
A Complete Multi-Valued SAT Solver
Siddhartha Jain,1 Eoin O’Mahony,2 Meinolf Sellmann1⋆

1 Brown University, Department of Computer Science
P.O. Box 1910, Providence, RI 02912, U.S.A.

sj10,sello@cs.brown.edu
2 Cork Constraint Computation Centre
University College Cork, Cork, Ireland.

e.omahony@4c.ucc.ie

Abstract. We present a new complete multi-valued SAT solver, based on current
state-of-the-art SAT technology. It features watched literal propagation and con-
flict driven clause learning. We combine this technology with state-of-the-art CP
methods for branching and introduce quantitative supportswhich augment the
watched literal scheme with a watched domain size scheme. Most importantly,
we adapt SAT nogood learning for the multi-valued case and demonstrate that
exploiting the knowledge that each variable must take exactly one out of many
values can lead to much stronger nogoods. Experimental results assess the bene-
fits of these contributions and show that solving multi-valued SAT directly often
works better than reducing multi-valued constraint problems to SAT.

1 Multi-Valued SAT
One of the very successful solvers for constraint satisfaction problems (CSPs) is Su-
gar [23]. It is based on the reduction of CSP to the satisfiability problem (SAT). Sugar
first encodes the given problem as a SAT formula and then employs MiniSAT [7] to
solve the instance. Somewhat surprisingly, Sugar won the ACP global constraint com-
petition in the past two years [21]. Our work is highly motivated by the success of this
solver. Our objective is to provide a solver which could replace MiniSAT for reduction-
based CSP solvers and work with even better efficiency by taking into account that
CSP variables usually have non-boolean domains. To this end, let us begin by formally
defining the multi-valued SAT problem.

Definition 1 (Multi-Valued Variables). A multi-valued variableXi is a variable that
takes values in a finite setDi called thedomainofXi.

Definition 2 (Multi-Valued Clauses).

– Given a multi-valued variableXi and a valuev, we call the constraintXi = v a
variable equationonXi. A variable equationXi = v is calledsatisfiableiff v ∈ Di.

– Given a set of multi-valued variablesX = {X1, . . . , Xn} and a setT ⊆ X , a
clauseoverT is a disjunction of variable equations on variables inX .

Example 1.Given variablesX1, X2, X3 with domainsD1 = {1, . . . , 5}, D2 = {true,
false}, andD3 = {red, green, blue},

(X1 = 1 ∨X1 = 3 ∨X1 = 4 ∨X2 = false ∨X3 = red) (1)

is a multi-valued clause overX1, X2, X3.

⋆ This work was supported by the National Science Foundation through the Career: Cornflower
Project (award number 0644113).

Note that multi-valued clauses have no negation. A classic SAT clause would be
written as(X1 = false∨X2 = true∨X3 = false) in this notation. To save memory, it
can be very helpful to encode large sets of allowed values by specifying the disallowed
values only. E.g., in the example above we may prefer to write

((X1 6= 2 ∧X1 6= 5) ∨X2 = false ∨X3 = red). (2)

While the solver that we developed for this paper allows these inputs, they are not part
of the problem definition itself to keep the theory free from confusing implementation
details.

Definition 3 ((Partial) Assignments and Feasibility).Given a set of multi-valued
variablesX = {X1, . . . , Xn}, denote withD the union of all domainsD1, . . . , Dn.
Furthermore, denote withS, T subsets ofX .

– A functionα : S → D is called anassignmentof variables inS. α is calledpartial
iff |S| < n, andcompleteotherwise. If|S| = 1, α is called avariable assignment.

– An assignmentα is calledadmissibleiff α(Xi) ∈ Di for all Xi ∈ S.
– An assignmentα of variables inS is calledfeasiblewith respect to a clause over
T iff T \ S 6= ∅ or if there exists a variable equationXi = α(Xi) in the clause.

– Given a clausec, a complete, admissible, and feasible assignment is calleda solu-
tion for c.

Definition 4 (Multi-Valued SAT Problem). Given a setX of multi-valued variables
and a set of clauses over subsets ofX , themulti-valued SAT problem (MV-SAT)is to
decide whether there exists an assignmentα that is a solution for all clauses.

As MV-SAT allows boolean variables, the problem is at least as hard as SAT and is
thus NP-hard. On the other hand, using standard CP encodings(direct encoding, support
encoding, or order encoding [24, 10, 23]), we also know that MV-SAT can be reduced
to SAT which makes the problem NP-complete.

Although the problems are equivalent in complexity (as all NP-complete problems
are) and also very similar in structure, we consider MV-SAT an interesting generaliza-
tion of SAT. In [1] it was shown that many problems which are currently being solved
as SAT problems do in fact model problems with multi-valued variables. Moreover,
many applications, especially in verification, naturally exhibit multi-valued variables.
The purpose of this paper is to show that handling multi-valued variables directly rather
than encoding them by means of boolean variables can lead to substantial improvements
in computational efficiency.

2 Efficient Incremental Clause Filtering

The main inference mechanism in CP and SAT is constraint filtering. That is, for a given
constraint we want to identify those variable assignments that cannot be extended to a
solution for a given constraint and the current domains. Thecorresponding domain val-
ues are then removed and the process is iterated until no constraint can remove further
domain values.

2.1 Unit Propagation in SAT

A classic SAT clause only ever removes a value (true or false)from a variable domain
when all other variables in the clause have been assigned a value which does not satisfy
the clause. In this case, we speak of aunit clauseand the process of filtering clauses in
this way is calledunit propagation.

An elegant way of incrementally performing the filtering of SAT clauses was pro-
posed in [18]. Each clause watches only two variable equations. In SAT, these are com-
monly referred to asliterals. As long as both watched literals can be satisfied, no filter-
ing can take place. When one watched literal cannot be satisfied anymore, we search for
another second literal that can still be satisfied. Only whenno second satisfiable literal
can be found is the clause unit and we commit the only remaining variable assignment
that can still satisfy the clause.

The beauty of this way of performing unit propagation is thatit is not necessary to
traverse all clauses that involve any variable that has beenset to a value. In essence,
the two watched literals give us an effective pre-check whether a clause can filter any
values. Only when this pre-check fails, i.e. when one of the watched literals is affected,
we need to perform any work. Otherwise the cost is not even constant per unaffected
constraint, there is in fact no work to do for them at all. Thislast fact is key for handling
problem instances with many constraints and for learning a large number of redundant
clauses during search.

Note that we always start the search for a replacement watched literal at the old lost
literal and then wrap around if the tail of the clause did not contain a valid support. This
prevents us from looking at the same lost supports over and over again which would
happen if we always started the search at the first literal in the clause. The method
guarantees that each clause literal will be looked at most thrice on any path from the root
to any leaf in the search tree. Note further that this scheme is very backtrack friendly as
all non-unit constraints do not need to update their watchedliterals upon backtracking
as their current supports are obviously still valid for any ancestor node in the search
tree.

2.2 Watched Variable Equations

For multi-valued clauses we can use the very same approach. Note however that multi-
valued clauses can trigger filtering earlier. As soon as all variable equations that can
still be satisfied regard just one variable, all domain values of this variable that do not
satisfy the clause can be removed from its domain. For example, consider the clause
from earlier:(X1 = 1 ∨ X1 = 3 ∨ X1 = 4 ∨ X2 = false ∨ X3 = red). As soon as
the domains ofX2, X3 do not contain the valuesfalse andred anymore, respectively,
values2 and5 can be removed fromD1.

To accommodate this fact we only need to ensure is that the twovariable equations
that are watched cannot regard the same variable. This is automatically guaranteed in
SAT when we remove tautologies upfront. Although as we have seen earlier; multi-
valued clauses can have a number of variable equations in thesame variable.

The two watched variable equations approach therefore watches two variable equa-
tions that regard two different variables. To this end, in each clause we group the vari-
able equations according to their respective variables, and we fix an ordering of the
variables and their allowed values in the clause. When a watched variable equality is
affected, we search for a replacement starting at the old variable and its old value. If that

does not lead to a replacement support, we continue with the next variable, whereby we
skip over the variable that is used for the second variable equality.

2.3 Quantitative Supports

In multi-valued SAT we can enhance this scheme by allowing a different kind of support
that is based on the size of the current domain of a variable. For a given clausec, let us
denote withic the number of variable equations that regardXi in c. Furthermore, let us
denote withdi the size of the initial domain ofXi. The observation is that there must
exist at least one satisfiable variable equality for a given variable as long as the size of
the current domain is still bigger than the number of values that are disallowed by this
clause when all variable equations regarding other variables in this clause cannot be
satisfied. Formally:|Di| > di − ic ⇒ ∃v ∈ Di : Xi = v ∈ c.

Example 2.Given are two variablesX1, X2 with initial domainsD1 = D2 = {1, . . . , 6},
and a clausec = (X1 = 1 ∨X1 = 2 ∨X1 = 3 ∨X1 = 4 ∨X1 = 5 ∨X2 = 1). The
constraint just says thatX2 = 1 or X1 6= 6. Now assume that the current domain of
X1 isD1 = {2, 3, 6}. The clause only disallows one value forX1, but three values are
still allowed: |D1| = 3 > 1 = 6 − 5 = d1 − 1c. Consequently, there must still exist a
variable equality onX1 in c that can still be satisfied, in our case e.g.X1 = 2.

The point of these quantitative supports is that we do not need to place a bet on any
particular value for a given variable. Instead, a clause only needs to be looked at when
the domain size of a watched variable falls below or equal thethresholddi − ic, no
matter which particular values are lost until this happens.Especially when few values
are disallowed for a variable, watching quantitative supports can save us a lot of work.
Note that this type of support is not actually new in constraint programming. Solvers
like IBM CP Solver have long associated the filtering of constraints with certain events,
such as the event that a variable is bound (i.e. when its corresponding domain has shrunk
to size 1). The only difference here is that we allow multi-valued clauses to set their
own specific variable domain threshold which triggers when they need to be queued for
filtering again.

3 Learning Nogoods for Multi-Valued SAT

We have seen in the previous section that multi-valued clauses offer the potential for
filtering even before the number of satisfiable variable equations is 1, as long as the
ones that remain satisfiable all constrain the same variable. Depending on the SAT en-
coding, a boolean SAT solver that learns redundant constraints can improve its filtering
effectiveness to achieve the same, but the fact that this filtering is guaranteed is already
an advantage of modeling a problem as multi-valued SAT over classic SAT.

A second and probably more important advantage of multi-valued SAT is that we
can learn better implied constraints by exploiting our knowledge that each variable
must take exactly one value. Before we explain how this can beachieved, let us begin
by reviewing conflict driven clause learning in SAT.

3.1 Conflict Analysis

Unit propagation is an incomplete inference mechanism in sofar as it does not guaran-
tee that all variable domains have size 1 at the end and that itis not guaranteed that a

variable domain will be empty even when the given formula hasno solution. The only
facts that we know for sure are that variables that are unit must be set to the correspond-
ing value in any solution and, consequently, that the formula has no solution if unit
propagation finds a variable that can neither be set to true nor to false.

Due to this incompleteness of our filtering method we need to conduct a search for
a solution. We assign variables one after the other to valuesin their domain, whereby
after each assignment we perform unit propagation to simplify the formula or to detect
that our current partial assignment cannot be extended to a solution. In the latter case,
we speak of afailureand the variable that can neither be true nor false is called aconflict
variable.

At this point, we could just undo the last variable assignment and try a different one.
We can do much better, though. The power of modern SAT solverslies in their ability
to analyze the cause of the failure and to construct a redundant constraint, a so-called
nogood, that will help prevent us from making the same error again. Crucial for this
conflict analysis is our ability to give the exact reasons whya constraint filters a value.
SAT clauses are very well suited for conflict analysis as we can trace exactly which
prior domain reductions triggered the filtering.

In particular, modern systematic SAT solvers set up a so-called implication graph.
It allows us to trace back the reasons why certain domain values have been removed.
By collecting all causes for the removal of all domain valuesof the conflict variable, we
can state a new constraint which forbids that a sufficient condition for a failure occurs.
The easiest way to explain how the implication graph is set upand used is by means of
an example which we will use throughout this section.

Example 3.Consider a constraint satisfaction problem (CSP) with five variables and
five constraints. The variables have domainsD1 = D2 = D4 = {1, 2, 3}, D3 =
{1, . . . , 6}, D5 = {1, 2}. The constraints areX1 6= X4, X2 6= X3, X3 + 9 ≥ 5X4,
X3 + 4 ≥ 5X5, andX4 6= X5 + 1.

Say we model this problem by introducing boolean variablesxij which are true iff
Xi = j. To ensure that each CSP variable takes exactly one value we introduce clauses
(∨jxij = true) for all i, and(xij = false ∨ xik = false) for all i and j < k. In
particular, we have a clause

(x31 = false ∨ x36 = false). (3)

We need to add multiple clauses for each CSP constraint. Among others, for constraints
X1 6= X4, X2 6= X3, andX4 6= X5 + 1 we add

(x11 = false∨x41 = false)∧ (x22 = false∨x32 = false)∧ (x42 = false∨x51 = false). (4)

ConstraintsX3 + 9 ≥ 5X4 andX3 + 4 ≥ 5X5 are enforced by the clauses

(x41 = true ∨ x42 = true ∨ x36 = true) ∧ (x51 = true ∨ x36 = true). (5)

The resulting SAT formula has no unit clauses, and so we beginour search. Assume
that we first commitx11 ← true. To record this setting, we add a node (x11 6= false)
to our implication graph,1 and we note that this node is added at search depth level 1
(compare with Figure 1 and ignore the dashed nodes and arcs).Among the clauses that

1 Note that our notation is not standard in SAT. We use it here because it will naturally generalize
to multi-valued SAT later.

X != false11

1

X != false22

2

X != true41

1

X != true32

2

X != false42

3

X != false31

3

X != true36

3

X != false51

3

X != true42

3

conflict

Conflict Partition

1−UIPUIP

X != true37

3

Fig. 1. SAT implication graph for Example 3. The solid nodes and arcsdepict the relevant part
of the implication graph whenD3 = {1, . . . , 6}. The dashed nodes and arcs are part of the
implication graph whenD3 = {1, . . . , 7}.

we consider for this example, only the first clause in (4) becomes unit, and we infer
(x41 6= true). We add also this node to the graph, mark it with depth level 1, and draw
an arrow from the second to the first node to record that the first variable inequality
implies the second.

After unit propagation is complete, we may next setx22 ← true. Again, we add a
node (x22 6= false) to our graph and note that it was added on depth level 2.By (4) we
infer (x32 6= true), add this node with depth mark 2, and add an arc to (x22 6= false).

Again after all unit propagation is complete, let us assume that we now commit
x31 ← true. Again, we add (x31 6= false), and by (3) we infer (x36 6= true) (both at
depth level 3, just like all nodes that follow). The first clause in (5) is now unit and we
add a new node (x42 6= false). We add arcs to node (x41 6= true) and to node (x36 6=
true), as both variable inequalities are needed to make thisimplication. The second
clause in (5) is also unit, and we infer (x51 6= false) which is implied by (x36 6= true).
The last clause in (4) is now unit and we add node (x42 6= true). Together with the
earlier implied (x42 6= false) we have now reached a conflict. In Figure 1 we show the
implication graph at this point (please ignore the dashed elements).

This graph is used to compute nogoods: Any set of nodes that represents a cut be-
tween the conflict node on one side and all branch nodes (i.e. nodes without outgoing
arcs) on the other defines a valid constraint. For example, all paths from the conflict
node to any branch node must visit either (x42 6= false) or (x36 6= true). Consequently,
it is sound to enforce that not both variable inequalities hold at the same time or, equiv-
alently, that(x42 = false∨x36 = true). Conveniently, this constraint is again a clause!
In terms of our CSP variables means thatX4 = 2 impliesX3 = 6.

Another cut set is the set of all reachable branch nodes, in our case(x11 6= false)
and (x31 6= false). This cut results in the clause(x11 = false) and (x31 = false),
or X1 = 1 impliesX3 6= 1. This latter fact is interesting as it obviously means that
after our first search decision we could already have inferred x31 6= true. Another way
to put this is to say that the second branching decision was irrelevant for the conflict
encountered, a fact that we can exploit to undo multiple search decisions, a process
which is commonly referred to asback-jumpingor non-chronological backtracking.

In order to achieve immediate additional propagation by thenewly learned clause
after back-jumping, we need to make sure that the clause contains onlyonenode from
the last depth level. Then and only then the newly learned clause will be unit and thus
trigger more filtering after back-jumping. To find nodes thatcan be extended to a full cut
using only nodes from lower depth levels, we consider only paths between the conflict
node and the last branching decision. In Figure 1, this happens to be the subgraph
induced by the nodes marked with depth level 3 (in general it would be a subset of
the nodes on the lowest level). In this subgraph, we search for cut points, i.e., nodes that
all paths from conflict to branch node must visit. In SAT theseare commonly referred
to asunit implication points (UIP).

Note that these UIPs can be computed in time linear in the number of edges of the
subgraph. In our case, there are two UIPs, (x36 6= true) and the branch node itself,
(x31 6= false). In [25] it was established that it is beneficial to consider the UIP that
is closest to the conflict. This is called thefirst UIP (1-UIP). Now, we group all nodes
between the 1-UIP and the conflict together (marked by the circle in Figure 1). The cut
set is then the set of all nodes that have a direct parent in this set. In our case, these are
(x36 6= true) and (x41 6= true), which gives the nogood (x36 = true∨x41 = true); or, in
terms of the CSP variables,X4 6= 1 impliesX3 = 6.

3.2 Unit Implication Variables

X != 3
1

1 X != 1
1

4

X != 2
1

1

X != 1
2

X != 3
2

2

2

X != 2
2

3

X != 1
3

3

X != 3
3

4

X != 2
3

5 X != 2
3

4
X != 6

3

X != 7
3

3

3

conflict

Conflict Partition

UIV

Fig. 2.MV-SAT Implication Graph.

As the example shows, conflict analysis
can result in powerful inference. We will
now show how we can learn even stronger
nogoods in multi-valued SAT.

Consider again Example 3, but this
time let us assume thatD3 = {1, . . . , 7}.
In our SAT model, the clauses enforcing
X3+9 ≥ 5X4 andX3+4 ≥ 5X5 change
to (x41 = true ∨ x42 = true ∨ x36 =
true ∨ x37 = true) and(x51 = true ∨
x36 = true ∨ x37 = true).

If we branch as before, the implication
graph at depth level 3 includes the dashed
arcs and nodes in Figure 1. We observe
that it has only one UIP now, and that is
the branch node itself. Consequently, the
nogood learned is much weaker, we only
infer (x31 = false∨x41 = true); or, in
terms of the CSP variables, thatX4 6= 1
impliesX3 6= 1.

In Figure 2 we show the implication graph for the corresponding multi-valued SAT
model. Note that this graph no longer contains a single node that corresponds to the
branching assignment. This is rather given as a number of variable inequalities. Observe
further that in this graph there does not exist a UIP at all anymore. However, recall from
Section 2 that a multi-valued clause can cause filtering evenwhen multiple variable
equations are still satisfiable, as long as all of them regardthe same variable. For us,
this means that we no longer need to find a cut point, but potentially an entire set of
nodes:

X != 1
1

X != 1
1

X != 2
1

X != 2
1

X != 1
1

1

X != 2
1

1

2

3

3

2 4

X != 14

conflict

1
5

43

2

6

Fig. 3. Implication graph for a problem with four variables with domainsD1 = D4 = {1, 2} and
D2 = D3 = {1, 2, 3}.

Definition 5 (Unit Implication Variable). Given a multi-valued SAT problem and an
implication graphG, assume that, if all nodes associated with variableX are removed
from G, there exists no path from the conflict node to any branch nodeon the lowest
branch level. Then, we callX a unit implication variable (UIV).

In our example,X3 is a UIV. Based on its associated cut set, we can again compute
a conflict partition and set the nogood as the negation of the conjunction of all variable
inequalities which have a direct parent in the conflict partition. In our example, we thus
find the multi-valued clause(X4 = 1 ∨X3 = 6 ∨X3 = 7). After backjumping to the
highest depth level after the conflict level in our learned clause (in our case level 1), this
clause is unit and prunes the domain ofX3 to D3 = {6, 7}. That is, equipped with this
nogood the solver does not need to branch onX3 ← 2,X3 ← 3, X3 ← 4, andX3 ← 5
as all of these settings would fail for the very same reason asX3 ← 1 did.

The challenge here is to find UIVs efficiently. Unfortunatelythis task no longer
consists of the trivial linear computation of a cut point. Wepropose the following ap-
proach. First, we compute the shortest (in the number of nodes) path from any conflict
variable node to any branch node. Only variables associatedwith nodes on this path can
be UIVs. We call this set of variables thecandidate set. Next we update the costs of
the edges in the graph such that visiting a node associated with a variable in the candi-
date set incurs a cost of one, while all other nodes cost nothing. We compute another
shortest path based on this cost function. Again, only variables associated with nodes
on this path can be UIVs. We can therefore potentially reducethe candidate set. We
repeat this process as long as the candidate set keeps shrinking. Finally, we test each
remaining candidate by incurring a cost of one for nodes associated with the candidate
variable only. If and only if the cost of the shortest path is greater than zero, then this
implies that every path from a conflict node to a branch node must pass through a node
associated with the candidate variable, which is thereforea UIV. It follows:

Lemma 1. The set of all unit implication variables can be computed in timeO(mn),
wherem is the number of edges andn is the number of nodes in the subgraph of paths
between a conflict and a branch nodes.

Proof. Apart from the first and one other which establishes that the candidate set does
not shrink anymore, each shortest path computation reducesthe candidate set by at least
one candidate. As there are at mostn candidates, we require at mostn+2 shortest path
computations. The implication graph is a directed acyclic graph, and therefore each
shortest path computation takes timeΘ(m). ⊓⊔

While it is reassuring that UIVs can be computed in polynomial time, a time bound
of O(mn) is certainly not very appealing seeing that we need to compute a nogood at

D = {2} 1

1

D = {3} 3

1

2

1

D = {2,3} 3D = {1,3}
1

D = {3} 2

1

D = {2} 4

1

D = {} 4

1

Fig. 4. CAMA implication graph for the same example as in Figure 3.

every failure. In practice we can of course hope that way fewer thann shortest path
computations will be necessary. Fortunately, as our experiments will show, this hope is
very well justified.

3.3 Non-Dominated UIVs

Recall that in SAT, if there are many UIPs, we choose the one that is closest to the con-
flict. In multi-valued SAT, we may also have multiple UIVs, whereby the last branching
variable is always one of them. The question arises which UIVwe should prefer. It
is easy to see that there is no longer one unique UIV that dominates every other. For
example, see the implication graph in Figure 3.

Definition 6 (Non-Dominated UIV). We call a UIVnon-dominatedif there exists a
path from the conflict to a branch node where a node associatedwith the UIV is the first
node on the path that is associated with a UIV.

In our algorithm, we can easily compute a non-dominated UIV by testing the re-
maining candidates in the order in which they appear on the first shortest path that we
computed. Our solver learns the nogood that corresponds to this UIV.

An important aspect of our computing non-dominated UIVs is that they give us a
good indication of the strength of the nogoods that we compute. In our experiments, we
found that on problems where the vast majority of UIVs coincides with the branching
variable, learning sophisticated nogoods is often a waste of time. Consequently, when
our solver detects that the number of UIVs that are differentfrom the branching variable
drops below 5%, we no longer attempt to find improved, non-dominated UIVs and
simply use the branching variable to define the next nogood instead.

3.4 Nogood Management

Among others, our solver offers impacts for selecting the branching variable [17]. Im-
pacts measure the reduction in search space size achieved bypropagation after each
branching step. The concept has been found very effective for selecting branching vari-
ables.

As we learn more and more nogoods through the course of the search, an important
task for any conflict driven solver is the management of learned constraints. First, due
to limited memory it is simply not feasible to store all learned nogoods until an instance
is solved. Second, for the efficiency of the solver it is essential that we forget redundant
constraints which only cause work but rarely filter anything.

We use impacts to determine nogoods that can be deleted without losing much in-
ference power. Whenever a constraint filters some values during the propagation of the

2

1

D = {2,3} D = {2} 3

1

D = {3} 2

1

D = {2} 4

1

D = {2} 5

1

D = {} 5

1

D = {2} 1

1

3
4

21 5

6

Fig. 5. CAMA implication graph for a problem with five variables withdomainsD1 = D3 =
D4 = D5 = {1, 2} andD2 = {1, 2, 3}.

effects of a branching decision, we associate the constraint with the entire reduction
in search space that all constraints achieve together. The rational behind looking at the
entire reduction is that a constraint may not remove many values but very important
ones which trigger lots of follow-up propagation.

We keep a running average of these reductions for each learned constraint. When the
number of learned clauses reaches a limit (which grows over time), we remove roughly
half of the learned clauses by removing all that have an average reduction below the
median of all learned clauses. To ensure the completeness ofthe approach, clauses are
protected from removal when they are currently unit.

This scheme works well in principle, but it has one major drawback: constraints
which are part of some high impact propagation and which thennever become unit
again would clog up our system as their average reduction stays high. Therefore, in
regular intervals we decrease the expected reduction for each learned constraint by a
certain percentage. In our experiments, we decrease the expected reduction by 7% every
100 failures. In this way, constraints that have not been useful in a while get discounted.

4 Related Work

There are many approaches which reduce CSP to SAT and then employ a standard
boolean SAT solver. A number of different encodings have been proposed for this pur-
pose [24, 10, 23]. In the award-winning paper from Ohrimenkoet al. [15], CSP prop-
agators themselves were encoded lazily as SAT clauses whichgave very good results
on scheduling problems. The CSP solver Sugar [23], which wonthe ACP global con-
straints competition in the past two years, computes very efficient encodings for various
global constraints and then employs MiniSAT [7] to solve theresulting SAT problem.
Our work is heavily influenced by these studies and have motivated us to provide a
back-end SAT solver that could directly exploit the fact that variables must take exactly
one out of many values.

In [11, 14], classical CSP nogoods [19] were generalized to accommodate multi-
valued variables better. Pioneering work on multi-valued SAT was presented in [2–4].
Here, the then state-of-the-art SAT solvers Chaff [18] and SATZ [12] were augmented
with domain-based branching heuristics. Very good speed-ups over the performance
over baseline SAT solvers were reported which were solely due to the ability of the
multi-valued solver to take domain sizes into account when branching.

An incomplete multi-valued SAT solver was presented in [8].It is based on an
adaptation of the well known local search solver WalkSAT [20]. It was shown that
working the knowledge that each variable must take exactly one out of many values
into the solver can lead to superior performance on instances from various problem
classes with larger variable domain sizes.

QWH +Q -Q BCSP +Q -Q GraphCol +Q -Q

qwh-25-403.915.44 b-25-20-.430.700.90 fpsol2.i.1 1.141.74
qwh-25-423.044.18 b-25-25-.450.921.29 inithx.i.1 0.871.29
qwh-27-403.965.90 b-25-30-.471.151.60 inithx.i.2 0.380.62
qwh-27-423.215.06 b-25-40-.5 1.451.93 le450 15a 0.540.67
qwh-29-404.566.67 b-30-20-.370.750.96 le450 15b 0.360.49
qwh-29-423.554.48 b-30-25-.390.941.25 le450 25a 0.240.40
qwh-31-404.195.69 b-30-30-.331.051.36 le450 25b 0.240.38
qwh-31-423.295.07 b-30-40-.351.662.19 le450 5a 0.450.72
qwh-33-404.316.39 b-35-20-.260.821.02 le450 5c 1.952.70
qwh-33-423.715.32 b-35-25-.281.171.46 miles15002.233.52
qwh-35-405.336.79 b-35-30-.291.482.00 queen88 0.520.53
qwh-35-424.215.44 queen99 1.031.03

Table 1.Time [ms] per choice point when using (+Q) and not using (-Q) quantitative supports.

The only “pure” complete multi-valued SAT solver we know of was presented
in [13]. It was named CAMA and like our own solver it features propagation based
on watched literals (albeit without quantitative supports) and a nogood learning method
which exploits the knowledge about multi-valued variables. Like us the authors attempt
to learn improved nogoods.

In CAMA, a nogood is not constructed through the analysis of an implication graph
but through resolution. An implication graph is used only for the computation of a UIV.
The implication graph differs considerably from ours, though. As we will see, due to its
structure, CAMA is not able to identify non-dominated UIVs,for two reasons:

First, CAMA does not consider pure variable inequalities for learning nogoods, but
the entire domain of each variable after a value has been removed. The current domain,
however, reflectsall domain reductions on the variable and not just the ones that are
relevant for the filtering that is triggered. Consequently,CAMA needs to trace back
the relevant domain reductions, and since it conservatively assumes that the relevant
domain reductions happened earlier during propagation, itmay miss a unit implication
point. In Figure 4 we show a CAMA implication graph for the same example as de-
picted in Figure 3 where we also mark the order in which the nodes are added to the
graph. CAMA computes, in linear time, the cut point in this graph that is closest to the
conflict node. As we can see, due to the dashed edges which are needed to denote the
implications by earlier domain reductions on the same variable, the only cut point is the
branching node itself. CAMA thus finds variableX1 as UIV which is dominated both
byX2 andX3 as we can easily see in Figure 3.

The second reason why CAMA cannot identify non-dominated UIVs is that it is
simply unable to identify all UIVs by only considering cut points in its implication
graph. In Figure 5 we show a different example. Here, even when we ignore the dashed
arcs, the only cut point is the branch node, and CAMA choosesX1 as UIV which is
dominated byX2. In summary, CAMA’s nogood learning method runs in linear time,
but therefore the nogoods found are in general not as strong as they could be.

5 Numerical Results

We have introduced quantitative supports and non-dominated UIVs for nogood learning
in multi-valued SAT. We will now study these contributions and finally compare our
solver with standard SAT technology.

ND-UIV Q-UIV ND-UIV Q-UIV

QWH PathsTime Fails Time Fails GraphColPathsTime Fails Time Fails
qwh-25-40 2.37 0.61 90.7 0.68 94.4 fpsol2.i.1 1.09 0.38 35.6 0.39 35.6
qwh-25-42 2.34 0.32 33.7 0.43 44.7 inithx.i.1 1.01 0.49 24.4 0.47 24.4
qwh-27-40 2.43 0.72 85.3 1.10 130 inithx.i.2 0 0.20 0 0.20 0
qwh-27-42 2.39 0.58 62 1.02 117 le450 15a 2.16 3.69 2.93K 41.7 23.2K
qwh-29-40 2.44 2.83 331 3.87 442 le450 15b 2.08 1.64 1.27K 5.27 4.2K
qwh-29-42 2.47 3.14 360 3.06 329 le450 25a 0 0.11 0 0.11 0
qwh-31-40 2.43 2.12 210 2.70 228 le450 25b 0 0.10 0 0.11 0
qwh-31-42 2.40 1.14 97.9 1.62 141 le450 5a 2.04 3.06 4.42K 10.4 13.5K
qwh-33-40 2.44 4.39 394 7.23 658 le450 5c 1.90 0.12 51 0.13 65
qwh-33-42 2.41 2.43 200 4.12 351 miles15001.04 0.61 73.8 0.64 73.8
qwh-35-40 2.44 19.2 1.51K 33.9 2.14K queen88 1.90 18.1 24.1K 19.8 27.7K
qwh-35-42 2.44 6.18 482 17.2 1.19K queen99 1.93 108 79.8K 173 96.5K

Table 2.Comparison between non-dominated (ND-UIV) and quick UIVs (Q-UIV). Time in [s].

5.1 Benchmark Sets and Architecture

For our experiments, we use the following four classes of problems: quasi-group with
holes, random binary constraint satisfaction problems, n-queens, and graph coloring.

The quasi-group with holes instances were produced by the generator of Carla
Gomes. Instances of different sizes and different percentages of holes were used (40%
and 42% which is right below and right at the phase transition). Ten instances were
generated for each parameter setting of the generator and collected in a set named qwh-
[order]-[percent holes].

Random binary constraint satisfaction problems were generated by the generator of
Christian Bessiere available at [5]. Instances vary in number of variables, domain size,
number of constraints, and constraint tightness. We fix the density of the constraint
graph at 0.5 and then derive the value for the critical constraint tightness using the
formula given in [16] which is the value for which the BCSP problems are generally
hard. We then generate instances with constraint tightnessslightly above and below the
critical value. Ten instances were generated for each parameter setting of the generator
and collected in a set named b-[vars]-[vals]-[tightness].

The n-queens model consists of the standard four types of alldifferent constraints;
two enforcing that queens cannot attack each other on the rows and columns, and two
enforcing that the queens cannot attack each other on diagonals. In CMV-SAT-1 the
all different constraint is decomposed into a clique of not equal constraints. Not equal
constraints are transformed into disjunction of variable assignments. The SAT encoding
of all different constraints provided by Sugar is describedin [22].

The graph coloring instances are part of the DIMACS standard[9]. The problems
were changed into decision problems as opposed to optimization problems by setting
the desired number of colors to the best known value. We use the subset of 44 instances
which could be solved in under one hour of CPU time.

For each instance, we report the average statistics (runtime, nodes, failures, etc.).
For all experiments including the ones on different configurations of CMV-SAT-1 we
used ten different seeds per instance and ran on Intel Core 2 Quad Q6600 processors
with 3GB of RAM.

Imp MinDom Imp MinDom Imp MinDom

QWH Time NodesTime Nodes BCSP Time NodesTime Nodes GraphCol Time NodesTime Nodes
qwh-25-40 0.61 166 0.81 193 b-25-20-.43 2.04 2.91K 2.51 2.90K fpsol2.i.1 0.38 362 0.28 375
qwh-25-42 0.32 107 0.45 132 b-25-25-.45 6.35 7.02K 7.66 6.64K inithx.i.1 0.49 587 0.96 777
qwh-27-40 0.72 187 0.86 229 b-25-30-.47 13.9 12.6K 16.9 11.7K inithx.i.2 0.20 558 0.22 599
qwh-27-42 0.58 179 0.83 227 b-25-40-.5 54.6 40.4K 69.2 35.5K le45015a 3.69 6.84K 23.2 17.6K
qwh-29-40 2.83 585 4.54 742 b-30-20-.37 18.0 24.7K 19.5 20.6K le45015b 1.64 3.24K 1.23 4.52K
qwh-29-42 3.14 645 2.02 551 b-30-25-.39 55.4 60.7K 62.5 51.7K le45025a 0.11 438 0.10 438
qwh-31-40 2.12 497 2.44 576 b-30-30-.33 1.21 1.10K 1.69 1.33K le45025b 0.10 438 0.09 438
qwh-31-42 1.14 350 1.38 389 b-30-40-.35 2.53 1.46K 4.89 2.09K le4505a 3.06 5.67K 1.62 7.86K
qwh-33-40 4.39 861 5.22 1.07K b-35-20-.26 1.40 1.55K 1.70 1.63K le4505c 0.12 73.5 0.10 69.1
qwh-33-42 2.43 641 2.75 769 b-35-25-.28 5.08 4.19K 5.13 3.63K miles1500 0.61 257 0.48 449
qwh-35-40 19.2 2.68K 12.8 2.79K b-35-30-.29 4.85 3.19K 9.91 4.54K queen88 18.1 27.8K 24.0 25.5K
qwh-35-42 6.18 1.28K 6.43 1.67K queen99 108 92.1K 135 72.5K

Table 3.Comparison between minDomain and impact-based branching.Time in [s].

5.2 Quantitative Supports
In Table 1 we give the average time per choice point when usingand when not using
quantitative supports. We see clearly that quantitative supports speed up the propagation
process considerably and almost independently of the type of problem that is solved.
The reduction in time per choice point is roughly 20%-25% on average. Given that
propagation does not make up for 100% of the work that has to bedone per choice point
(there are also impact updates, nogood computations, branching variable selection etc.),
this reduction is substantial.

5.3 Non-Dominated UIVs
Next we investigate the impact of computing non-dominated UIVs when learning no-
goods. Table 2 shows the results on quasi group with holes andgraph coloring in-
stances. We did not conduct this experiment on random binaryCSPs as our solver de-
tects quickly that most often the branching variable is the only UIV and then switches
the optimization off.

In the table we compare two variants of our solver. The first uses theO(mn) ap-
proach presented in Section 3.2 and ensures that non-dominated UIVs are used for
computing the nogood. The second approach works in linear timeO(m) and uses the
branching variable as a basis for computing the nogood.

We see clearly that using non-dominated UIVs has a profound impact on the number
of failures which are almost always substantially lower than when potentially dominated
nogoods are used. Interestingly, our data shows that the time per choice point is not
measurably higher when using the advanced nogood learning scheme. In Table 2 we
show the average number of shortest path computations for each failure. As we can see,
it is usually very low, somewhere between two and three shortest paths are sufficient on
average to find a non-dominated UIV.

5.4 MinDomain vs. Impacts
The work in [2] suggested that augmenting a SAT solver with min domain branching
can lead to substantial performance improvements. Since impacts have since become
a popular alternative to min domain branching in CP, we investigated which method
performs better for multi-valued SAT. As Table 3 shows, on graph coloring both meth-
ods perform roughly the same, while on random binary CSPs andQWH impacts work
clearly better. We also tested activity-based branching heuristics commonly used in SAT
and min domain over weighted degree [6], but both were not competitive (the latter due
to the large number of constraints). Our solver therefore uses impact-based branching.

CMV-SAT-1 MiniSAT
Class Time NodesTime Outs Time NodesTime Outs

GraphCol 137 138K 0 178 373K 3
N-Queens 168 12.4K 2 235 106K 0

qwh D=25 0.93 273 0 5.35 19.6K 0
qwh D=27 1.30 366 0 13.2 36.7K 0
qwh D=29 6.00 1.23K 0 48.0 94.4K 0
qwh D=31 3.26 847 0 64.0 119K 1
qwh D=33 6.82 1.5K 0 178 218K 14
qwh D=35 25.2 4K 0 338 318K 54
QWH Total 43.5 8.26K 0 647 806K 69

b D=20 21.4 30K 0 13.8 181K 0
b D=25 66.8 72K 0 64.2 524K 1
b D=30 20.0 17K 0 22.1 165K 0
b D=40 61.1 41K 0 103 423K 0
BCSP Total 169.3 160K 0 203.11293K 1

Table 4. CMV-SAT 1 vs. MiniSAT. For the QWH and BCSPs we aggregate all instances in our
benchmark set that have the same domain size, for Graph Coloring and N-Queens we aggregate
all instances. Time in [s], timeout for the runs is 15 min.

5.5 MV-SAT vs. SAT

In our last experiment, we compare our multi-valued solver with the well-known Mini-
SAT solver for boolean SAT. In particular, we use Sugar [23] to pre-compile the SAT
formulas from the XCSP model of each instance. The MV-SAT instances for our solver
are generated as explained before. In our experiment, we compare the puresolution
timeof MiniSAT and CMV-SAT-1 on the resulting SAT and MV-SAT instances. Note
that this solution time does not include the time that Sugar needs to compile the SAT
formula, nor the time for reading in the input.

Table 4 summarizes our results. We observe that CMV-SAT-1 visits massively fewer
choice points than MiniSAT. Depending on the class of inputsthe reduction is typically
between one and two orders of magnitude. We attribute this reduction in part to impact-
based branching, and in part to the use of sophisticated nogoods.

We also observe that our prototype requires about an order ofmagnitude more time
per choice point than MiniSAT. Only to a small extend this is due to the additional time
needed for learning high-quality nogoods. When solving random BCSPs, CMV-SAT-1
quickly finds that computing sophisticated nogoods is not worthwhile and then uses the
branching variable as UIV as explained in Section 3.3. Stillwe need about an order
of magnitude more time per choice point on these instances. This indicates that our
implementation still leaves a lot of room for improvement.

Overall, we find that CMV-SAT-1 performs a little better thanMiniSAT on graph
coloring and random BCS problems, whereby on both CMV-SAT-1works more ro-
bustly and thus causes fewer timeouts. On n-queens and quasigroups with holes, CMV-
SAT-1 clearly outperforms MiniSAT. For all problems, the reduction in the number of
choice points is very substantial and overall the multi-valued SAT solver runs upto fif-
teen times faster than the boolean SAT solver.

6 Conclusion
We have introduced CMV-SAT-1, a new complete multi-valued SAT solver which can
serve as a back-end for CSP solvers that are based on decomposition and reformulation
as SAT. We contributed the ideas of quantitative supports toaugment the well-known
watched literal scheme, and a new method for learning multi-valued nogoods. Experi-
ments substantiated the practical benefits of these ideas and showed that multi-valued
SAT solving offers great potential for improving classicalboolean SAT technology.

References
1. C. Ansótegui. Complete SAT solvers for Many-Valued CNF Formulas.PhD thesis, Univer-

sitat de Lleida, 2004.
2. C. Ansótegui, J. Larrubia, F. Manyà. Boosting Chaff’s Performance by Incorporating CSP

Heuristics.CP, 96–107, 2003.
3. C. Ansótegui and F. Manyà. Mapping Problems with Finite-Domain Variables to Problems

with Boolean Variables.SAT, 1–15, 2004.
4. C. Ansótegui, J. Larrubia, C. Liu, F. Manyà. Exploitingmultivalued knowledge in variable

selection heuristics for SAT solvers.Ann. Math. Artif. Intell., 49(1-4): 191–205, 2007.
5. C. Bessiere. : http://www.lirmm.fr/ bessiere/generator.html.
6. F. Boussemart, F. Lecoutre, C. Sais. Boosting systematicsearch by weighting constraints.

ECAI, 146–150, 2004.
7. N. Eén and N. Sörensson. An Extensible SAT-solver.SAT, 502–518, 2003.
8. A. Frisch and T. Peugniez. Solving Non-Boolean Satisfiability Problems with Stochastic

Local Search.IJCAI, 282–288, 2001.
9. Graph coloring instances. http://mat.gsia.cmu.edu/COLOR/instances.html.

10. I. Gent. Arc consistency in SAT.ECAI, 121–125, 2002.
11. G. Katsirelos. Nogood Processing in CSPs.PhD Thesis, University of Toronto, 2009.
12. C. Li and A. Anbulagan. Heuristics based on unit propagation for satisfiability problems.

IJCAI, 366–371, 1997.
13. C. Liu, A. Kuehlmann, M. Moskewicz. CAMA: A Multi-ValuedSatisfiability Solver.IC-

CAD, 326–333, 2003.
14. D. Mitchell Resolution and Constraint Satisfaction.CP, 554–569, 2003.
15. O. Ohrimenko, P. Stuckey, M. Codish. Propagation=Lazy Clause Generation.CP, 544–558,

2007.
16. Patrick Prosser. An empirical study of phase transitions in binary constraint satisfaction

problems .Frontiers in Problem Solving: Phase Transitions and Complexity , 81(1–2):81–
109, 1996.

17. P. Refalo. Impact-Based Search Strategies for Constraint Programming.CP, 557–571, 2004.
18. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik. Chaff:Engineering an Efficient

SAT Solver.DAC, 530–535, 2001.
19. T. Schiex and G. Verfaille. Nogood Recording for Static and Dynamic Constraint Satisfaction

Problems.IJAIT, 48–55, 1994.
20. B. Selman, H. Kautz, B. Cohen. Local Search Strategies for Satisfiability Testing.DIMACS,

521–532, 1995.
21. International CSP Competition Result Pages. http://bach.istc.kobe-u.ac.jp/sugar/cpai08.html

http://bach.istc.kobe-u.ac.jp/sugar/csc09.html
22. N. Tamura, A. Taga, M. Banbara. System Description of a SAT-based CSP solver Sugar.

http://bach.istc.kobe-u.ac.jp/sugar/cpai08-sugar.pdf CPAI, 2008.
23. N. Tamura, A. Taga, S. Kitagawa, M. Banbara. Compiling Finite Linear CSP into SAT.

Constraints, 14:254–272, 2009.
24. T. Walsh. SAT vs CSP.CP, 441–456, 2000.
25. L. Zhang, C. Madigan, M. Moskewicz, S. Malik. Efficient conflict driven learning in a

boolean satisfiability solver.ICCAD, 279–285, 2001.

