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Abstract. In this paper, we propose a segmentation method for an au-
tomated differential counter using image analysis. The segmentation here
is to extract leukocytes (white blood cells) and separate its constituents,
nucleus and cytoplasm, in blood smear images. For this purpose, a region-
based active contour model is used where region information is estimated
using a statistical analysis. The role of the regional statistics is mainly
to attract evolving contours toward the boundaries of leukocytes, avoid-
ing problems with initialization. And contour deformation near to the
boundaries is constrained by an additional regularizer. The active con-
tour model is implemented using a level set method and validated with
a leukocyte image database.

1 Introduction

A leukocyte (white blood cell) differential count as a percentage is one of the
most frequently performed blood tests and plays an important role in the di-
agnosis of diseases such as anemia. In hospital, manual differential is usually
performed by taking a drop of blood, spreading it on a slide, staining it, and
evaluating around 100 cells for quantity and quality. However, it is tedious and
time consuming to locate, classify and count leukocytes. An automated differen-
tial counter using image analysis makes it possible to replace the work, reducing
reporting time and increasing precision with the larger of number of cell counted.
The counter system is normally performed in this procedure: localization, seg-
mentation, feature extraction and classification. We here deal with the leukocyte
segmentation problem which is most difficult and error-prone.

In an attempt to solve the problem, several approaches have been presented
in the literature. Wermser et al. [1] and Cseke [2] use hierarchical thresholding
with two color features which discriminate between constituents of blood smear
images. A more sophisticated algorithm is proposed by Sinha and Ramakrish-
nan [3]. It estimates a mixed Gaussian model using Expectation-Maximization
(EM) algorithm in HSV color space, and thresholds and labels each Gaussian
component with a prior knowledge. It is obvious that the algorithm is able to
improve performance over linear thresholding, but it still does not use spatial
information and so is limited to segment leukocytes.
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To overcome the limitation, another approach using region information is pro-
posed. Haussman et al. [4] uses region labeling by relaxation operation. Initial
regions are obtained from split-merge method and then relaxed using relation-
ship between adjacent regions. [5] is also a similar method based on fuzzy rules.
Although this approach uses both local and global information, it is not straight-
forward to design rules (or relationship) covering various situations.

More recent literature has applied active contour models since it is useful
to detect objects in an image by evolving contours. One of the advantages of
the model is that contours can be controlled by its geometric properties and
external properties from an input image in a single framework. Furthermore
higher level information such as shape priors also can be incorporated into the
same framework. Hence we can design an active contour model using information
suitable for a specific application.

The active contours proposed in [6,7,8] are based on the gradient of an input
image. However a high gradient is often shown at the cytoplasm of polymor-
phonuclear cells (granulocytes). It means that evolving contours are likely to
be stuck at local minima and so the performance is heavily influenced by initial
contours. [9] instead uses the gradient vector flow (GVF) calculated from bound-
aries of cells including erythrocytes (red blood cells). The method relieves the
initialization problem but contours still could be stuck in the area of small GVF
force or attracted to one side of the boundary depending on initial contours

In this paper, we propose a more robust method using a region-based active
contour model. Region information here is estimated through statistical analysis
on intensity features of input images. Thanks to the regional statistics, initial
contours are placed safely on each leukocyte and propagate toward its boundary,
avoiding the local minima problem. At earlier stage, evolving contours are mainly
under influence of the region statistics, but their deformation is controlled by an
additional regularizer as they come close to the boundaries of leukocytes. The
regularizer contributes to forming the shape of a leukocyte

2 Proposed Method

The proposed method is composed of five steps as shown in Fig. 1. We first
select significant intensity features in blood smear images and estimate a finite
mixed Gaussian model using the EM algorithm where the number of components
and initial parameters are chosen with intensity priors. With the estimation,
Bayes probabilities of each constituent of a leukocyte are computed on piecewise
constant partition and then are embedded into an active contour model as region
information. In the following subsections the procedure is explained in detail.

2.1 Regional Statistics

Each constitute of blood smear images shows the characteristics discriminating
one another such as color, texture, and shape. But it seems that color informa-
tion is the most significant. Depending on color model, various combination of
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Fig. 1. Block diagram of the proposed segmentation method for leukocyte images. It is
based on region-based active contours where the region information is estimated using
a statistical analysis.

channels can be used. The experiments shows that among them grayscale and
blue intensity space (I, B) is the most promising. Fig. 2 shows the typical pattern
of the features extracted from a smoothed image with a Gaussian filter, and also
exhibits the main location of each constituent.

As can be seen in the feature pattern, it is difficult to discriminate between
different components through simple thresholding or clustering approach. For
this reason, we estimate parameters of a finite mixed Gaussian model with the
Expectation-Maximization (EM) algorithm, assuming all the components have
a Gaussian distribution.

The EM algorithm [10] consists of two steps, Expectation and Maximization.
The first step is to calculate the posterior probabilities with initial parameters
for each data point, and then update the means, the covariance matrices and
the mixing coefficients for each component in the second step. The procedure is
repeated until a variation is less than some fixed threshold.

An initial guess, however, should be carefully determined particularly for
blood smear images, because there often exit one or two more Gaussian com-
ponents in the feature space: for example, at the granule in cytoplasm or outer
boundary of an erythrocyte. At first we could assume five or six components,
but it does not work well in two reasons. (1) Additional components are likely
to have a negative effect on the estimation of the others, and (2) even not so it
is not straightforward to label to four partitions.

Therefore the number of components is set to be four and now a way of
preventing components from converging to unexpected local minima is required.
The K-means algorithm [10] are commonly used to select initial parameters.
However, it is not appropriate in our case for the same reason mentioned earlier:
existence of undesirable Gaussian components. Instead those are determined
based on the characteristics of the feature pattern and intensity priors of each
constituent. Left-lower (A) and right-upper (B) feature point are selected as
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Fig. 2. Typical example of the feature patten and the main location of each constituent:
nucleus, cytoplasm, red blood cell, and background

an initial guess of nucleus and background respectively. And an erythrocyte
takes a point (C) located the farthest from the line going through two points,
A and B. the last one (D) is decided middle point of two points, A and C.
This simple method has shown more better results than the K-means algorithm.
Furthermore, labeling is easily done by the same way with the final mean points

With the estimated and labeled Gaussian components, the posterior proba-
bilities for each constituent can be calculated using Bayes’ theorem [10]:

P (ωj |x) =
p(x|ωj)P (ωj)

p(x)
,

where

p(x) =
4∑

j=1

p(x|ωj)P (ωj)

and ωj is a jth class, namely, nucleus, cytoplasm, erythrocyte or background,
and x is a feature vector (I, B). It could be applied to each pixel itself, but we
here compute the Bayes probabilities on piecewise constant partition which is
obtained by minimizing the Mumford-Shah functional [11]:

F1(u, B) =
∫

R−B

(u − u0)2 + λ length(B),

where u0 is an input image defined on a set R and u and B are a piecewise con-
stant function and the boundaries between regions, respectively. This is useful to
avoid many isolated points and small holes, and form more accurate boundaries.
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(a) (b)

(c) (d)

Fig. 3. Regional statistics. (a) input image, (b) piecewise constant partition, (c-d)
posterior probability map of nucleus and cytoplasm. Courtesy of CellAtlas, CellaVision
AB [12] (with the following figures).

Fig. 3 shows an example of initial partition and probability map of a leukocyte.
The probability map is used in the region-based active contours framework as
region information in the next stage.

2.2 Active Contours for Leukocyte Segmentation

Active contour models [13], also called snakes, are a powerful segmentation tool
in a variety of image processing applications. Many models have been developed
based on their representation (explicit or implicit) and information (edge and/or
region) used. Hence, from the point of view of application the selection of an
appropriate model is very important.

In our case the following implicit model is applied which is based on region
information computed from the intensity features:

∂φ

∂t
= δ(φ)[α1(P − C1)2 + α2(P − C2)2] + βκ|∇φ| + γV · ∇φ,

where φ is a implicit level set function [14,15] where the boundary (interface) is
defined by φ = 0, and α1, α2, β, and γ are positive parameters. An input image
P , here, is the posterior probability of a leukocyte P (WBC|x) computed earlier
and C1, C2 are the averages of P inside and outside of propagating contours.
After all the first two terms [16] attract contours toward the boundaries of a
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leukocyte. As shown in Fig. 3, however, part of neighboring erythrocytes also
could have a high probability and so regularization is needed.

A leukocyte is normally close to the shape of a circle but is likely to deform.
In this case, however, the deformation is “smooth”, while undesirable regions
having a high probability tend to be “rough” as shown in Fig. 3. Therefore
a regularization method for discriminating the two cases is required. First a
parameter of mean curvature term κ|∇φ| is set to be high so that the shape is
close to a circle, and then a deformation beyond that is driven by the gradient
vector flow (GVF) V (u, v) [17] obtained by minimizing

F2(V ) =
∫ ∫

μ(ux
2 + uy

2 + vx
2 + vy

2) + |∇f |2|V − ∇f |2dxdy,

where an input image f is the boundaries of regions Bayes classified as a leuko-
cyte. In spite of constraint of curvature, the contour now tries to propagate to-
ward smoothly deformed boundaries thanks to this externally generated velocity
field. On the other hand, it does not try in roughly deformed regions because
the normal force of GVF is very weak at the boundary between a leukocyte and
an erythrocyte [9].

Besides this role, GVF contributes to extracting the contours with the first
two terms in the initial stages and so seems to be able to take the place of
the first two ones. However, in this case part of the contours could be stuck in
the area of small GVF force. Gradient information also causes the similar stuck
problem at the local minima and so is not used in the proposed model.

Another important factor in the use of active contours is initial contours. In
our case it is relatively insensitive to the initial contours which just need to be
located inside leukocytes. Fortunately Bayes classified nuclei are satisfactory in
the regional statistics stage. Therefore nuclei regions are extracted at the stage
and are used for selection of initial contours. We put circles at the centroid of
each nucleus, whose diameters are 0.3 times ones of circles with the same area
as each nucleus. If there are multiple nuclei in a leukocyte they are merged
automatically thanks to level set implementation. Fig. 4 shows the propagating
contours on the posterior probability map.

(a) (b)

Fig. 4. Segmentation using region-based active contours. (a) propagating contour, (b)
segmentation result.
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3 Experimental Results

The experiments were carried out on the cell image database which was provided
by CellAtlas [12]. All the images in the database were stained by the May-
Grünwald-Giemsa (MGG) method and already classified by type by experts
within the field of hematology. The types of leukocytes used in our experiments
are five: neutrophil, lymphocyte, monocyte, eosinophil, and basophil. Assuming
that leukocytes were localized, a region of interest (ROI) containing leukocytes
was extracted with 128 × 128 size.

These images first were smoothed with a 3×3 Gaussian filter with a standard
deviation of 0.8 and in the Mumford-Shah functional for a piecewise constant
partition, a region-growing method [18] was applied, where the number of final
regions (1000) was used as a stopping criterion instead of a scale λ. In the
last stage, there are three important parameters which were set (α1 = α2 =
0.005, β = 4.5, γ = 0.6) as follows: (1) with γ = 0, adjust the first two parameters
such that a contour becomes similar to a circle in shape as it approaches to the
boundary of a leukocyte and then (2) γ value is chosen for the GVF force to
push the contour toward the smoothly deformed regions.

Fig. 5 shows the process of segmentation applying the proposed method under
the conditions above. The first column is the original image for each type of
leukocytes, and the second shows evolving contours on the Bayes probability
map of a leukocyte. The final segmentation results are shown in the last column.
As already expected, errors happen in parts of images in Fig. 5(b), but in the
most of cases the errors happen between cytoplasm and red blood cells because
of similarity of their intensity features (I, B). However, it is noteworthy that the
probability of errors in cytoplasm regions is very low and so true leukocytes
are mostly included in the regions having high probability P (WBC|x) like in Fig.
5(b). The used features (I, B) were selected among two channels or full channels
of RGB, HSV, L*a*b*, and L*u*v* space, not scaled, using the probability of
error in the Bayes classification. More sophisticated methods could be used for
optimal feature extraction, but it is now acceptable.

As explained earlier Bayes classified nuclei regions are satisfactory but some-
times there are undesirable small segments and holes and so we applied the
morphological operators, area opening and closing, in order to remove the unde-
sirable regions. The postprocessed nuclei were then used for initial contours. If
there are multiple nuclei the same number of initial contours are placed as shown
in Fig. 5(b). At an earlier stage these contours propagate mainly under influence
of the regional statistics, and deform under influence of the curvature and GVF
force as they come close to the boundary of a leukocyte. Fig. 5(b) shows the
process of propagation. It exhibits that a contour is able to cross small holes
inside a leukocyte and multiple ones are finally merged.

To validate the segmentation results shown in Fig. 5(c), we adopted the most
common approach. The boundaries of leukocytes were first extracted manually
and compared to the obtained results. The following metric [19] was used as
a measure of segmentation accuracy: S = 2 · n{R ∩ T }/(n{R} + n{T }). This
measure quantifies similarity S ∈ [0, 1] between two segmentations R and T .
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(a) (b) (c)

Fig. 5. Process of segmentation using the proposed method. (a) original images: neu-
trophil, lymphocyte, monocyte, eosinophil, and basophil, (b) intermediate results on
the Bayes probability of a leukocyte, (c) final segmentation results.
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Table 1. Average segmentation accuracy rates and their standard deviations (%)

Cell type Neutrophil Lymphocyte Monocyte Eosinophil Basophil

# of images 80 125 120 124 154
91.40 95.45 90.83 88.43 -

Nucleus (13.94) (2.94) (11.03) (15.26) (-)
93.60 95.10 91.82 91.41 93.02

Cytoplasm (6.85) (4.45) (10.24) (6.91) (9.92)

n{R} indicates the area of R. Table 1 provides the average segmentation accuracy
rates and their standard deviations of nucleus and cytoplasm for all the images;
the nucleus of basophil was not included in the evaluation because it is often
obscured by cytoplasmic granules and so is difficult to discern. We have obtained
the reasonable results with an overall average error less than 8%.

The major errors were caused by the following reasons. First, when touching
regions of erythrocytes have a high probability P (WBC|x) and the regions look
like part of a true leukocyte, no distinction is made between them and so a
contour propagates into the regions. Second, when cytoplasmic granules are as
dark as a nucleus or a cytoplasm as bright as a background, they are classified as
a nucleus and a background, respectively. Third, when the shape of a leukocyte
is deformed excessively, a contour fails to deform that much. The parameters
involving deformation was selected as tradeoff between this case and the first
one. In future research we should focus on these problems in order to improve
performance more accurately.

A natural extension of the proposed method is to deal with touching leuko-
cytes using a single level set representation. It is obvious that the separate leuko-
cytes one another can be segmented well and also even touching ones can be
segmented individually, but not at a time in a single level set framework. So we
are currently under investigation on this point and expect to be useful for other
applications, too.

4 Conclusion

We have proposed a segmentation method of leukocytes in blood smear im-
ages. It is based on a region-based active contour model driving initial contours
toward the boundary of a leukocyte, avoiding problem with initialization and lo-
cal minima. Region information here is estimated from intensity features which
discriminate effectively between the constituents of blood smear images. And a
regularizer has also applied in the same model to constrain excessive deformation
of a evolving contour. In the experiments with a public image database, we have
obtained the segmentation results with an overall average error less than 8%.
Although it can be more improved by decreasing the errors mentioned earlier,
the results are reasonable as an input for leukocytes classification.
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