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Abstract

We use the statistical quantity of margin — the distance be-
tween a decision boundary and a classified point, or the gap
between two scores — to formalize the principle of equal op-
portunity — the chance to improve one’s outcome, regardless
of group status. This leads to a better definition of opportu-
nity which recognizes, for example, that a strongly rejected
individual was offered less recourse than a weakly rejected
one, despite the shared outcome. It also leads to simpler al-
gorithms, since real-valued margins are easier to analyze and
optimize than discrete outcomes. We formalize two ways that
a protected group may be guaranteed equal opportunity: (1)
(social) mobility: acceptance should be within reach for the
group (conversely, the general population shouldn’t be cushi-
oned from rejection), and (2) contrast: within the group, good
candidates should get substantially higher scores than bad
candidates, preventing the so-called ‘token’ effect. A simple
linear classifier seems to offer roughly equal opportunity both
experimentally and mathematically.

In machine learning, the outcome of a candidate x is of-
ten determined by a real-valued score s(x) ∈ [−1, 1]. A
deterministic classifier c(x) = sgn(s(x)) ∈ {−1, 1} uses
the sign of the score to determine whether the individual is
accepted or rejected. A randomized, confidence-based clas-
sifier returns sgn(s(x)) with probability |s(x)|, and guesses
randomly otherwise. An accurate classifier minimizes the
probability of misclassification P (c(x) 6= yx) relative to the

correct outcomes yx ∈ {−1, 1}. In ranking, the score is used
to compare candidates. An accurate ranking maximizes the
probability of ranking a good candidate x higher than a bad
candidate x′: P (s(x) > s(x′)).

Since discrete optimization problems are harder than
their continuous variants, underpinning outcomes by sco-
res is computationally expedient. The continuous optimiza-
tion problems are often based on a quantity called the mar-
gin: a distance in either the input space (of x) or the output
space (of s(x)). In the input space, this is a distance bet-
ween x and the decision boundary. (For a linear classifier
c(x) = sgn(〈w, x〉), this typically refers to |〈w, x〉|). In the
output space, s(x)−s(x′) is the margin by which x is ranked
higher than x′.
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Besides being accurate, a score should be fair. Suppose
candidates belong to either a protected group Π or the gene-
ral population Πc; for example, Π may be an underrepresen-
ted minority. In classification, the most well-known defini-
tion of group fairness is demographic parity, which equali-
zes the acceptance rate of Π and Πc. Rather than enforcing
equal outcomes, this paper focuses on fair process. It for-
malizes two aspects of equal opportunity as ‘mobility’ and
‘contrast’. Before the formal discussion, here is some high-
level motivation for the definitions. Suppose a candidate in
Π is declined a job offer and seeks to improve her chance
the next time she applies. If she can devote just a few hours
per week to prepare, the magnitude of her effort is limi-
ted. Mobility allows candidates to become accepted through
a reasonable amount of effort. Also, the candidate directs
her effort by becoming more like her successful peers than
the unsuccessful ones. Contrast ensures that good candida-
tes have much higher scores (i.e. acceptance probabilities)
than bad ones, which makes it easier to discern the under-
lying differences between good and bad peers. Since these
guarantees must have the same strength for Π and Πc (on
average), the groups have equal opportunity.

Mobility and contrast are closely related to margins in in-
put and output space, respectively. We adapt these quantities
to capture equal opportunity, rather than merely recycling
them from machine learning, but still retain their analytic
tractability. As a result, we can prove that mobility and con-
trast (or at least precursors thereof) are offered by a very sim-
ple linear classifier computed by averaging the data. These
results are validated on adult income data.

Notation. Let 〈w, x〉 =
∑
i wixi be the inner product in

n-dimensional Euclidean space Rn. Let X ⊂ Rn be the set
of all candidates; to ease notation, we assume it has finite
size |X|. Each candidate has a correct outcome yx equal to
either−1 (‘bad’) or 1 (‘good’). The protected group is a sub-
set Π ⊂ X , and the general population is the complement
Πc. We partition the good and bad members of Π:

Π+ = {x ∈ Π : yx > 0} Π− = Π \Π+

We similarly partition Πc into
∏c

+ and
∏c
−. Let c : X →

{−1, 1} and s : X → [−1, 1] be a classifier and score.
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Figure 1: Suppose the horizontal line c classifies the protected group Π and general population Πc perfectly; it is still unfair in
the first scenario. Rejected members of Π are a far distance from acceptance, whereas those accepted are a close distance from
rejection. By contrast, rejected members of Πc aren’t as far, and accepted ones are cushioned from rejection. This imbalance is
rectified in the ‘fair’ scenario. µΠ and µΠc are, respectively for Π and Πc, the average distance of accepted members minus the
distance of rejected members. The corresponding directions gΠ and gΠc are thought of as ‘genuine’ opportunities, as explained
below.

(Social) mobility
Take a candidate x ∈ Rn and change them by adding
o ∈ Rn. The direction of the change o represents an ‘oppor-
tunity’ if it causes a rejected x to be accepted, or an ‘offense’
otherwise. The size of the change ||o|| represents ‘effort’ to
be accepted, or ‘slack’ to be rejected. The margin of a can-
didate x is the smallest ||o|| such that c(x + o) 6= c(x).
This standard margin definition allows arbitrary o, which
may correspond to unnatural or unlikely changes, and would
be incompatible with the principle of equal opportunity:

“Even if all are eligible to apply for a superior position
and applications are judged fairly on their merits, one
might hold that genuine or substantive equality of op-
portunity requires that all have a genuine opportunity
to become [accepted].” (Arneson 2015)

For example, if a classifier is biased towards males, females
may not have mobility, because the ‘opportunity’ to change
their gender is hollow. Such o are more commonly referred
to as ‘adversarial perturbations’ which cause the classifier to
err after minimal change of the input (Goodfellow, Shlens,
and Szegedy 2014; Hardt et al. 2016).We restrict attention to
the actual (i.e. present in the data) difference between good
candidates and bad ones; this leads to the following defini-
tion of a ‘genuine’ opportunity vector.
Definition 1. For Π, the genuine opportunity is

gΠ =
1

|Π+|
∑
x∈Π+

x− 1

|Π−|
∑
x′∈Π−

x′ (1)

Similarly define gΠc for Πc.

The genuine margin of x is its distance to the decision
boundary along this vector. For rejected x, this is the effort,
following the genuine opportunity, needed to become accep-
ted.

Definition 2. For any x ∈ Π, the genuine margin µ(x) ∈ R
is the smallest (in absolute value) ε such that

c

(
x+ ε · gΠ

||gΠ||

)
6= c(x)

For any x ∈ Πc, µ(x) is defined the same way, with gΠc

replacing gΠ.
For linear classifiers, the genuine margin is easy to com-

pute. For x ∈ Π:

c(x) = sgn(〈w, x〉) ⇔ µ(x) =
〈w, x〉

|〈w, gΠ/ ||gΠ||〉|
(2)

For nonlinear c, it may be estimated by line search on ε.
For each group, we consider the average genuine margin.
This is positive if the group is cushioned from rejection, and
negative if acceptance is beyond reach.
Definition 3. The genuine margin of Π is

µΠ =
1

|Π|
∑
x∈Π

µ(x)

Similarly define µΠc for Πc.
We finally define mobility as a group notion of fairness.

Definition 4. c offers Π mobility if µΠ = µΠc .
Mobility concerns input margins: how changes in x af-

fect the discrete outcome c(x). (Dwork et al. 2012) instead
bound the effect on the real-valued outcome, positing that
similar individuals x and x′ (with respect to the distance
||x− x′||) should have similar outcomes: |s(x)− s(x′)| ≤
||x− x′||. (Fish, Kun, and Lelkes 2016) equalize acceptance
rates between Π and Πc by reclassifying candidates who
were perhaps likely to be misclassified anyway: those ha-
ving small margin. (Zafar et al. 2017b) prevents indirect use
of sensitive features used by limiting their correlation with
the (signed) margin. (Luong, Ruggieri, and Turini 2011) im-
pose this requirement on nearest-neighbor classifiers.



{

strong reject

weak accept

weak reject

Unfair Fair

c

Unfair Fair

s

gΠ

µ(x)

x

Figure 2: Scores (with zero marked in the middle) for the protected group and the general population. In both scenarios, the
protected group has a higher acceptance rate, since more candidates have positive score. Nonetheless, the left scenario is unfair
because good candidates receive nearly the same scores as bad ones. By contrast, good candidates in the general population are
clearly distinguished by their higher scores.

Contrast
The following definition takes probability of correct compa-
rison, as defined in the introduction, and relaxes the outcome
indicator (either 0 or 1) to a continuous value.

Definition 5. The average margin of comparison within Π
is

κΠ =
1

|Π+|
1

|Π−|
∑

x∈Π+,x′∈Π−

s(x)− s(x′)

Similarly define κΠc by replacing Π with Πc.

Definition 6 (Contrast). s offers Π contrast if κΠ = κΠc .

This definition captures two key ideas. The first is that
comparisons within groups should be accurate. Suppose a
college accepts the best students from the general popula-
tion, but guesses randomly within a protected group, or per-
haps accepts based on an ancillary attribute such as athle-
ticism. This so-called ‘token’ effect may distort incentives
or otherwise misdirect students wishing to improve them-
selves. The second idea is that the scores, in either their
calculation or their subsequent use, involve randomness or
error. For example, recall randomized classifiers from the
introduction. As another example, if outcomes in {−1, 1}
are sampled with mean s(x) and s(x′) for good x and
bad x′, then the probability of a correct comparison is just
(1+s(x))(1−s(x′))/4. In these scenarios, the magnitude of
scores matters as well as their ordering. With ideas in mind,
let us review related definitions.

In the contextual bandit problem, an algorithm compares
candidates x1, . . . xk from k known groups, each with true
(but unknown) values y1, . . . yk. It randomly samples candi-
date xi with probability based on a score s(xi). It learns that
candidate’s value, and thereby estimates the values of future
candidates. (Joseph et al. 2016) disallows s(xi) > s(xj) if
yi < yj ; a candidate’s potentially high value must be consi-
dered, even if their group has low overall value. This enfor-
ces accurate comparison between groups; candidates from
the same group are never compared. The algorithm must ex-
plore and estimate values for each group, not just the overall
population. It crucially relies on random, possibly erroneous
choices to learn about groups without explicitly preferring
them. We consider randomness a nuisance, and contrast mi-
tigates its impact on the outcomes.

The probability of correct comparison is equal to the area
under the ROC curve (Cortes and Mohri 2004), which quan-
tifies the tradeoff between false positive rate (FPR) and true
positive rate (TPR). Contrast can be reinterpreted in terms
of these quantities after some basic algebraic manipulation:

κΠ =
1

|Π+|
∑
x∈Π+

s(x)− 1

|Π−|
∑
x′∈Π−

s(x′)

For a randomized classifier, this quantity is the expectation
of TPRΠ − FPRΠ. Let us think about how mobility affects
these rates. Suppose TPRΠc = TPRΠ but FPRΠc > FPRΠ;
that is, the general population is accidentally accepted more
often. To offer contrast, the classifier could reduce these ac-
cidents by decreasing FPRΠc . However, it could also incre-
ase TPRΠ and therefore increase the acceptance rate of Πc,
which was already higher. Perhaps worse, it could decrease
TPRΠ and reduce accuracy. Contrast deems this scenario in-
opportune for the general population even though they enjoy
better outcomes. This shows that contrast does not equalize
acceptance rates between the groups, nor does it promote
accuracy.

Equalized odds, as proposed in (Hardt, Price, and Sre-
bro 2016), requires the FPRs and TPRs to be the same be-
tween both groups. Hardt et al. find this notion too strong
because it penalizes classifiers which are more accurate
on the general population. They identify equal opportunity
with equal TPRs. For example, good students should have
equal chances of being admitted to college, regardless of
their group. However, bad students in Π may be scrutini-
zed more than bad students in Πc. This could allow bad
students to be admitted due to wealth or influence. More
generally, (Zafar et al. 2017a) seek to equate the FPRs,
TPRs, FNRs, etc. It is not always possible to equate such
quantities, which makes various notions of fairness are irre-
concilable. (Kleinberg, Mullainathan, and Raghavan 2016;
Chouldechova 2017) initiated the study of such tradeoffs,
proving that TPRs and TNRs typically cannot be equated
for calibrated scores. By formalizing contrast as an analy-
tically tractable margin, we hope to avoid such impossibi-
lity results. If yx were continuous rather than binary, their
margins (from a decision threshold) relate to fairness. When
they are very different for Π and Πc, different TPRs (e.g.
‘hits’ in police searches) are not necessarily unfair (Simoiu,
Corbett-Davies, and Goel 2016).
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Figure 3: Absolute coordinate values (i.e. dependence on features) of different unit-norm vectors, each computed on the dataset
of adult income. Let Π and Πc be females and males respectively constituting roughly 1/4 and 3/4 of the candidates, whose
income is classified as high or low. The average vector, as defined in eq. (3) is compared to standard, Π-unaware penalized loss
minimizers: hinge loss with `2-norm penalty (aka SVM), logistic loss with `1 penalty, and nonconvex sigmoid loss with no
penalty. As expected, the `1 penalty encourages sparsity; the other vectors are not sparse. The unpenalized vector uses capital
gains, which is predictive but only relevant for a small fraction of the population. Average and SVM are similar, except the
former heavily emphasizes “is a wife” rather than “is a husband”. This is because the average adjusts for the minority Π.

The average vector
We focus on scores and classifiers induced by w ∈ Rn:

sw(x) = ψ(〈w, x〉) → cw(x) = sgn(〈w, x〉)

The activation function ψ : R → [−1, 1] approximates the
sign function, but is differentiable with maximum slope β:
ψ(0) = 0, ψ′(0) = β, and |ψ′(a)| ≤ β for all a. A common
choice is tanh. As β → ∞, ψ → sgn and sw → cw. The
typical approach to choosing w is to minimize the expecta-
tion, over the data, of a loss function plus a penalty function.
We analyze a simpler average of the data.
Definition 7. The average of the genuine opportunities of Π
and Πc, as defined in eq. (1), is:

g =
1

2

(
gΠ

||gΠ||
+

gΠc

||gΠc ||

)
(3)

The figure above compares the average to other vectors.

Theoretical support
Standardizing the data guaranteeing mobility are closely re-
lated for the average.
Proposition 1. If the data are centered:

1

|Π|
∑
x∈Π

x =
1

|Πc|
∑
x∈Πc

x

then the average offers mobility to Π.

Proof. Since g is the average of two vectors, it has the same
angle between both of them:

〈g, gΠ/ ||gΠ||〉 = 〈g, gΠc/ ||gΠc ||〉 .

By eq. (2):

µΠ =
1

|〈g, gΠ/ ||gΠ||〉|

〈
g,

1

|Π|
∑
x∈Π

x

〉

=
1

|〈g, gΠc/ ||gΠc ||〉|

〈
g,

1

|Πc|
∑
x∈Πc

x

〉
= µΠc

Contrast is guaranteed if the score is very smooth (i.e. the
slope of the sigmoid is small):
Proposition 2. If ||gΠ|| = ||gΠc ||, as β → 0, sg offers con-
trast to Π.

Proof. As β → 0, d
dβ sg(x) = 〈g, x〉. By definition of κΠ:

d

dβ
κΠ

∣∣∣∣
β=0

=
1

|Π+|
∑
x∈Π+

〈g, x〉 − 1

|Π−|
∑
x′∈Π−

〈g, x′〉

= 〈g, gΠ〉

Similarly d
dβκΠ

∣∣∣
β=0

= 〈g, gΠc〉. To equate these quantities,

we must show:

||gΠ||+
〈

gΠc

||gΠc ||
, gΠ

〉
= ||gΠc ||+

〈
gΠ

||gΠ||
, gΠc

〉
Dividing both sides by ||gΠ|| = ||gΠc || completes the proof.

These propositions have strong, possibly unrealistic pre-
conditions; the conclusion reflects upon their pertinence, and
the next section validates the average on real data.
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Figure 4: Two experiments, top and bottom, compare the average vector to standard, Π-unaware penalized loss minimizers:
hinge loss with `2-norm penalty (aka SVM), logistic loss with `1 penalty, and nonconvex sigmoid loss with no penalty. As
described in the main text, d is a measure of relative difference. The top experiment involves 10 realistic Π. The average
roughly offers mobility (µΠ ≈ µΠc ) whereas the others do not. The average and nonconvex classifier roughly offer contrast
(κΠ ≈ κΠc), though the former has better interquartile range. However, the misclassification error of the average is often
substantially higher. (The other classifiers have the same error rate for every Π since they are not aware of it.) These distinctions
vanish in the bottom experiment, where Π is just a random half of the population.

Experimental validation
The well-known adult income dataset consists of 48,842 in-
dividuals, each described by 14 features, and whether or not
they earn more than $50,000 per year (Kohavi 1996). Over
75% of the incomes are higher; eliminating this imbalance
reduces the number of data to 15,682. Each categorical fe-
ature with k possible values is ‘one-hot’ encoded using k
binary features, and the the auxiliary ‘final weighting’ attri-
bute, is removed. This results in resulting in 107 total fea-
tures, each standardized to mean 0 and variance 1. Mobility
and contrast do not directly involve the discrepancy between
empirical (training) or true (test) distributions, so the entire
dataset is used at once.

Two experiments compare the average with some stan-
dard linear classifiers which are unaware of Π. In the first
experiment, Π are generated by selecting a single defining
feature (for example, “is a husband”). This produces mino-
rity (or majority) groups in a relatively realistic fashion. In

the second experiment, Π is just a random half of the po-
pulation. This ‘null’ experiment decorrelates the features,
outcomes, and group memberships. The results of the first
experiment should substantially differ from the second.

Mobility and contrast are defined by exact equalities, but
we will observe just approximate equality. The absolute dif-
ference between the two sides of definition 4 or definition 6
is not as important as the relative difference. We measure
differences by the absolute difference of logarithms, with
values close to zero still being ideal:

d(a, b) = |log(a/b)| (4)

Results. In the first experiment, the average offers
roughly equal mobility and contrast, whereas the other clas-
sifiers do not. This difference is in some sense significant,
since it disappears in the second experiment. As expected,
the differences are much smaller in the second experiment,
since they are between two random sums of the same mean.



Conclusion
The key underlying idea of this paper is that, even if decisi-
ons are binary, the margin by which they are established is
morally important. They determine how much effort is nee-
ded to improve one’s outcome, or how sensitive the outcome
is to randomness and error. We accordingly formalize equal
opportunity in terms of an input margin (mobility) and an
output margin (contrast). These concepts are easy to visu-
alize and analyze. We illustrate the virtues of a very sim-
ple averaging classifier with some basic mathematical ana-
lysis and an experiment on a moderately-sized dataset. Let
us highlight the limitations of our contributions with a view
to future research.

As previously discussed, mobility and contrast are not
comprehensive definitions of fairness: they may further im-
balance outcomes or increase error rates. We loosely com-
pared them to other previously proposed definitions, but we
could not meaningfully say one definition is better than anot-
her. In some scenarios, equal opportunity is just a means to a
more quantitative end: better outcomes. If a rule supposedly
ensures equal opportunity, then imposing it upon candidates
eager to improve themselves should eventually lead to better
outcomes. Perhaps definitions of equal opportunity could be
quantitatively compared along these lines.

Proposition 1 and proposition 2 only support the average
classifier when it is, respectively, very accurate or very close
to random. They also assume the genuine opportunities are
comparably sized (i.e. ||gΠ|| = ||gΠc ||). This may be ensu-
red by rescaling or reweighting the data. However, the rela-
tive advantage of the average over other vectors, as illustra-
ted in the experiment, may instead depend on whether the
genuine opportunities coincide (i.e. 〈gΠ, gΠc〉 is large). In-
tuitively, if the way to become accepted differs considerably
for Π and Πc, then it is more difficult to accommodate both
groups. A classifier unaware of Π is less likely to do so by
accident; the average, or another Π-aware method, may then
have a larger relative advantage. The average should be per-
ceived as a simple, effective baseline rather than an optimal
solution. It is likely to be outperformed by a more computa-
tionally involved algorithm which explicitly attempts to mi-
nimize error while maximizing mobility and contrast.

Despite all these limitations, we believe our definitions
align the techniques of machine learning with the principle
of equal opportunity.
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