A Complete Multi-Valued SAT Solver

Siddhartha Jaih,Eoin O’Mahony? Meinolf Sellmanni*
L Brown University, Department of Computer Science
P.O. Box 1910, Providence, R1 02912, U.S.A.
sj 10, sel |l o@s. br own. edu
2 Cork Constraint Computation Centre
University College Cork, Cork, Ireland.
e. omahony@c. ucc.ie

Abstract. We present a new complete multi-valued SAT solver, basedoerat
state-of-the-art SAT technology. It features watchedditpropagation and con-
flict driven clause learning. We combine this technologyhveitate-of-the-art CP
methods for branching and introduce quantitative suppetieh augment the
watched literal scheme with a watched domain size schemst Mwportantly,
we adapt SAT nogood learning for the multi-valued case amdothstrate that
exploiting the knowledge that each variable must take éxacte out of many
values can lead to much stronger nogoods. Experimentdtsemsess the bene-
fits of these contributions and show that solving multi-ea AT directly often
works better than reducing multi-valued constraint proiseo SAT.

1 Multi-Valued SAT

One of the very successful solvers for constraint satisfagiroblems (CSPSs) is Su-
gar [23]. It is based on the reduction of CSP to the satisftglproblem (SAT). Sugar
first encodes the given problem as a SAT formula and then gedbniSAT [7] to
solve the instance. Somewhat surprisingly, Sugar won thié gidbal constraint com-
petition in the past two years [21]. Our work is highly motied by the success of this
solver. Our objective is to provide a solver which could sl MiniSAT for reduction-
based CSP solvers and work with even better efficiency bygakito account that
CSP variables usually have non-boolean domains. To thisletas begin by formally
defining the multi-valued SAT problem.

Definition 1 (Multi-Valued Variables). A multi-valued variableX; is a variable that
takes values in a finite sé?; called thedomainof X;.

Definition 2 (Multi-Valued Clauses).

— Given a multi-valued variablé&; and a valuev, we call the constrain; = v a
variable equatioon X;. A variable equation; = v is calledsatisfiabléff v € D;.

— Given a set of multi-valued variable¥ = {X;,...,X,} andasetl’ C X, a
clauseoverT is a disjunction of variable equations on variablesin

Example 1.Given variablesX;, X5, X3 with domainsD;, = {1,...,5}, Dy = {true,
false}, andDs = {red, green, blue},

(X1:1\/X1:3\/X1:4\/X2:false\/X3:red) (1)
is a multi-valued clause ové¥, X5, X3.

* This work was supported by the National Science Foundatimugh the Career: Cornflower
Project (award number 0644113).

Note that multi-valued clauses have no negation. A clasait Gause would be
written as(X; = false V Xy = true V X3 = false) in this notation. To save memory, it
can be very helpful to encode large sets of allowed valuepbyifying the disallowed
values only. E.g., in the example above we may prefer to write

(X1 #2A X1 #5)V X =false V X3 = red). 2)

While the solver that we developed for this paper allowsdheputs, they are not part
of the problem definition itself to keep the theory free froomfusing implementation
details.

Definition 3 ((Partial) Assignments and Feasibility). Given a set of multi-valued
variablesX = {X;,..., X, }, denote withD the union of all domain®;, ..., D,,.
Furthermore, denote witl§, T' subsets ofX.

— Afunctiona : S — D is called anassignmentf variables inS. « is calledpartial
iff |S] < n, andcompleteotherwise. IfS| = 1, a is called avariable assignment

— An assignment is calledadmissibleff a(X;) € D; forall X; € S.

— An assignment of variables inS is calledfeasiblewith respect to a clause over
T iff T\ S # () or if there exists a variable equatiaki; = «(X;) in the clause.

— Given a clause, a complete, admissible, and feasible assignment is calssdu-
tion for c.

Definition 4 (Multi-Valued SAT Problem). Given a setX of multi-valued variables
and a set of clauses over subsetskgfthe multi-valued SAT problem (MV-SAT)s to
decide whether there exists an assignmettiat is a solution for all clauses.

As MV-SAT allows boolean variables, the problem is at leashard as SAT and is
thus NP-hard. On the other hand, using standard CP encddingst encoding, support
encoding, or order encoding [24, 10, 23]), we also know thetSMAT can be reduced
to SAT which makes the problem NP-complete.

Although the problems are equivalent in complexity (as &dbmplete problems
are) and also very similar in structure, we consider MV-SATirgeresting generaliza-
tion of SAT. In [1] it was shown that many problems which arereatly being solved
as SAT problems do in fact model problems with multi-valuediables. Moreover,
many applications, especially in verification, naturabghibit multi-valued variables.
The purpose of this paper is to show that handling multi-edhariables directly rather
than encoding them by means of boolean variables can leathstestial improvements
in computational efficiency.

2 Efficient Incremental Clause Filtering

The main inference mechanism in CP and SAT is constraintifijeThat is, for a given
constraint we want to identify those variable assignmdrds ¢annot be extended to a
solution for a given constraint and the current domains.ddreesponding domain val-
ues are then removed and the process is iterated until noraomisan remove further
domain values.

2.1 Unit Propagation in SAT

A classic SAT clause only ever removes a value (true or fdis@) a variable domain
when all other variables in the clause have been assignddewhich does not satisfy
the clause. In this case, we speak afrét clauseand the process of filtering clauses in
this way is calledunit propagation

An elegant way of incrementally performing the filtering c&iSclauses was pro-
posed in [18]. Each clause watches only two variable equsitio SAT, these are com-
monly referred to aiterals. As long as both watched literals can be satisfied, no filter-
ing can take place. When one watched literal cannot be satiafiymore, we search for
another second literal that can still be satisfied. Only wi@second satisfiable literal
can be found is the clause unit and we commit the only remaivémiable assignment
that can still satisfy the clause.

The beauty of this way of performing unit propagation is th&t not necessary to
traverse all clauses that involve any variable that has eeto a value. In essence,
the two watched literals give us an effective pre-check whiea clause can filter any
values. Only when this pre-check fails, i.e. when one of th&ched literals is affected,
we need to perform any work. Otherwise the cost is not evestaoh per unaffected
constraint, there is in fact no work to do for them at all. Tihit fact is key for handling
problem instances with many constraints and for learniraggel number of redundant
clauses during search.

Note that we always start the search for a replacement wétitheal at the old lost
literal and then wrap around if the tail of the clause did rwttain a valid support. This
prevents us from looking at the same lost supports over aad again which would
happen if we always started the search at the first literahéndause. The method
guarantees that each clause literal will be looked at masgtln any path from the root
to any leaf in the search tree. Note further that this schenaerly backtrack friendly as
all non-unit constraints do not need to update their watdibedls upon backtracking
as their current supports are obviously still valid for amgestor node in the search
tree.

2.2 Watched Variable Equations

For multi-valued clauses we can use the very same approath Hdwever that multi-
valued clauses can trigger filtering earlier. As soon asallable equations that can
still be satisfied regard just one variable, all domain valokthis variable that do not
satisfy the clause can be removed from its domain. For ex@nephsider the clause
from earlier:(X; = 1V X; =3V X; =4V X, = false V X5 = red). As soon as
the domains ofX», X5 do not contain the valudalse andred anymore, respectively,
values2 and5 can be removed from;.

To accommodate this fact we only need to ensure is that thedawable equations
that are watched cannot regard the same variable. Thisasnatically guaranteed in
SAT when we remove tautologies upfront. Although as we haen sarlier; multi-
valued clauses can have a number of variable equations sathe variable.

The two watched variable equations approach thereforeneatiovo variable equa-
tions that regard two different variables. To this end, inheelause we group the vari-
able equations according to their respective variabled,vem fix an ordering of the
variables and their allowed values in the clause. When ahgdtwariable equality is
affected, we search for a replacement starting at the oldhlarand its old value. If that

does not lead to a replacement support, we continue withekievariable, whereby we
skip over the variable that is used for the second variablalés.

2.3 Quantitative Supports

In multi-valued SAT we can enhance this scheme by allowiniffarént kind of support
that is based on the size of the current domain of a variableagiven clause, let us
denote withi, the number of variable equations that reg&tdn c. Furthermore, let us
denote withd; the size of the initial domain ok;. The observation is that there must
exist at least one satisfiable variable equality for a givemable as long as the size of
the current domain is still bigger than the number of vallres &re disallowed by this
clause when all variable equations regarding other vasalyl this clause cannot be
satisfied. FormallytD;| > d; —i. = FweD;: X;=veEec.

Example 2.Given are two variableX;, X, with initial domainsD; = D, = {1,...,6},
andaclause= (X; =1vX; =2vX; =3vX; =4V X; =5V Xy=1).The
constraint just says that, = 1 or X; # 6. Now assume that the current domain of
X, is D1 = {2,3,6}. The clause only disallows one value &}, but three values are
still allowed:|D;| =3 > 1 =6 — 5 = d; — 1.. Consequently, there must still exist a
variable equality orX; in ¢ that can still be satisfied, in our case exg. = 2.

The point of these quantitative supports is that we do nad teelace a bet on any
particular value for a given variable. Instead, a clausg oekds to be looked at when
the domain size of a watched variable falls below or equathihesholdd; — i., no
matter which particular values are lost until this happ&specially when few values
are disallowed for a variable, watching quantitative sufgpoan save us a lot of work.
Note that this type of support is not actually new in constrarogramming. Solvers
like IBM CP Solver have long associated the filtering of coaists with certain events,
such as the event that a variable is bound (i.e. when itsgmoreling domain has shrunk
to size 1). The only difference here is that we allow multivesl clauses to set their
own specific variable domain threshold which triggers whayteed to be queued for
filtering again.

3 Learning Nogoods for Multi-Valued SAT

We have seen in the previous section that multi-valued ekoffer the potential for
filtering even before the number of satisfiable variable &qoa is 1, as long as the
ones that remain satisfiable all constrain the same variBliglpending on the SAT en-
coding, a boolean SAT solver that learns redundant conssrean improve its filtering
effectiveness to achieve the same, but the fact that thesifily is guaranteed is already
an advantage of modeling a problem as multi-valued SAT oasisc SAT.

A second and probably more important advantage of multie@ISAT is that we
can learn better implied constraints by exploiting our kiemge that each variable
must take exactly one value. Before we explain how this caadbéeved, let us begin
by reviewing conflict driven clause learning in SAT.

3.1 Conflict Analysis

Unit propagation is an incomplete inference mechanism ifiaisas it does not guaran-
tee that all variable domains have size 1 at the end and tlsandt guaranteed that a

variable domain will be empty even when the given formulamasolution. The only
facts that we know for sure are that variables that are unét toe set to the correspond-
ing value in any solution and, consequently, that the foarhds no solution if unit
propagation finds a variable that can neither be set to trutorfalse.

Due to this incompleteness of our filtering method we needtwlact a search for
a solution. We assign variables one after the other to vatuteeir domain, whereby
after each assignment we perform unit propagation to sfynihle formula or to detect
that our current partial assignment cannot be extended atutian. In the latter case,
we speak of &ailure and the variable that can neither be true nor false is calteh8ict
variable

At this point, we could just undo the last variable assigniaex try a different one.
We can do much better, though. The power of modern SAT solie$n their ability
to analyze the cause of the failure and to construct a redurmdastraint, a so-called
nogood that will help prevent us from making the same error aganuct@l for this
conflict analysis is our ability to give the exact reasons atopnstraint filters a value.
SAT clauses are very well suited for conflict analysis as we tcace exactly which
prior domain reductions triggered the filtering.

In particular, modern systematic SAT solvers set up a sleatahplication graph
It allows us to trace back the reasons why certain domairegahave been removed.
By collecting all causes for the removal of all domain vala&the conflict variable, we
can state a new constraint which forbids that a sufficientitiam for a failure occurs.
The easiest way to explain how the implication graph is setngused is by means of
an example which we will use throughout this section.

Example 3.Consider a constraint satisfaction problem (CSP) with fiagables and
five constraints. The variables have domalns = Dy = Dy = {1,2,3},D5 =
{1,...,6}, D5 = {1,2}. The constraints ar&; # X4, Xo # X3, X3 +9 > 5Xy,
X3+4>5Xs, andX, 75 X5+ 1.

Say we model this problem by introducing boolean variablgsvhich are true iff
X, = j. To ensure that each CSP variable takes exactly one valuetmeiice clauses
(Vjzi; = true) for all ¢, and (x;; = false V x;;, = false) for all ¢ andj < k. In
particular, we have a clause

(z31 = false V z3¢ = false). ?3)

We need to add multiple clauses for each CSP constraint. grativers, for constraints
X, 75 Xy, X9 75 X3, andXy # X5+ 1we add

(z11 = false V41 = false) A (z22 = false V 32 = false) A (z42 = false V zs51 = false). (4)
ConstraintsX3 + 9 > 5X,4 and X3 + 4 > 5X5 are enforced by the clauses
(z41 = true V x4z = true V x3g = true) A (51 = true V x3¢ = true). (5)

The resulting SAT formula has no unit clauses, and so we hlmgisearch. Assume
that we first commitz,; < true. To record this setting, we add a node,(# false)
to our implication graph,and we note that this node is added at search depth level 1
(compare with Figure 1 and ignore the dashed nodes and Arogng the clauses that

! Note that our notation is not standard in SAT. We use it hecabge it will naturally generalize
to multi-valued SAT later.

uip 1-UIP K
ST TR T
s 3 Xy !=true

Fig. 1. SAT implication graph for Example 3. The solid nodes and degsict the relevant part
of the implication graph wheis = {1,...,6}. The dashed nodes and arcs are part of the
implication graph wherDs = {1,...,7}.

we consider for this example, only the first clause in (4) lboees unit, and we infer
(z41 # true). We add also this node to the graph, mark it with deptéll¢, and draw
an arrow from the second to the first node to record that thevi@sable inequality
implies the second.

After unit propagation is complete, we may next set « true. Again, we add a
node (o2 # false) to our graph and note that it was added on depth le\&y 24) we
infer (z32 # true), add this node with depth mark 2, and add an arz4e # false).

Again after all unit propagation is complete, let us assuha tve now commit
x31 < true. Again, we addafs; # false), and by (3) we inferizg # true) (both at
depth level 3, just like all nodes that follow). The first cdaLin (5) is now unit and we
add a new noder(;> # false). We add arcs to node, # true) and to nodea(zg #
true), as both variable inequalities are needed to makeiniptication. The second
clause in (5) is also unit, and we infers§ +# false) which is implied by#{ss # true).
The last clause in (4) is now unit and we add nodg, (# true). Together with the
earlier implied {4 # false) we have now reached a conflict. In Figure 1 we show the
implication graph at this point (please ignore the dashenhehts).

This graph is used to compute nogoods: Any set of hodes theggents a cut be-
tween the conflict node on one side and all branch nodes @deswithout outgoing
arcs) on the other defines a valid constraint. For examgi@aths from the conflict
node to any branch node must visit eithef # false) or (3¢ # true). Consequently,
it is sound to enforce that not both variable inequalitielsi lad the same time or, equiv-
alently, that(z4o = false V 236 = true). Conveniently, this constraintis again a clause!
In terms of our CSP variables means that= 2 implies X5 = 6.

Another cut set is the set of all reachable branch nodes,ricase(x;; # false)
and (zg; # false). This cut results in the clauge 1, = false) and (z3; = false),
or X; = 1 implies X3 # 1. This latter fact is interesting as it obviously means that
after our first search decision we could already have infletge # true. Another way
to put this is to say that the second branching decision wakiant for the conflict
encountered, a fact that we can exploit to undo multiplectedecisions, a process
which is commonly referred to dmack-jumpingr non-chronological backtracking

In order to achieve immediate additional propagation byrtbely learned clause
after back-jumping, we need to make sure that the clausaicendnlyonenode from
the last depth level. Then and only then the newly learnagselavill be unit and thus
trigger more filtering after back-jumping. To find nodes tte be extended to a full cut
using only nodes from lower depth levels, we consider onthpaetween the conflict
node and the last branching decision. In Figure 1, this happe be the subgraph
induced by the nodes marked with depth level 3 (in generabitld be a subset of
the nodes on the lowest level). In this subgraph, we searaufgoints, i.e., nodes that
all paths from conflict to branch node must visit. In SAT thase commonly referred
to asunit implication points (UIP)

Note that these UIPs can be computed in time linear in the eumibedges of the
subgraph. In our case, there are two UIRsg(# true) and the branch node itself,
(x31 # false). In [25] it was established that it is beneficial to consider UIP that
is closest to the conflict. This is called tfiest UIP (1-UIP). Now, we group all nodes
between the 1-UIP and the conflict together (marked by thatecin Figure 1). The cut
set is then the set of all nodes that have a direct parentsrséii In our case, these are
(z36 # true) and £4;1 # true), which gives the nogood4{s = truevz,; = true); or, in
terms of the CSP variableX), # 1 implies X35 = 6.

3.2 Unit Implication Variables

As the example shows, conflict analysis
can result in powerful inference. We will
now show how we can learn even stronger
nogoods in multi-valued SAT.

Consider again Example 3, but this @

time let us assume thdd; = {1,...,7}.

In our SAT model, the clauses enforcin o@
X3+9>5X,andX3+4 > 5X5 change

to (z41 = true V ayo = true Vuass = [_——u)
true V 37 = true) and(zs; = true V
X3 = true V x37 = true). Uy

If we branch as before, the implication ‘
graph at depth level 3 includes the dashe
arcs and nodes in Figure 1. We obserye .
that it has only one UIP now, and that i$.
the branch node itself. Consequently, th
nogood learned is much weaker, we only
infer (z3; = falsevay; = true); or, in —
terms of the CSP variables, thay 7# 1 Fig. 2. MV-SAT Implication Graph.
implies X35 # 1.

In Figure 2 we show the implication graph for the correspogadnulti-valued SAT
model. Note that this graph no longer contains a single nbdedorresponds to the
branching assignment. This is rather given as a number @blarinequalities. Observe
further that in this graph there does not exist a UIP at alhaome. However, recall from
Section 2 that a multi-valued clause can cause filtering evleen multiple variable
equations are still satisfiable, as long as all of them reffa@dame variable. For us,
this means that we no longer need to find a cut point, but patgnan entire set of
nodes:

Conflict Partition

Fig. 3. Implication graph for a problem with four variables with daims D, = D4 = {1,2} and
Dy = D3 ={1,2,3}.

Definition 5 (Unit Implication Variable). Given a multi-valued SAT problem and an
implication graphG, assume that, if all nodes associated with variaklare removed
from G, there exists no path from the conflict node to any branch rmodthe lowest
branch level. Then, we call a unitimplication variable (UIV)

In our example X5 is a UIV. Based on its associated cut set, we can again compute
a conflict partition and set the nogood as the negation ofdh@iaction of all variable
inequalities which have a direct parent in the conflict piarti In our example, we thus
find the multi-valued clauseX, = 1V X3 = 6 V X3 = 7). After backjumping to the
highest depth level after the conflict level in our learnedisk (in our case level 1), this
clause is unit and prunes the domain’df to D; = {6, 7}. That is, equipped with this
nogood the solver does not need to branclXgn— 2, X3 < 3, X3 «+ 4,andXs «+ 5
as all of these settings would fail for the very same reasokas- 1 did.

The challenge here is to find UlVs efficiently. Unfortunatétys task no longer
consists of the trivial linear computation of a cut point. Wepose the following ap-
proach. First, we compute the shortest (in the number of sjquketh from any conflict
variable node to any branch node. Only variables associgthdhodes on this path can
be UIVs. We call this set of variables tltandidate setNext we update the costs of
the edges in the graph such that visiting a node associathcawariable in the candi-
date set incurs a cost of one, while all other nodes cost mgpti/e compute another
shortest path based on this cost function. Again, only téetassociated with nodes
on this path can be UIVs. We can therefore potentially redbeecandidate set. We
repeat this process as long as the candidate set keepsisbriglnally, we test each
remaining candidate by incurring a cost of one for nodesdatatl with the candidate
variable only. If and only if the cost of the shortest pathtisajer than zero, then this
implies that every path from a conflict node to a branch nodstpass through a node
associated with the candidate variable, which is thereddyéV. It follows:

Lemma 1. The set of all unit implication variables can be computedrimetO(mn),
wherem is the number of edges amds the number of nodes in the subgraph of paths
between a conflict and a branch nodes.

Proof. Apart from the first and one other which establishes that émeliclate set does
not shrink anymore, each shortest path computation redbheesindidate set by at least
one candidate. As there are at mostandidates, we require at most- 2 shortest path
computations. The implication graph is a directed acyct@py, and therefore each
shortest path computation takes tiém). O

While it is reassuring that UIVs can be computed in polyndniviae, a time bound
of O(mn) is certainly not very appealing seeing that we need to coenputogood at

Fig. 4. CAMA implication graph for the same example as in Figure 3.

every failure. In practice we can of course hope that way faWwan» shortest path
computations will be necessary. Fortunately, as our erpmsrts will show, this hope is
very well justified.

3.3 Non-Dominated UlVs

Recall that in SAT, if there are many UIPs, we choose the oagisttlosest to the con-
flict. In multi-valued SAT, we may also have multiple UIVs, aieby the last branching
variable is always one of them. The question arises which W&/should prefer. It

is easy to see that there is no longer one unique UIV that daesnevery other. For
example, see the implication graph in Figure 3.

Definition 6 (Non-Dominated UIV). We call a UIV non-dominatedf there exists a
path from the conflict to a branch node where a node associaitfxthe UIV is the first
node on the path that is associated with a UIV.

In our algorithm, we can easily compute a non-dominated WMdsting the re-
maining candidates in the order in which they appear on teedirortest path that we
computed. Our solver learns the nogood that correspontssttJtV.

An important aspect of our computing non-dominated UlVshat they give us a
good indication of the strength of the nogoods that we compntour experiments, we
found that on problems where the vast majority of UIVs cadesi with the branching
variable, learning sophisticated nogoods is often a wadtiene. Consequently, when
our solver detects that the number of UIVs that are diffefiemh the branching variable
drops below 5%, we no longer attempt to find improved, non4idated UIVs and
simply use the branching variable to define the next nogostéad.

3.4 Nogood Management

Among others, our solver offers impacts for selecting trenbhing variable [17]. Im-
pacts measure the reduction in search space size achieyaggation after each
branching step. The concept has been found very effectiveetecting branching vari-
ables.

As we learn more and more nogoods through the course of thehsea important
task for any conflict driven solver is the management of ledrconstraints. First, due
to limited memory it is simply not feasible to store all leadmnogoods until an instance
is solved. Second, for the efficiency of the solver it is eSaétihat we forget redundant
constraints which only cause work but rarely filter anything

We use impacts to determine nogoods that can be deleteduvitteing much in-
ference power. Whenever a constraint filters some valuésgitive propagation of the

Fig. 5. CAMA implication graph for a problem with five variables wittomainsD; = D3 =
Dy = Ds = {1, 2} andD; = {1, 2, 3}

effects of a branching decision, we associate the constraih the entire reduction
in search space that all constraints achieve together.&ttwnal behind looking at the
entire reduction is that a constraint may not remove manyegbut very important
ones which trigger lots of follow-up propagation.

We keep a running average of these reductions for each kbaomstraint. When the
number of learned clauses reaches a limit (which grows awet)f we remove roughly
half of the learned clauses by removing all that have an geeraduction below the
median of all learned clauses. To ensure the completendke approach, clauses are
protected from removal when they are currently unit.

This scheme works well in principle, but it has one major dvagk: constraints
which are part of some high impact propagation and which therer become unit
again would clog up our system as their average reductiors $teyh. Therefore, in
regular intervals we decrease the expected reduction fdr ke@rned constraint by a
certain percentage. In our experiments, we decrease tleetedreduction by 7% every
100 failures. In this way, constraints that have not beefulisea while get discounted.

4 Related Work

There are many approaches which reduce CSP to SAT and theloyemgtandard
boolean SAT solver. A number of different encodings havenlreposed for this pur-
pose [24, 10, 23]. In the award-winning paper from Ohrimeekal. [15], CSP prop-
agators themselves were encoded lazily as SAT clauses whighvery good results
on scheduling problems. The CSP solver Sugar [23], which therACP global con-
straints competition in the past two years, computes vdigi@fit encodings for various
global constraints and then employs MiniSAT [7] to solve tbsulting SAT problem.
Our work is heavily influenced by these studies and have maiil/us to provide a
back-end SAT solver that could directly exploit the fact tveriables must take exactly
one out of many values.

In [11, 14], classical CSP nogoods [19] were generalizecctmmmodate multi-
valued variables better. Pioneering work on multi-valudd $/as presented in [2—4].
Here, the then state-of-the-art SAT solvers Chaff [18] aA@ZS[12] were augmented
with domain-based branching heuristics. Very good spgedeaver the performance
over baseline SAT solvers were reported which were solely tduthe ability of the
multi-valued solver to take domain sizes into account whamthing.

An incomplete multi-valued SAT solver was presented in [8]s based on an
adaptation of the well known local search solver WalkSAT][20was shown that
working the knowledge that each variable must take exactly @ut of many values
into the solver can lead to superior performance on instafroen various problem
classes with larger variable domain sizes.

[QWH [+Q[-Q] BCSP [+Q]-Q [GraphCo[+Q[-Q]
qwh-25-403.91{5.44|b-25-20-.430.700.90| fpsol2.i.1|1.141.74
qwh-25-423.04/4.18|b-25-25-.4%0.921.29| inithx.i.1 |0.87/1.29
gqwh-27-403.965.90|b-25-30-.471.151.6Q| inithx.i.2 |0.380.62
qwh-27-423.215.06| b-25-40-.5|1.451.93|1e450.1540.54/0.67
gqwh-29-404.566.67|b-30-20-.370.750.96|le450.15b|0.360.49
qwh-29-423.554.48 |b-30-25-.390.94 1.25|1e450.254,0.24/0.40
gwh-31-404.195.69|b-30-30-.331.051.36|le45Q.25b|0.24/0.38
gwh-31-423.295.07|b-30-40-.351.662.19| le45Q5a|0.450.72
gwh-33-404.31{6.39|b-35-20-.260.821.02| le45Q5c |1.952.70
gwh-33-423.71{5.32|b-35-25-.281.17/1.46|miles15002.23 3.52
gwh-35-405.336.79|b-35-30-.291.482.00| queen88|0.520.53
gqwh-35-424.21{5.44 queen99 (1.031.03

Table 1. Time [ms] per choice point when using (+Q) and not using (-@rditative supports.

The only “pure” complete multi-valued SAT solver we know o&svpresented
in [13]. It was named CAMA and like our own solver it feature®pagation based
on watched literals (albeit without quantitative suppparsd a nogood learning method
which exploits the knowledge about multi-valued variabléke us the authors attempt
to learn improved nogoods.

In CAMA, a nogood is not constructed through the analysisxahgplication graph
but through resolution. An implication graph is used onlytfee computation of a UIV.
The implication graph differs considerably from ours, thbuAs we will see, due to its
structure, CAMA is not able to identify non-dominated UIVt, two reasons:

First, CAMA does not consider pure variable inequalitiedéarning nogoods, but
the entire domain of each variable after a value has beervesin@he current domain,
however, reflectall domain reductions on the variable and not just the ones tieat a
relevant for the filtering that is triggered. Consequer@}MA needs to trace back
the relevant domain reductions, and since it conservgt@ssumes that the relevant
domain reductions happened earlier during propagatiomait miss a unit implication
point. In Figure 4 we show a CAMA implication graph for the sasxample as de-
picted in Figure 3 where we also mark the order in which theesaate added to the
graph. CAMA computes, in linear time, the cut point in thiggin that is closest to the
conflict node. As we can see, due to the dashed edges whicleaded to denote the
implications by earlier domain reductions on the same tgiahe only cut pointis the
branching node itself. CAMA thus finds variabd, as UIV which is dominated both
by X, and X3 as we can easily see in Figure 3.

The second reason why CAMA cannot identify non-dominateddJk that it is
simply unable to identify all UIVs by only considering cutipts in its implication
graph. In Figure 5 we show a different example. Here, evemwieeignore the dashed
arcs, the only cut point is the branch node, and CAMA chodégss UIV which is
dominated byX5. In summary, CAMAs nogood learning method runs in linearndi
but therefore the nogoods found are in general not as st®ttgest could be.

5 Numerical Results

We have introduced quantitative supports and non-dominaités for nogood learning
in multi-valued SAT. We will now study these contributionsdafinally compare our
solver with standard SAT technology.

| | ND-UIV | Q-UIV | | ND-UIV | Q-UIV |
QWH |PathsgTime| Fails |Time| Fails || GraphColPathsTime| Fails|Time| Fails
gwh-25-402.37|0.61| 90.7 | 0.68| 94.4 (| fpsol2.i.1|{ 1.09]0.38| 35.6 |0.39| 35.6
gqwh-25-422.34|0.32| 33.7|0.43| 44.7 || inithx.i.1 | 1.01|0.49| 24.4|0.47| 24.4
gwh-27-402.43|0.72| 85.3|1.10| 130 (| inithx.i.2| 0 [0.20] O |0.20{ O
gwh-27-422.39|0.58| 62 |1.02| 117 {|le45Q154]2.16|3.69|2.93K|41.7|23.2K
gwh-29-402.44|2.83| 331 |3.87| 442 |{|le45Q15b| 2.08|1.64|1.27K|5.27| 4.2K
qwh-29-42 2.47|3.14| 360 |3.06| 329 |[led50258 0 |0.11] O (0.11] O
gwh-31-40 2.43]2.12| 210 |2.70| 228 |[le45025b] O |0.10f O (0.11] O
gwh-31-422.40|1.14| 97.9|1.62| 141 || le45Q5a |2.04|3.06|4.42K| 10.4|13.5K
qwh-33-402.44|4.39| 394 |7.23| 658 || le4505c [1.90|0.12| 51 |0.13| 65
gqwh-33-422.41|2.43| 200 |4.12| 351 [|miles150(01.04|0.61| 73.8|0.64| 73.8
gqwh-35-40 2.44|19.2|1.51K] 33.9|2.14K|| queen88 | 1.90| 18.1|24.1K| 19.8|27.7K
gqwh-35-42 2.44/6.18| 482 | 17.2|1.19K|| queen99 | 1.93| 108|79.8K| 173 |96.5K

Table 2. Comparison between non-dominated (ND-UIV) and quick UIgsWIV). Time in [s].

5.1 Benchmark Sets and Architecture

For our experiments, we use the following four classes oblers: quasi-group with
holes, random binary constraint satisfaction problentgi@ens, and graph coloring.

The quasi-group with holes instances were produced by therger of Carla
Gomes. Instances of different sizes and different pergestaf holes were used (40%
and 42% which is right below and right at the phase trangitidan instances were
generated for each parameter setting of the generator dedted in a set named qwh-
[order]-[percent holes].

Random binary constraint satisfaction problems were gdeéiby the generator of
Christian Bessiere available at [5]. Instances vary in nemat variables, domain size,
number of constraints, and constraint tightness. We fix #resitly of the constraint
graph at 0.5 and then derive the value for the critical camstrtightness using the
formula given in [16] which is the value for which the BCSP Iplems are generally
hard. We then generate instances with constraint tighsiigggly above and below the
critical value. Ten instances were generated for each pearsetting of the generator
and collected in a set named b-[vars]-[vals]-[tightness].

The n-queens model consists of the standard four types diffdtent constraints;
two enforcing that queens cannot attack each other on the aod columns, and two
enforcing that the queens cannot attack each other on didggdn CMV-SAT-1 the
all different constraint is decomposed into a clique of repia constraints. Not equal
constraints are transformed into disjunction of varialslEgnments. The SAT encoding
of all different constraints provided by Sugar is descrilvef22].

The graph coloring instances are part of the DIMACS stanf@tdrhe problems
were changed into decision problems as opposed to optimizatoblems by setting
the desired number of colors to the best known value. We essubset of 44 instances
which could be solved in under one hour of CPU time.

For each instance, we report the average statistics (rentiodes, failures, etc.).
For all experiments including the ones on different configions of CMV-SAT-1 we
used ten different seeds per instance and ran on Intel Coga# Q6600 processors
with 3GB of RAM.

[[Imp | MinDom] [Imp [MinDom] [Imp [MinDom]

QWH [Time[NodegTime[Nodeg] BCSP [Time[NodegTime[Nodeg GraphColTime]NodegTime[Nodeg
qwh-25-40 0.61| 166 [0.81] 193 [|b-25-20-.432.04|2.91K] 2.51][2.90K] fpsol2.i.1{ 0.38] 362 [0.28] 375
qwh-25-47 0.32| 107 |0.45] 132 ||b-25-25-.496.35|7.02K| 7.66|6.64K| inithx.i.1 | 0.49| 587 |0.96| 777
qwh-27-4Q 0.72| 187 [0.86] 229 [[b-25-30-.4713.9[12.6K] 16.9[11.7K] inithx.i.2 | 0.20] 558 [0.22| 599
qwh-27-47 0.58| 179 [0.83] 227 || b-25-40-.5] 54.6]40.4K] 69.2[35.5K]1e45Q015a| 3.69|6.84K]| 23.2]17.6K]
qwh-29-4(2.83| 585 [4.54] 742 [|b-30-20-.3718.0]24.7K] 19.5[20.6K|le45015b| 1.64[3.24K| 1.23|4.52K]
qwh-29-47 3.14| 645 [2.02] 551 [|b-30-25-.3955.4[60.7K]| 62.5[51.7K[le45025a] 0.11] 438 [0.10] 438
qwh-31-4Q 2.12| 497 [2.44] 576 [[b-30-30-.331.21]|1.10K] 1.69[1.33K|le45Q25b| 0.10] 438 [0.09| 438
qwh-31-47 1.14| 350 [1.38] 389 [[b-30-40-.352.53[1.46K] 4.89[2.09K] le450Q5a | 3.06]5.67K]| 1.62]7.86K|
qwh-33-4(0 4.39] 861 [5.22]1.07K]|b-35-20-.26 1.40]1.55K] 1.70[1.63K] le4505c [0.12] 73.5[0.10] 69.1
qwh-33-442.43| 641 [2.75] 769 [|b-35-25-.285.08]4.19K] 5.13[3.63K|miles1500 0.61] 257 [0.48] 449
gqwh-35-4(19.2[2.68K] 12.8]2.79K]|b-35-30-.29 4.85|3.19K] 9.91[4.54K| queen88 | 18.1]27.8K| 24.0] 25.5K]
qwh-35-47 6.18|1.28K] 6.43[1.67K] queen99 | 108 [92.1K]| 135|72.5K

Table 3. Comparison between minDomain and impact-based branchimg in [s].

5.2 Quantitative Supports

In Table 1 we give the average time per choice point when usirtgwhen not using
guantitative supports. We see clearly that quantitatippetis speed up the propagation
process considerably and almost independently of the tfjpeoblem that is solved.
The reduction in time per choice point is roughly 20%-25% w@arage. Given that
propagation does not make up for 100% of the work that has ttobe per choice point
(there are also impact updates, nogood computations, tirageariable selection etc.),
this reduction is substantial.

5.3 Non-Dominated UlVs

Next we investigate the impact of computing non-dominatéddivhen learning no-
goods. Table 2 shows the results on quasi group with holesgeeqgh coloring in-
stances. We did not conduct this experiment on random bi@&#®s as our solver de-
tects quickly that most often the branching variable is thiy &1V and then switches
the optimization off.

In the table we compare two variants of our solver. The firssubeO(mn) ap-
proach presented in Section 3.2 and ensures that non-dizdibiVs are used for
computing the nogood. The second approach works in linesr®(m) and uses the
branching variable as a basis for computing the nogood.

We see clearly that using non-dominated UIVs has a profaupdct on the number
of failures which are almost always substantially lowenttdnen potentially dominated
nogoods are used. Interestingly, our data shows that the fien choice point is not
measurably higher when using the advanced nogood learnimene. In Table 2 we
show the average number of shortest path computationsdbrfedure. As we can see,
it is usually very low, somewhere between two and three skbpaths are sufficient on
average to find a non-dominated UIV.

5.4 MinDomain vs. Impacts

The work in [2] suggested that augmenting a SAT solver with domain branching
can lead to substantial performance improvements. Sinpadts have since become
a popular alternative to min domain branching in CP, we itigated which method
performs better for multi-valued SAT. As Table 3 shows, capdrcoloring both meth-
ods perform roughly the same, while on random binary CSPSANH impacts work
clearly better. We also tested activity-based branchingisécs commonly used in SAT
and min domain over weighted degree [6], but both were notpegitive (the latter due
to the large number of constraints). Our solver therefoes impact-based branching.

CMV-SAT-1 MiniSAT
Class | Time|NodegTime Outg| Time|Nodeg Time Outs
GraphCol || 137 | 138K 0 178 | 373K 3
N-Queens || 168 |12.4K 2 235| 106K 0
gwh D=25 || 0.93| 273 0 5.35|19.6K 0
gwh D=27 || 1.30| 366 0 13.2136.7K 0
gwh D=29 | 6.00|1.23K 0 48.0/94.4K 0
gwh D=31 || 3.26| 847 0 64.0| 119K 1
gwh D=33 | 6.82| 1.5K 0 178 | 218K 14
gwh D=35 | 25.2| 4K 0 338 | 318K 54
QWH Totall| 43.5|8.26K 0 647 | 806K 69
b D=20 21.4| 30K 0 13.8| 181K 0
b D=25 66.8| 72K 0 64.2| 524K 1
b D=30 20.0| 17K 0 22.1| 165K 0
b D=40 61.1| 41K 0 103 | 423K 0
BCSP Tota] 169.3 160K 0 203.11293 1

Table 4. CMV-SAT 1 vs. MiniSAT. For the QWH and BCSPs we aggregateradtances in our
benchmark set that have the same domain size, for Graphitplnd N-Queens we aggregate
all instances. Time in [s], timeout for the runs is 15 min.

5.5 MV-SAT vs. SAT

In our last experiment, we compare our multi-valued solvigh the well-known Mini-
SAT solver for boolean SAT. In particular, we use Sugar [23pte-compile the SAT
formulas from the XCSP model of each instance. The MV-SATainses for our solver
are generated as explained before. In our experiment, weaanthe puresolution
time of MiniSAT and CMV-SAT-1 on the resulting SAT and MV-SAT irsstces. Note
that this solution time does not include the time that Sugesds to compile the SAT
formula, nor the time for reading in the input.

Table 4 summarizes our results. We observe that CMV-SABitswnassively fewer
choice points than MiniSAT. Depending on the class of inplusreduction is typically
between one and two orders of magnitude. We attribute tHisatéon in part to impact-
based branching, and in part to the use of sophisticatedattsyo

We also observe that our prototype requires about an ordaaghitude more time
per choice point than MiniSAT. Only to a small extend thisiedo the additional time
needed for learning high-quality nogoods. When solvingicem BCSPs, CMV-SAT-1
quickly finds that computing sophisticated nogoods is nathwehile and then uses the
branching variable as UIV as explained in Section 3.3. 8l need about an order
of magnitude more time per choice point on these instandais. ifidicates that our
implementation still leaves a lot of room for improvement.

Overall, we find that CMV-SAT-1 performs a little better th&hniSAT on graph
coloring and random BCS problems, whereby on both CMV-SA¥etks more ro-
bustly and thus causes fewer timeouts. On n-queens andgyoagis with holes, CMV-
SAT-1 clearly outperforms MiniSAT. For all problems, thevetion in the number of
choice points is very substantial and overall the multiseal SAT solver runs upto fif-
teen times faster than the boolean SAT solver.

6 Conclusion

We have introduced CMV-SAT-1, a new complete multi-valuéd Solver which can

serve as a back-end for CSP solvers that are based on dedtarpaxsd reformulation

as SAT. We contributed the ideas of quantitative supportugment the well-known
watched literal scheme, and a new method for learning maltied nogoods. Experi-
ments substantiated the practical benefits of these idehshawed that multi-valued
SAT solving offers great potential for improving classibalblean SAT technology.

References

1. C. Ansbtegui. Complete SAT solvers for Many-Valued CNffrRulas.PhD thesis Univer-
sitat de Lleida, 2004.

2. C. Ansbtegui, J. Larrubia, F. Manya. Boosting Chaff&sfBrmance by Incorporating CSP
Heuristics.CP, 96-107, 2003.

3. C. Ansotegui and F. Manya. Mapping Problems with Filitamain Variables to Problems
with Boolean VariablesSAT, 1-15, 2004.

4. C. Ansbtegui, J. Larrubia, C. Liu, F. Manya. Exploitingultivalued knowledge in variable
selection heuristics for SAT solver8nn. Math. Artif. Intell, 49(1-4): 191205, 2007.

5. C. Bessiere. : http://www.lirmm.fr/ bessiere/generatml.

6. F. Boussemart, F. Lecoutre, C. Sais. Boosting systersaticch by weighting constraints.
ECAI, 146-150, 2004.

7. N. Eén and N. Sorensson. An Extensible SAT-sol8&T, 502-518, 2003.

8. A. Frisch and T. Peugniez. Solving Non-Boolean SatidftsliProblems with Stochastic
Local SearchlJCAI, 282-288, 2001.

9. Graph coloring instances. http://mat.gsia.cmu.edl/CRYinstances.html.

10. I. Gent. Arc consistency in SAECAI, 121-125, 2002.

11. G. Katsirelos. Nogood Processing in CSPBD ThesisUniversity of Toronto, 2009.

12. C. Li and A. Anbulagan. Heuristics based on unit propagdior satisfiability problems.
1JCAI, 366-371, 1997.

13. C. Liu, A. Kuehlmann, M. Moskewicz. CAMA: A Multi-Value&atisfiability Solver.IC-
CAD, 326-333, 2003.

14. D. Mitchell Resolution and Constraint Satisfacti@®, 554-569, 2003.

15. O. Ohrimenko, P. Stuckey, M. Codish. Propagation=Lazy&: GeneratiorCP, 544-558,
2007.

16. Patrick Prosser. An empirical study of phase transtionbinary constraint satisfaction
problems .Frontiers in Problem Solving: Phase Transitions and Corripye, 81(1-2):81—
109, 1996.

17. P. Refalo. Impact-Based Search Strategies for ConsBedgrammingCP, 557-571, 2004.

18. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik. @Hangineering an Efficient
SAT Solver.DAC, 530-535, 2001.

19. T. Schiex and G. Verfaille. Nogood Recording for Statid ®ynamic Constraint Satisfaction
Problems.IJAIT, 48-55, 1994.

20. B. Selman, H. Kautz, B. Cohen. Local Search StrategieSdtisfiability TestingDIMACS
521-532, 1995.

21. International CSP Competition Result Pages. htthlistc.kobe-u.ac.jp/sugar/cpai08.html
http://bach.istc.kobe-u.ac.jp/sugar/csc09.html

22. N. Tamura, A. Taga, M. Banbara. System Description of &-8#sed CSP solver Sugar.
http://bach.istc.kobe-u.ac.jp/sugar/cpai08-sugar@ieAl, 2008.

23. N. Tamura, A. Taga, S. Kitagawa, M. Banbara. CompilingitEiLinear CSP into SAT.
Constraints 14:254-272, 2009.

24. T.Walsh. SAT vs CSECP, 441-456, 2000.

25. L. Zhang, C. Madigan, M. Moskewicz, S. Malik. Efficientndlict driven learning in a
boolean satisfiability solvetCCAD, 279-285, 2001.

