlational queries are theoretically important. In particular, learning from correla-
tional queries is equivalent to evolvability in Valiant’s model (Feldman, 2008). This model
assumes opt = 1, Furthermore, since the distribution of x is fixed and known, correlational
queries may simulate general queries.
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