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Abstract

Running nonlinear RNNs for T steps takes Ω(T ) time. Our construction, called
LDStack, approximately runs them inO(log T ) parallel time, and obtains arbitrarily
low error via repetition. First, we show nonlinear RNNs can be approximated by a
stack of multiple-input, multiple-output (MIMO) LDS. This replaces nonlinearity
across time with nonlinearity along depth. Next, we show that MIMO LDS can
be approximated by an average or a concatenation of single-input, multiple-output
(SIMO) LDS. Finally, we present an algorithm for running (and differentiating)
SIMO LDS in O(log T ) parallel time. On long sequences, LDStack is much
faster than traditional RNNs, yet it achieves similar accuracy in our experiments.
Furthermore, LDStack is amenable to linear systems theory. Therefore, it improves
not only speed, but also interpretability and mathematical tractability.

1 Introduction

Nonlinear RNNs have two crucial shortcomings. The first is computational: running an RNN for
T steps is a sequential operation which takes Ω(T ) time. The second is analytical: it is challenging
to gain intuition about the behavior of a nonlinear RNN, and even harder to prove this behavior
is desirable. These shortcomings have motivated practitioners to abandon RNNs altogether and to
model time series by other means. These include hierarchies of (dilated) convolutions [Oord et al.,
2016, Gehring et al., 2017] and attention mechanisms which are differentiable analogues of key-value
lookups [Bahdanau et al., 2014, Vaswani et al., 2017]. In these models, the underlying parallel
primitives are convolution and matrix multiplication, respectively.

This paper addresses both of these shortcomings. We present a method to approximately run and
differentiate nonlinear RNNs in O(log T ) parallel time, by rebuilding them from linear dynamical
systems (LDS). In these, the next state st+1 = Ast +Bxt is a linear function of the current state st
and input xt. They are a mainstay of control theory and many engineering applications because their
behavior can be understood and regulated [Zhou et al., 1996]. Single-input, multiple-output (SIMO)
LDS, which map a sequence of input numbers to a sequence of output vectors, are our core primitive:
we present an algorithm to run and differentiate them in O(log T ) parallel time.

Summary of Main Ideas. Our approach is to (1) approximate the RNN by a stack of multiple-input,
multiple output (MIMO) LDS, then (2) approximate the MIMO LDS by an aggregation of single-
input, multiple-output (SIMO) LDS, and finally (3) run the SIMO LDS in O(log T ) parallel time
using scans and reductions. In step (1), we take the LDS, measure the deviations of its linear steps
from desired nonlinear ones, and add those as corrections to the LDS in the subsequent layer. This
scheme is naturally parallel, since the corrections are based on only local information; surprisingly, it
is provably consistent. A multiplicative variant has already been extensively used to analyze nonlinear,
continuous-time dynamical systems [Tomás-Rodríguez and Banks, 2010].
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For step (2), we consider two kinds of aggregation: averaging and concatenation. The averaging
approach uses a standard technique in randomized numerical linear algebra: the d-dimensional inputs
xt are repeatedly, randomly projected to a single dimension. The concatenation approach pre-applies
a d× d transformation to the inputs. Then, the inputs are given to d coupled SIMO LDS, each of size
n/d. This approach builds upon the canonical form of Luenberger [1967], which decomposes the
MIMO LDS into smaller SIMO LDS, whose sizes are called the controllability indices of the MIMO
system. Unfortunately, these quantities are onerous to estimate or to even compute. Using a perturbed
Luenberger form, we show that a uniform size n/d may be used with essentially no loss in generality.

Finally, step (3) exploits the linear-algebraic structure of SIMO LDS. It is known that linear recur-
rences s′t+1 = λ◦s′t+ bt, which involve entrywise multiplication ◦, can be run in O(n log T ) parallel
time via scans and reductions. A SIMO LDS can be taken to this form via diagonalization, i.e. by
running the LDS in the basis of its eigenvectors. When the SIMO LDS is in a canonical form, its
eigenvectors have closed-form expressions in terms of its eigenvalues. Accordingly, the set of SIMO
LDS is exactly parameterized by just n numbers, which are provided to the recurrence solver.

Outline. We present our approach in a bottom-up fashion. Then, we empirically evaluate it on
artificial and real datasets. LDS achieve state-of-the-art performance on the copy memory problem.
LDStack can be substantially faster than traditional RNNs, while achieving competitive accuracy.
Finally, we offer guidance on how our constructions could be improved in future work.

2 Linear Dynamical Systems

Linear dynamical systems have enjoyed a renaissance in machine learning theory. There have been
many recent advances in algorithms for learning LDS from input-output data [Hardt et al., 2016,
Oymak and Ozay, 2019, Simchowitz et al., 2019, Sarkar and Rakhlin, 2019]. The sample complexity
of this task is well-studied [Simchowitz et al., 2018, Jedra and Proutiere, 2019]. As analytical testbeds,
they capture the behavior of optimization algorithms [Lessard et al., 2016] and establish baseline
performance for reinforcement learning [Recht, Matni et al., 2019] and online learning [Hazan et al.,
2017, Kozdoba et al., 2019, Ghai et al., 2020]. Efficient and robust algorithms have recently been
developed for controlling LDS [Dean et al., 2019, Hazan et al., 2020].

This section reviews some basic material about LDS. At time t ∈ [T ], let the input be xt ∈ Rd.
Starting from an initial state s0 ∈ Rn, an LDS produces subsequent states st+1:

st+1 = Ast +Bxt = At+1s0 +

t−1∑
τ=0

Aτ+1Bxt−τ yt = Cst +Dxt +D0 (1)

where A ∈ Rn×n and B ∈ Rn×d. By recursively unrolling the first equality, we see the states are
a convolution of the inputs (with an infinite kernel size and only one stride dimension). Outputs
yt ∈ Rm may be optionally produced, using C ∈ Rm×n, D ∈ Rm×d, and D0 ∈ Rm.

2.1 SIMO Canonical Form

An LDS is reachable, roughly speaking, if we can take it to any state by supplying the right input.
Definition 1 (Reachability). A state s ∈ Rn is reachable if there is a sequence of inputs x1, . . . , xT
which leads to sT = s. An LDS is reachable if every state s ∈ Rn is reachable. 1

Lemma 1 (Hautus). An LDS is reachable iff A is nonsingular and, for all γ ∈ C, the n× (n+ d)
matrix [γI −A;B] has full rank n.

A reachable SIMO LDS (Ã, B̃, C̃,D) is placed in canonical form (A,B,C,D) by T ∈ Rn×n:

A = T ÃT −1 =


0 0 0 −a0

. . . 0 0
...

0 1 0 −an−2

0 0 1 −an−1

 B = T B̃ =


1
0
...
0

 C = C̃T −1 (2)

1In continuous time, reachability and controllability are equivalent. In discrete time, they are equivalent
when A is nonsingular.
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T −1 is the controllability matrix of (Ã, B̃) [Ding, 2010], which will be defined in (4). a0, . . . , an−1

are the coefficients of A’s characteristic polynomial t 7→ tn +
∑n−1
i=0 ait

i. A is determined by its
eigenvalues λ, since ai = (−1)n−ien−i(λ), where ei is the ith elementary symmetric polynomial.
Equation (2) is called the Frobenius companion form, and is one of many similar companion forms
[Fiedler, 2003, Eastman et al., 2014]. We also consider the transpose form, which replaces (A,B) by
(AT , [0, . . . , 0, 1]T ). In these forms, the number of parameters reduces from n2 + n to just n, for λ.

2.2 Diagonalization

A = V −1ΛV where Λ is a diagonal matrix of the eigenvalues λ. V is the Vandermonde matrix in λ
with entries Vi,j = λj−1

i . Its rows are the (row) eigenvectors of A. Since A is not symmetric, the
eigenvectors are neither real nor orthonormal. However, since A is real, any complex eigenvalues
come in conjugate pairs: if λj = αj − βji is an eigenvalue, then so too is λj = αj + βji. Defining
s′t = V st, B′ = V B and C ′ = CV −1, we diagonalize the system to a modal form:

s′t+1 = V Ast + V Bxt = λ ◦ s′t +B′xt yt = C ′s′t +Dxt +D0 (3)

The transpose form is often factored in a slightly different way, for analytical purposes.

Lemma 2. A = UΛU−1 where the jth column of U is uj =
[

1
λj

n−i

]
1≤i≤n. (Leslie [1945], Brand

[1964]; see the appendix for a self-contained proof.)

Multiplication by V and V −1 are equivalent to polynomial evaluation and interpolation, respectively.
That is, V c evaluates a univariate polynomial, with coefficients c in the monomial basis, at points
λ1, . . . , λn; V −1y recovers the coefficients. Naively performing these operations may be numerically
unstable, due to high-degree powers of λ. These operations may be more accurately performed in
O(n2) time by Horner’s method and the algorithm of Björck and Pereyra [1970], respectively.

2.3 MIMO Luenberger Form

Let bi be the ith column of B. The controllability matrix of a MIMO LDS has dimensions n× (n · d):

C = [b1, . . . , bd, Ab1, . . . , Abd, . . . , A
n−1b1, . . . , A

n−1bd] (4)

From left to right, take n columns, but skip a column if it is linearly dependent on the columns taken
so far. If this procedure skips Aubi, it will also skip the higher powers Au+1bi. For i ∈ [d], the
controllability index µi is the first power of A skipped for bi. For reachable LDS,

∑
i µi = n.

The Luenberger form (A∗d, B∗dE,C,D) expresses any reachable, multiple-input LDS as the con-
catenation of d coupled, reachable, single-input LDS, whose sizes equal the controllability indices
[Luenberger, 1967]. Visual examples of A∗d and B∗d are given in Figure 3. A∗d has, along the
block diagonal, d transpose-form SIMO LDS transition matrices of sizes µi. It has off-diagonal
entries which couple the SIMO LDS at their inputs. Similarly, B∗d is the block diagonal matrix of
d transpose-form B vectors, each of dimension µi × 1. E is an invertible, upper triangular matrix
which depends on the original system parameters. It is pre-applied to the inputs.

3 SIMO LDS in O(n log T ) Parallel Time and n Parameters

The following result makes reachable SIMO LDS our key computational primitive.
Proposition 1. Reachable, SIMO, n-state LDS are exactly represented by their distinct, nonzero,
complex eigenvalues λ ∈ Cn, without further constraints. These eigenvalues can be concretely
parameterized by n (or fewer) real numbers. Given the parameters and a length-T sequence of inputs
x, it is possible to compute the LDS outputs, and their gradients with respect to the parameters, in
O(n log T + n2) time on O(T ) parallel processors.

It is underpinned by the following algorithm for parallel linear recurrences (PLR).
Proposition 2. Let λ1, . . . , λT and b1, . . . , bT be sequences of n-dimensional vectors. Let ◦ denote
entrywise product between vectors. For t ∈ [T ], the recurrence s′t+1 = λt ◦ s′t + bt, and its gradients,

can be computed in O
(
n
(
T
p + log p

))
depth (aka parallel time) on p parallel processors. This is

O(n log T ) parallel time when p = O(T ) . [Martin and Cundy, 2018]
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1. Initialize real variables and use them to define eigenvalues λ. In the standard parameterization
(left), the variables are α and β, whose total length is n. In the unit parameterization (right), the
variables are θ, whose length is n/2.

a ∼ Normal(0, 1/n)n

λ = roots
(
t 7→ tn +

n−1∑
i=0

ait
i
)

α, β satisfy λ = [α+ βi, α− βi]

θ ∼ Uniform(−2π, 2π)n/2

λ = [exp(θi), exp(−θi)]

2. Given a sequence of inputs x ∈ RT , compute the sequence of states s′t+1, and
their gradients ∇s′t+1 with respect to the underlying real parameters. Use the algorithm of
Proposition 2 on the recurrence s′t+1 = λ◦s′t+B′xt given in (3), whereB′ is the all-ones vector.

3. (Optional). Convert st = V −1s′t using the algorithm of Björck and Pereyra [1970]. Finally,
compute the outputs yt using an additional dense layer, as in Equation (1). Alternatively, compute
yt = Re(C ′s′t) +Dxt +D0 using a relaxation C ′ ∈ Cm×n.

Figure 1: Summary of how reachable SIMO LDS, with spectral parameterizations, can be used as a
fast layer in a neural network. Also consider the “hinge” parameterization in the appendix. Martin
and Cundy [2018] implemented the PLR algorithm in CUDA; we extend it for complex inputs.

Proposition 1 involves three steps. First, the complex LDS eigenvalues λ must be concretely
parameterized by real numbers, which in turn must be reasonably initialized. Then, the LDS must be
diagonalized according to (3). At first glance, it seems more straightforward to directly parameterize
λ and B′ in the diagonal form (3). Unfortunately, this does not exactly capture the set of reachable
SIMO LDS, unless additional constraints are imposed. If λ and B′ are taken to be real, then only a
subset is expressed; if they are complex, then a superset is expressed, and the number of parameters
doubles. For analytical and practical reasons, it is desirable to exactly use reachable LDS. (For
example, if LDS are stacked in a neural network, then reachability would ensure each layer can
supply a full spectrum of input to the subsequent layer.)

Parameterization. The standard approach is to separately parameterize the real and imaginary (if
present) parts of λ. Since the complex eigenvalues present in conjugate pairs, this requires only n real
parameters (α, β) in total. More specifically, the complex pairs are λj = αj−βji and λ̄j = αj +βji.
The real eigenvalues just have αj . For long-term dependencies, it is useful to constrain |λj | = 1,
as in orthogonal or unitary A [Arjovsky et al., 2016]. This constraint is trivial in our framework.
Suppose λj has polar representation (rj , θj). Then a zero real part of lnλj = ln rj + θji corresponds
to magnitude rj = 1. Parameterize lnλ with 0 real part and ±θ imaginary part, then exponentiate.

Initialization. For the previously defined real variables, typical random initialization, such as
sampling from a truncated normal, lead to numerical instability. In the standard parameterization, we
found it useful to initialize near unit eigenvalues. It is known that a monic polynomial with random
coefficients has roots λ of magnitude close to 1 [Hughes and Nikeghbali, 2008]. These may be
obtained by randomly initializing the coefficients a in (2), and then computing the eigenvalues of A
[Aurentz et al., 2015]. For the unit parameterization, the coordinates θj must be kept numerically
distinct. For moderate n, uniform random initialization is suitable. For large n, a low-discrepancy
sequence, such as the van der Corput sequence, may be preferable.

Diagonalization. The two computational tasks are computing B′ (for use in PLR) and converting
between st and s′t. For the standard form, B′ = V [1, 0, . . . , 0]T = [1, . . . , 1] since that is the first
column of V . As reviewed in Section 2, conversion between st and s′t may be accomplished by
polynomial evaluation and interpolation algorithms. For the transpose form expressed in terms of U ,
B′ is the last column of U−1. For completeness, this is derived in the appendix.

Lemma 3. Given the (unnormalized) definition of U in Lemma 2, the complex conjugate of the last
column of U−1 is B′ =

[
λn−1
i /

∏
j 6=i (λi − λj)

]
1≤i≤n

4



Figure 2: Illustration of a MISO LDS (black), of state size n = 16, operating on inputs of d = 32
dimensions over T = 1024 timesteps, approximated by SISO LDS. In light gray (nearly filling the
background) are 512 SISO LDS, induced by random projections per Proposition 6. These have very
high variance and do not approximate the MISO LDS. The two blue lines represent the average of
two independent subsamples of 16 SISO LDS. These small averages still do not approximate the
MISO LDS. The red line is the average of all 512 SISO LDS. This is fairly close to the MISO LDS.

Related Work. LDS are often reparameterized for computational benefit [Shalit and Chechik, 2014],
sometimes in terms of induced subspaces De Cock and De Moor [2002], Huang et al. [2017]. Chang
et al. [2018] also study complex eigenvalue parameterizations with zero real part. Hsu et al. [2020]
analyze LDS clustering using the Vandermonde decomposition. Previous algorithms attempt to run
LDS in constant time with respect to T [Martens, 2010, Kozdoba et al., 2019]. However, these
works rely on stability assumptions and approximations: they do not exactly compute forward and
backward passes of LDS. Furthermore, they require the inputs to be partially and completely noise,
respectively. Surprisingly, Lemma 3 does not plainly appear in the literature, even in recent work on
generalizations of Vandermonde matrices [Rawashdeh, 2018]. Its proof uses the same technique as
the “eigenvectors from eigenvalues” theorems that have gained recent attention in disparate areas
of applied mathematics [Denton et al., 2019]. These results are more general, but do not yield
closed-form expressions, and do not directly apply to the inverse matrix U−1.

4 Approximating MIMO LDS by SIMO LDS

4.1 Improper Learning: Random Projection

MIMO LDS can be approximated by the average of r SIMO LDS, each produced by randomly
projecting the input vectors to a single dimension. These LDS share the same weights λ.
Proposition 3. Let x1, . . . , xT ∈ Rd and y1, . . . , yT ∈ Rm be the inputs and outputs of a reachable
MIMO LDS with parameters (A,B,C,D). For each j ∈ [r], let gj be a d-dimensional standard
normal vector, x[j]

t = xTt gj be projected scalar inputs, and (A,Bgj , C,D) be the parameters of a
SIMO LDS producing outputs y[j]

t . Let ŷt = 1
r

∑r
j=1 y

[j]
t be the average output. For each t ≤ T ,

E ||yt − ŷt||2 =
∑m
j=1 2 ||Zt,j ||2F /r, where Zt,j =

∑t−1
τ=1 xt−τCj,:A

τB. Furthermore, the SIMO
LDS are almost surely reachable, and share the same canonical form matrix.

The proof of this equality uses standard techniques. Here is some brief intuition for the result.
Suppose m = 1 and each xt has standard N(0, 1) components, as is typical in dynamical systems
literature. Also assume that A’s spectral radius ρ < 1 (i.e. the LDS is strictly stable), ||B||2 ≤ 1, and
||C|| ≤ 1. By the definition of the Frobenius norm and independence of each input:

E tr(ZTt Zt) = tr

t−1∑
τ=1

BTAτTCT
(
E xTt−τxt−τ

)
CAτB ≤ d

t−1∑
τ=1

ρ2τ ≤ d ρ2

1− ρ2
(5)

Related Work. Gaussian projections are a key technique in randomized algorithms [Johnson and
Lindenstrauss, 1984, Kannan and Vempala, 2017]. Model reduction is the approximation of large-size
LDS by smaller-size LDS [Antoulas, 2005]. Proposition 3 does not reduce the size of the LDS, but
rather the dimension of its inputs.
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Figure 3: Left: is the Luenberger canonical form of a multiple-input LDS, with A to the left of
the vertical line and B to the right. It decomposes into four single-input LDS of sizes 9, 1, 1 and 1,
which match the controllability indices. After the addition of a tiny amount of noise (in the form
of a Gaussian matrix with variance 0.00000001), the canonical form decomposes into evenly-sized
single-input LDS. The asterisks denote nonzero values which couple the single-input LDS.

4.2 Proper Learning: Perturbed Luenberger Form

Proper learning of LDS, also known as system identification, is the task of recovering the parame-
ters (A,B,C,D) from input-output data. The Luenberger form, reviewed in Section 2.3, exactly
decomposes a MIMO LDS into a concatenation of smaller, SIMO LDS. It establishes a promising
connection between proper learning of MIMO LDS and proper learning of SIMO LDS. However, as
a parameterization used during learning, it has a crucial problem: the controllability indices, defining
the sizes of the SIMO LDS, are not known. In practice, the SIMO LDS must be sized according to a
loose upper bound, which then makes learning improper. Fortunately, the following result shows that
any MIMO LDS is nearly equal to a concatenation of coupled SIMO LDS, each of known size.
Proposition 4. Let n be divisible by d. Let (A,B) be the parameters of a reachable size-n LDS
taking d-dimensional inputs. For any ε > 0, there exists a perturbed system (Ã, B) such that (1)
||A− Ã|| ≤ ε, and (2) the controllability indices of (Ã, B) are all n/d. Therefore, the Luenberger
form of (Ã, B) is a concatenation of d coupled SIMO LDS, each of size n/d.

We may effectively treat any MIMO LDS data as if it originated from a system with equal control-
lability indices, i.e. equally-sized SIMO LDS. This result suggests that proper learning of LDS is
largely equivalent to proper learning of SIMO LDS, which supports the latter’s consideration as a key
primitive. We present the perturbed Luenberger form as a conceptual reduction from MIMO to SIMO,
rather than a practical algorithmic tool. The practical issue is that the SIMO LDS are coupled: the
next state for each LDS depends on not just its own state, but also on the state of the other (n/d)− 1
LDS. This prevents the LDS from running independently, and thereby hinders parallelization.

Related Work There is a vast literature on system identification [Ljung, 1999]. Subspace identifica-
tion (SSID) is the prevalent technique, utilized by the state-of-the-art work cited in the introduction.
SSID does not reduce MIMO to SIMO, as we do. It is well known that the controllability indices
are numerically unstable [Jordan and Sridhar, 1973]. Our result shows this numerical instability is a
blessing, since a small perturbation renders it useful. There are deterministic methods of modifying
the original system to obtain (nearly) equal controllability indices, at the expense of increased state
size [Cook, 1978]. The (mis)use of MIMO canonical forms as parameterizations for learning is
discussed in [Glover and Willems, 1974]. They discuss a numerical advantage of Luenberger’s
(pseudocanonical) form over MIMO canonical forms, and base a system identification method upon
it [Glover, 1973]. Subsequent works on ‘overlapping’ parameterizations also avoided the problem of
unknown structural indices [Corrêa and Glover, 1984, Gevers and Ah-Chung, 1985].
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Figure 4: Left: Visualization of the local corrections within LDStack. Suppose the ith layer’s states
h

(i)
t are all computed. We consider, at each t, two hypothetical steps from h

(i)
t : the linear step

Ah
(i)
t +Bxt and the nonlinear step ρ(Ah

(i)
t +Bxt). Their difference is the correction k(i)

t , which
is added to h(i+1)

t in the next layer. Note that h(i)
t+1 = Ah

(i)
t + Bxt + k

(i−1)
t does not coincide

with the hypothetical linear step, since it was corrected in a similar manner. The faint gray arrows
illustrate that the corrections are computed in parallel using only local information. Right: RNN
(black) approximated using stacked LDS of increasing depth (from top to bottom). Observe the
“correct from the start” behavior described in Proposition 5.

5 Approximating Nonlinear RNNs by Stacked LDS

Let ht+1 = ρ(Aht +Bxt) be an RNN which takes inputs xt ∈ Rd and an initial state h0 ∈ Rn, and
produces subsequent states ht ∈ Rn. Its nonlinearity ρ has deviation from linearity δ(a) = ρ(a)− a.
This deviation is used to define local corrections to an LDS, as follows:

ht+1 = (Aht +Bxt) + δ(Aht +Bxt) −→ h
(i+1)
t+1 = Ah

(i+1)
t +Bxt +

k
(i)
t︷ ︸︸ ︷

δ(Ah
(i)
t +Bxt) (6)

On the left is a trivial equality involving δ. Its first term is a linear transition from ht; its deviation
from a correct (nonlinear) transition is measured by the second term. The approximation starts with a
plain LDS h(0)

t+1 = Ah
(0)
t +Bxt; then, its deviations are used as corrections k(0)

t to a subsequent LDS.
Iterating this construction yields a stack of corrected LDS. As the previous layer’s states h(i)

t become
close to the next layer’s h(i+1)

t , the corrections become more accurate. With enough layers, the
nonlinear RNN is exactly recovered. More generally, the layers are “correct from the start”. Since the
initial state h(0)

0 = h0 is correct, the first layer gets the first state correct: h(1)
1 = Ah0 +δ(Ah0) = h1.

The second layer gets the second state correct, and so forth, yielding a consistency guarantee.

Proposition 5. h(∆)
t = ht for all t ∈ [∆]. Thus, h(T ) = h.

Since the stacked LDS have nonlinearity along depth, they may seem just as difficult to analyze as the
original nonlinear RNN. Fortunately, our construction is a discrete, additive version of a continuous,
multiplicative scheme developed in control theory [Tomás-Rodríguez and Banks, 2010]. It has been
extensively used to analyze nonlinear dynamical systems via sequences of linear approximations.
Controllers for aircraft, supertankers, and autopilots have been derived with this approach [Çimen
and Banks, 2004]. It is possible to derive explicit solutions for the linear approximation in terms of
an underlying Lie algebra [Banks, 2002]. The appendix describes this control-theoretic precursor of
our construction. It is reasonable to expect that some of the same analytic techniques will carry over.

Related Work. Generalizing earlier works [Balduzzi and Ghifary, 2016, Bradbury et al., 2017],
Martin and Cundy [2018] advocate the removal of nonlinearities across time, while introducing
nonlinearity along depth. Given an RNN, they replace nonlinear dependencies across time with a
“linear surrogate” amenable to PLR. These new RNNs can run in parallel, but it is not clear they
can approximate the original nonlinear RNNs, and they are not as well-studied as LDS. Restricted
subclasses of RNNs can be approximately differentiated in constant time [Liao et al., 2018]. There
are substantial efforts to understand nonlinear RNNs [Karpathy et al., 2015] and develop provable
learning algorithms for them [Allen-Zhu and Li, 2019, Allen-Zhu et al., 2019, Foster et al., 2020].
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Figure 5: On the copying memory problem, standard RNNs do not outperform a trivial baseline. We
solve it with the simplest model to date: a unitary SISO LDS, as described in Figure 1.

The culmination of our results is the neural network layer LDStack(ρ,n,∆, r)(x,h0). It takes (a
batch x of) length-T sequences of d-dimensional vectors, and an n-dimensional initial state h0. It
returns (a batch ĥ of) length-T sequences of n-dimensional states. It uses O(∆n2 log T log r) time
on O(rT ) parallel processors.2 Its settings are the nonlinearity ρ, state size n > 1, depth ∆ ≥ 1, and
number of projections r ≥ 1. It has O(n+ n2d) trainable weights and rd fixed weights.

LDStack details. Suppose the (unknown) RNN has parameters (Ã, B̃) which define a reachable
LDS. Let C be its n× (n×d) controllability matrix. At initialization, random projections gj ∈ Rd are
drawn, for j ∈ [r]. The first layer is an average of plain SIMO LDS. Let x[j]

t = xTt gj be the projected
input of the jth SIMO LDS. s(0)′

j,t+1 = λ ◦ s(0)′

j,t +B′x
[j]
t are computed in parallel, per Section 3. To

compute the corrections, reverse the canonical and diagonal transformations Tj and V according to
(2) and (3). Recall from (2) that T −1

j = Cj , the n× n controllability matrix of the jth SIMO LDS
(Ã, B̃gj). Then Cj = [Bgj , ABgj , . . . , A

n−1Bgj ] = C · gj . Eliding superscripts:

Ãs̃j,t + B̃xt = T −1
j A Tj s̃j,t︸ ︷︷ ︸

sj,t

+T −1
j Bxt =T −1

j (Asj,t +Bxt) = T −1
j V −1(Λ

s′j,t︷ ︸︸ ︷
V sj,t +V Bxt)

=T −1
j V −1(λ ◦ s′j,t +B′xt)

We introduce a free parameter W ∈ Cn×n×d which ideally satisfies W · rj = (C · rj)V −1, so it
can directly perform the reverse transformations T −1

j V −1. Averaging within (6), the corrections

are k̃(0)
t = δ( 1

r

∑r
j=1 Ãs̃

(0)
j,t + B̃x

[j]
t ). Now we compute the next layer. Take the corrections back

to the diagonalized basis as k(0)′

j,t = V Tj k̃(0)
t . The corrected SIMO LDS are run in parallel using

s
(1)′

j,t+1 = λ ◦ s(1)′

j,t +B′x
[j]
t + k

(0)′

j,t . After ∆ layers, ĥ(∆−1)
t = 1

r

∑r
j=1 s̃

(∆−1)
j,t are returned.

6 Experiments

Copy memory problem [Arjovsky et al., 2016, Hochreiter and Schmidhuber, 1997]. The goal is
to remember the first 10 entries r of an input sequence, withhold output for T steps (for which the
inputs are just “blanks”), and, upon seeing a “go” input at time T + 10, to output r. There is a SISO
LDS which achieves zero error [Henaff et al., 2016], so we do not consider LDStack of higher depth.
Unitary RNNs are known to solve the problem, so we use the unit parameterization of Figure 1.
Arjovsky et al. [2016] use LSTM, simple tanh RNN, and uRNN of respective sizes n = 40, 80, and
128 for parameter counts of roughly 6500. We use n = 160, which results in just 3380 parameters,
including C ′ ∈ Cn×n. Our solution is the state of the art: it uses the simplest (linear) RNN with
the fewest parameters to solve the T = 2000 instance. This has demanded full-capacity uRNNs
[Wisdom et al., 2016] or subsequent nonlinear RNNs [Lezcano-Casado and Martínez-Rubio, 2019].

2For simplicity, this time bound does not internally parallelize O(n2) matrix-vector multiplication and linear
system solving. The analogous bound for nonlinear RNNs is O(n2T ).
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Figure 6: Top left: Sequential permuted MNIST. Top right: Runtimes for different sequence lengths.
Bottom: the adding problem, with larger sequence lengths representing more challenging problems.

Sequential permuted MNIST. The images are presented as length-784 sequences of pixels. Their
order is arbitrary, but fixed across all images. We compare an n = 384 SIMO LDS having ~16,500
parameters to an n = 128 LSTM having ~68,000 parameters, as well as an n = 128 tanh RNN
having ~18,000. The LDS and the LSTM achieve similar accuracies of 91.8% and 92.3%. This
performance is not state of the art: for example, Chang et al. [2018] achieve 95.8% accuracy with
10,000 parameters. However, the LDS steps take 73ms, compared to 324ms for the unfused RNN.

Runtime comparison. LDStack (prototype code in both Python and CUDA) is always faster than
unfused RNNs. At longer sequence lengths, it is even faster than the highly-optimized, fused CuDNN
LSTM. The O(T ) and O(log T ) asymptotics manifest plainly.

Adding problem [Arjovsky et al., 2016, Hochreiter and Schmidhuber, 1997]. Each input has
dimension T × 2. The output is the sum of the two numbers (from the first dimension) which are
marked by ones (in the second dimension); the rest of the numbers are marked by zeros. Trivially
returning 1 achieves mean-squared error 0.167. This problem cannot be solved by an LDS, so it
exercises both random projection and nonlinear approximation by stacking. We use LDStack with
state size n = 32, depth ∆ = 2, and r = 6 projections. This has 4,175 parameters, compared to
~27,000 and ~17,000 for an LSTM and tanh RNN, respectively, having n = 80. The simple RNN
fails to beat the trivial baseline. The LSTM and LDStack both solve the problem up to T = 750,
though the latter takes longer to converge, and is more unstable in later epochs.

7 Conclusion and Future Work

This paper presents a new program for developing fast and trustworthy RNNs, based on the core
primitive of SIMO LDS. In order for this program to succeed, significant limitations must still be
overcome. Approximation guarantees for low-depth stacks must be studied. Although LDStack
scales well with T , it is inefficient in other respects: memory use scales with depth, and parameters
scale as O(n2d). We have not closely examined algorithms for learning LDStack, even though RNNs
suffer from the vanishing/exploding gradient problem. Finally, deep learning primitives are heavily
optimized for GPUs [Chetlur et al., 2014]; our implementation requires similar treatment.

9



8 Broader Impact

The broad impact of our work is to make RNNs faster and more trustworthy. Trustworthiness -
encompassing the topics of robustness, interpretability, and fairness - is a major concern about deep
learning. In many applications, trustworthiness is as important as the traditional metrics of speed
and accuracy. Lack of trust is now hindering adoption of machine learning in healthcare, law, social
media, and other fields. In this work, we hope to bolster society’s faith in machine learning models,
particularly recurrent neural networks, without sacrificing the speed and accuracy which are also
required of them. Responsible applications of our work will balance trustworthiness, speed, and
accuracy according to the best interests of those affected by the resulting algorithm.
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10 Appendix

10.1 Proof of Lemma 2

Proof. We wish to show Auj = λjuj . If the theorem is true, then λjuj,i = λj
1

λj
n−i = 1

λ
n−(i+1)
j

=

uj,i+1. Recall the state update of the controllable LDS, which shifts n− 1 entries and computes a
dot product in the last entry:

Auj =


uj,2

...
uj,n−1

−
∑
i ai−1uj,i

 =


λjuj,1

...
λjuj,n

−
∑
i ai−1/λj

n−i


It suffices to show:

−
∑
i

ai−1/λ
n−i
j = λjuj,n = λj i.e.

∑
1≤i≤n

ai−1

λ
n−(i−1)
j

= −1 (7)

It is well known that the characteristic polynomial ofA is p(t) = a0+a1t+a2t
2+. . .+an−1t

n−1+tn.
By definition, its roots (those t where p(t) = 0) are the eigenvalues of A.
So each λj satisfies:

0 = a0 + a1λj + a2λj
2 + . . .+ an−1λj

n−1 + λj
n = λj

n

1 +
∑

1≤i≤n

ai−1

λ
n−(i−1)
j


Either we have a null eigenvalue λj = 0, or we have the desired equation (7).

10.2 Proof of Lemma 3

Proof. Let vi be the ith row of U−1. The dual basis of U is (U−1)T , i.e. uTi vi = 1 and for all
j 6= i, uTi vj = 0. Since B′ is the conjugate of the nth column of U−1, it is determined by the nth
coordinates of the vi. We derive these by employing the adjugate technique of Denton et al. [2019].
Recall the determinant det(A) =

∏
i λi is the product of the eigenvalues. Also recall the following

general definition of the adjugate matrix, when A is diagonalizable but not necessarily Hermitian:

adj(A)i,j =

n∑
k=1

∏
l 6=k

λl

uk,iv̄k,j

For any k, replace A by λkλIn −A. This causes all but one of the summands to vanish, yielding the
following simplication:

adj(λkI −A)i,j =

∏
l 6=k

(λk − λl)

uk,iv̄k,j

Setting i = 1 and j = n, and substituting the previously derived entries of uk:

adj(λkI −A)1,n =

∏
l 6=k

(λk − λl)

 1

λn−1
k

v̄k,n (8)

By the Laplace expansion of the adjugate matrix of A, adj(λkI −A)1,n) = (−1)1+ndet(M), where
M is the minor of λkI −A produced by removing its nth row and 1st column. It is straightforward to
show that the only eigenvalue of M is −1 with multiplicity n− 1, and therefore det(M) = (−1)n−1.
Therefore adj(λkI − A)1,n = (−1)2n = 1. Combining this with (8) obtains an equality for each
v̄k,n, which matches the desired result.
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10.3 Proof of Proposition 3

Proposition 3 is an easy corollary of the following proposition, which involves MISO LDS rather
than MIMO LDS.
Proposition 6. Let x1, . . . , xT be any sequence of d-dimensional inputs, and let y1, . . . , yT be the
corresponding outputs of a reachable MISO LDS with parameters (A,B,C,D). For each j ∈ [r], let
gj be a d-dimensional standard normal vector, x[j]

t = gTj xt be a projected sequence of scalar inputs,

and (A,Bgj , C,D) be the parameters of a SISO LDS producing outputs y[j]
t . Let ŷt = 1

r

∑r
j=1 y

[j]
t

be the average output. For each t ≤ T , E(yt − ŷt)2 = 2 ||Zt||2F /r, where Zt is defined below in (9).
Furthermore, the SISO LDS are almost surely reachable, and share the same canonical form matrix.

Proof. While proving this result, let us take D = 0 and s0 = 0 for notational simplicity. (These are
just constant terms which do not affect the result.) From the convolution representation (1) and the
random construction of the SISO LDS, we find that the approximation is unbiased:

E ŷt = E
1

r

∑
j

t−1∑
τ=1

CAτBgjg
T
j xτ =

t−1∑
τ=1

CAτB

(
1

r
Egjg

T
j

)
xt−τ = yt

Therefore the mean squared error is just the variance:

E (yt − ŷt)2 = E ((E ŷt)− ŷt)2 = V(ŷt)

By the independence of the gj , and the cyclic property and linearity of trace, we reduce to the variance
of a quadratic in normal variables:

V(ŷt) =V

t−1∑
τ=1

tr(CAτB

1

r

r∑
j=1

gjg
T
j

xt−τ )


=

1

r2

r∑
j=1

V

(
t−1∑
τ=1

tr(gTj xt−τCA
τBgj)

)

=
1

r2

r∑
j=1

V

(
gTj gj

t−1∑
τ=1

CAτBxt−τ

)

=
1

r2

r∑
j=1

V

(
gTj

t−1∑
τ=1

xt−τCA
τB︸ ︷︷ ︸

Zt

gj

)
(9)

The inner quadratic is not changed by replacing Zt, which is asymmetric, with Z̄t = 1
2 (Zt + ZTt ),

which is symmetric, diagonalizable, and shares the same eigenvalues ν1, . . . , νd. gj retains its
distribution under the rotation U that diagonalizes Z̄t. We find the variance is just the squared
Frobenius norm of Zt:

V
(
gTj Z̄tg

T
j

)
=V

(
gTj U

T diag(ν)Ugj
)

=V

(
d∑
i=1

g2
j,iνi

)
= 2

d∑
i=1

ν2
i = 2 ||Zt||2F

Now we verify that the SISO LDS are almost surely reachable, assuming the MISO LDS is reachable.
By Lemma 1, we must show that if [γI −A;B] has full rank for all γ ∈ C, then [γI −A;Bgj ] also
does, almost surely. This holds because gj has density with respect to Lebesgue measure.

To conclude the proof of Proposition 6, denote the MIMO LDS matrices above as (Ã, B̃). When
projected to SIMO LDS (Ã, B̃gj), their canonical forms (Aj , B) are obtained via Ãj = T −1

j ATj . Let
vi and λi be an eigenvector and corresponding eigenvalue of Ã: Ãvi = λivi. Then AjTjvi = λiTjvi,
so the Aj share the same eigenvalues as Ã. Since Aj are companion matrices of the same form (2),
this means they are actually the same matrix A.
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10.4 Proof of Proposition 4

The following proposition implies Proposition 4.
Proposition 7. Let n be divisible by d. Let A ∈ Rn×n and B ∈ Rn×d be full rank. Let (A,B)
form a reachable MIMO LDS. Choose any ε > 0 and any (Schatten) matrix norm ||·||. There is a
δ > 0 such that the following holds. Let G be an n× n matrix of normal variables of mean zero and
variance δ, and Ã = A+G. Then, with nonzero probability,

∣∣∣∣∣∣A− Ã∣∣∣∣∣∣ ≤ ε and the controllability

indices of (Ã, B) are all equal to n/d.

Proof. Clearly ||G|| ≤ ε with nonzero probability. The controllability indices are equal if the first n
rows of the controllability matrix (4) are linearly independent. Thus, we must show that the following
n× n matrix has full rank:

C:,:n = [B, (A+G)B, (A+G)2B, . . . , (A+G)n/d−1B]

The first d columns are linearly independent by assumption. In the remaining columns, since G
is normal — and therefore has density with respect to Lebesgue measure — linear independence
follows from a standard argument. C:,:n is full rank unless its determinant is zero. The determinant
is a polynomial p : Rn2 → R in the (flattened) entries of C:,:n. For any such polynomial p, the set
p = 0 has Lebesgue measure zero.

10.5 Approximation of Nonlinear Systems by Time-Varying LDS

Tomás-Rodríguez and Banks [2010] describe a method of approximating continuous-time dynamical
systems by linear, time-varying ones. We briefly review their method, showing how it gives rise
to a multiplicative variant of LDStack. Consider the following nonlinear, discrete-time dynamical
system: ht+1 = ρ(Aht) +Bxt. Bxt is usually inside the nonlinearity ρ, but we keep it separate for
reasons that will be discussed below. ρ must be continuously differentiable. Furthermore, in order for
the approximation scheme to be numerically stable, ρ must also be analytically “nice”, as described
below. We use the inverse square root activation ρ(a) = a/

√
1 + a2 as a running example.

We begin by viewing the RNN as an Euler discretization of a continuous-time dynamical system (e.g.
Tallec and Ollivier [2018]). Using the Taylor expansion h(t+ εt) ≈ h(t) + εt · ḣ(t), and taking a
step size of ε = 1, we obtain the following nonlinear differential equation: ḣ = ρ(Ah)− h+ Bx.
(We elide the dependence on t to simplify notation). The first step is to convert the dynamical system
to state-dependent coefficient (SDC) form: ḣ = A(h)h − h + Bx. Here, the nonlinear update is
factorized to resemble an LDS. SDC form does not allow A to depend on x, which is why Bxt was
kept outside of ρ(·). The SDC factorization can be derived in a straightforward manner.
Lemma 4. The following is a valid SDC factorization when ρ ∈ C1 and ρ(0) = 0. [Cimen, 2010]

A(h) =

∫ 1

0

dρ(Ah)

dh

∣∣∣∣
h=λh

dλ

We call ρ “nice” if the above factorization is numerically stable and can be analytically derived. For
our example ρ, a brief calculation shows the SDC form is:

ḣ = diag(1/
√

1 + (Ah)2)A︸ ︷︷ ︸
A(h)

h− h+Bx

Note that A(h)h is a multiplicative, entrywise correction of Ah based on its deviation from ρ(Ah).
Under weak conditions on A, the SDC-form nonlinear system can be approximated by a sequence of
linear, time-varying systems.
Theorem 1 (Informal). Let A be locally Lipschitz. Consider this sequence of time-varying LDS:

ḣ(0) =A(h0)h(0) − h(0) +Bx h
(0)
0 = h0

ḣ(i) =A(h(i−1))h(i) − h(i) +Bx h
(i)
0 = h0

As i→∞, the solution of h(i) converges to the solution of h. [Tomás-Rodríguez and Banks, 2010]
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Figure 7: Additive and multiplicative approximations of a nonlinear RNN (black). The latter converge
more quickly than the former, at least when the same matrix A is shared among the nonlinear RNN
and the approximating LDS.

The nonlinear RNN approximation in Definition 2 is just a discretization of Theorem 1.
Definition 2 (Nonlinear RNN Approximation). Let ρ be a continuously differentiable activation
function with ρ(0) = 0. For t ∈ [T ], let ht+1 = ρ(Aht) + Bxt be the n-dimensional states of an
RNN with parameters (A,B). Let A : Rn → Rn×n, as given by (4), be locally Lipschitz. This is a
stack of time-varying LDS whose depth is indexed by i:

h
(0)
t+1 =A(h0)h

(0)
t +Bxt h

(0)
0 = h0

h
(i)
t+1 =A(h

(i−1)
t )h

(i)
t +Bxt h

(i)
0 = h0

Our additive variant is more algorithmically convenient, whereas the multiplicative variant is superior
for approximation theory. Multiplicative corrections interfere with diagonalization, which is crucial
for our algorithms. However, as illustrated in Figure 7, additive corrections can produce oscillations
which lead to slower convergence. Note that this occurs when the LDS matrix A matches that of the
nonlinear RNN - a choice made for analytic simplicity, when A is known. At relatively small depths
∆, it may be possible to achieve better approximation with a different LDS matrix A∆. In a practical
learning setting, A∆ is learned directly, without any reference to the unknown A.
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10.5.1 Another Eigenvalue Parameterization

A problem with the standard (α, β) parameterization of λ is that the number of real and complex
eigenvalues is hardcoded. Two real eigenvalues cannot “cross over” to being complex conjugate
pairs, and vice versa. To remedy this, we might consider independently parameterizing the real and
imaginary parts of λ with 2n reals. Unfortunately, this does not constrain the complex numbers to
be conjugate pairs, so then λ1, . . . , λn are not necessarily the eigenvalues of a real matrix A. The
following “hinge” parameterization, defined in terms of two real numbers (α, ω), avoids both of these
issues. Let h(a) = max(0, a) be a ReLU. Consider these values:

α+ h(−ω)i and α+ h(ω)− h(−ω)i

If ω > 0, then the values simplify to α and α+ ω, which are real. If ω < 0, they simplify to α± ωi,
which are complex conjugate pairs. The values are distinct when ω 6= 0.

10.6 Additional Experiment Details

In all the experiments, we used Adamax [Kingma and Ba, 2014] as the optimizer for LDS and
LDStack. In some situations, we observed this choice substantially improved the rate of convergence.
We used Adam as the optimizer for the LSTM and simple RNN. Abbreviate the learning rate and
batch size as η and B, respectively. For the copy memory problem, η = 0.01, B = 256. For the
runtime comparison, n = 32 and B = 4. For sequential permuted MNIST, B = 128. LDS used
η = 0.0003, and the hinge parameterization described in Section 10.5.1. LSTM and simple RNN
used η = 0.01. In the adding problem, B = 32 there were 100 steps per epoch. LDStack used
η = 0.003 and the hinge parameterization. We observed faster convergence with a smaller n = 32
model LDStack than with a larger n = 64 one. LSTM and simple RNN used η = 0.01.
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