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Abstract
Cells need to be able to sustain themselves, divide, and adapt to new stimuli.

Proteins are key agents in regulating these processes. In all cases, the cell behavior
is regulated by signaling pathways and proteins called transcription factors which
regulate what and how much of a protein should be manufactured. Anytime a new
stimulus arises, it can activate multiple signaling pathways by interacting with pro-
teins on the cell surface (if it is an external stimulus) or proteins within the cell (if it
is a virus for example). Disruption in signaling pathways can lead to a myriad of dis-
eases including cancer. Knowledge of which signaling pathways play a role in which
condition, is thus key to comprehending how cells develop, react to environmental
stimulus, and are able to carry out their normal functions.

Recently, there has also been considerable excitement over the role epigenetics –
modification of the DNA structure that doesn’t involve changing the sequence may
play. This has been buoyed by the tremendous amount of epigenetic data that is
starting to be generated. Epigenetics has been heavily implicated in transcriptional
regulation. How epigenetic changes are regulated and how they affect transcriptional
regulation are still open questions however.

In this thesis we present a suite of computational techniques and tool and deal
with various aspects of the problem of inferring signaling and regulatory networks
given gene expression and other data on a condition. In many cases, the amount of
biological data available for a condition can be very small compared to the number
of variables. We will present an algorithm which uses multi-task learning to learn
signaling networks from many related conditions. There are also very few tools that
attempt to take temporal dynamics into account when inferring signaling networks.
We will present a new algorithm which attempts to do so and significantly improves
on the state of the art. Finally, we propose to work on integrating epigenetic data
into the inference of signaling and regulatory networks.
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Chapter 1

Introduction

1.1 Background and motivation

Transcription is the process by which RNA molecules are creating based on the information
stored in the DNA. A DNA molecule is divided into genes, both coding (those subsequently
converted into proteins) and non-coding, microRNAs, tRNAs, and many other elements. The
processs of transcribing a gene is called gene expression. The process of gene expression is
highly complex. To start with, one or more proteins called transcription factors (TFs) bind to so
called enhancer sequences which help regulate gene expression. These TFs recruit a series of TFs
called general transcription factors (GTFs). The GTFs recruit an enzyme called RNA polymerase
II and induce it to bind to the gene promoter (upstream of the actual gene sequence) forming the
pre-initiation complex (PIC). After that transcription commences. Just transcribed RNA (termed
pre-mRNA) is then processed and converted to messenger RNA (mRNA). These mRNAs are
read by ribosomal proteins and converted into proteins which then perform various functions
in the cell including regulation of transcription, cell signaling, responding to stimuli, inducing
transcriptional patterns to generate more proteins to defend against pathogens, etc. Knowledge of
what signaling proteins and TFs are involved in the response to any pathogen is vitally important
in understanding how to disrupt the pathways that pathogen might be using to hijack the cellular
machinery and self-propagate (for example by targeting proteins aiding viral reproduction or
cancer propagation via drugs).

Many previous attempts to detect genes that play a functional role in a phenotype (such as
the propagation of a viral infection) rely on gene expression knockdowns or knockouts. There
remain several problems with such an approach. While a gene knockdown or knockout may
have little effect on a phenotype (such as cell division) under normal conditions, it could have
very different effects under chemical or environmental stress conditions [40]. In addition, even
gene knockdown studies meant to test gene relevance to phenotype under similar or even vir-
tually identical conditions can drastically differ in their results. For example, three well known
knockdown studies for detecting genes related to HIV-1 had a pairwise overlap of < 7% in the
genes they detected [14]. Various explanations are suggested, including experimental noise, dif-
ferences in timing of sampling and differences in filtering criteria used to selected hits. In fact,
the authors of one of the screens performed a duplicate screen to estimate experimental variance
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and found that only 50% of the top 300 hits would be obtained under identical experimental
conditions [14, 41]. Such results suggest that to experimentally estimate functional relevance,
one would have to do genome-wide knockdowns or knockouts anytime the experimental condi-
tions even slightly change requiring a staggering amount of experimental effort. Compounding
the problem are changes like epigenetic modifications which could drastically change the results
from one cell type to another or from one condtion to another.

Even if one had the resources to be able to do that, a more troubling problem is that so-
phisticated backup mechanisms exist in regulatory networks that can obscure the true role of
transcription factors (TFs). One would expect the expression of genes directly bound by a TF
to be affected by the knockdown of that TF. In [43], 269 TFs in yeast were knocked down one
at a time. The differentially expressed genes so obtained were compared to the protein-DNA
binding data from [39]. Surprisingly, they found that only 3% of bound genes were affected by
the knockdown. A large part of the explanation is the existence of redundant TFs which can
obscure the role the TFs in general may play [32]. Another way to put it is that TFs (and perhaps
signaling proteins in general) can act in concert. If we had the ability to perform knockdowns of
every combination of genes, then we would be able to solve this problem but that would quickly
lead to combinatorial explosion and is thus infeasible.

A third problem which so far has received less attention in literature is when do signaling
pathways and TFs get triggered in terms of timing relative to each other. For example, if we
have a time series gene expression dataset, then we want to understand the different signaling
pathways and TFs that trigger differential gene expression at the different time points. This is
tough to detect experimentally. Gene knockdowns via siRNA or shRNA usually require upto
48-72 hours to result in a substantial knockdown of the gene expression in a majority of the
cells [24, 84]. Thus any signaling events happening on a timescale smaller than that are not
possible to differential between temporally. However the temporal annotation can turn out to
be relevant biologically. For example, the Src kinase LCK is involved in HIV-1 viral assembly.
We know that the viral assembly phase of HIV-1 occurs starting about 16 hours after the cell is
infected with the virus. Thus, if we are able to detect LCK as being relevant at that time point,
we could subject LCK to more rigorous testing to see if there is a link between the late phase
activities of HIV-1 infection and LCK (as we show later, our temporal annotation algorithm is
indeed able to detect LCK as a late phase signaling protein). While there has been work on
inferring which TFs are active at which time points [11, 25], there has been no work, as far as
we are aware, on temporal annotation of signaling pathways.

Given that experimental techniques are not sufficient, we need to turn to computational meth-
ods to aid us. High throughput data measuring various aspects of several biological systems is
rapidly accumulating. These include RNA-Seq studies [64], profiling of microRNAs [88], ChIP-
Seq, epigenetics studies [30], information about protein interactions within a cell [72] and infor-
mation on interactions between host proteins and pathogen / environmental factors [65]. Such
datasets provide extensive information about the sets of genes that are activated, their regulation
and their interactions both within a cell and between cellular proteins and the environment or
pathogen. However, integrating these datasets to reconstruct a unified view of the networks and
pathways that are activated in order to identify potential interventions that may lead to a desired
response remains a major challenge.
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1.2 Thesis goals
In this thesis, we propose to address three aspects of the above problem :-

1. Using multitask learning to reduce overfitting. The number of samples available for a
particular condition is usually very limited in comparison to the number of possible biolog-
ical variables when reconstructing signaling and regulatory networks. We use multi-task
learning to alleviate this problem. We develop the tool, Multi-Task Signaling and Dynamic
Regulatory Events Miner (MT-SDREM), which uses multi-task learning to reconstruct re-
sponse pathways and temporal regulatory networks.

2. Constructing temporal pathways which explain the differential gene expression. While
several methods have been proposed to reconstruct signaling networks, there has been no
work, as far as we are aware, that tells you when particular signaling pathways were ac-
tivated – i.e. gives a temporal annotation to the signaling proteins of the reconstructed
networks. We develop an Integer Programming formulation to solve this problem.

3. Incorporating epigenetic data into signaling and regulatory network inference. There
is a large body of literature on how to infer signaling and regulatory networks for a given
condition. However an important aspect that all of the above methods don’t consider is
the role epigenetic modifications play in regulating gene expression. Given our focus on
trying to infer signaling pathways and active TFs for various conditions, we propose mod-
eling how epigenetic modifications can affect TF-DNA interactions and thus affect gene
regulation.

1.3 High-throughput data used in this thesis
Many high-throughput experimental methods have been developed to study various aspects of
transcriptional regulation either directly or indirectly. Below we provide short descriptions of
data used.

1.3.1 RNA sequencing
RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing
technologies to reveal the presence and quantity of RNA in a biological sample at a given moment
in time. All our gene expression data comes from RNA-seq. See Figure 1.1 for an overview of
how a typical RNA-seq experiment is conducted. In [20], a detailed review of the RNA-seq
pipeline and a survey of best practices for RNA-seq data analysis is provided.

1.3.2 Chip-Chip and Chip-Seq
Chromatin immunoprecipitation (ChIP) followed by microarray (ChIP-chip) [13] or sequenc-
ing (ChIP-seq) [66] has been developed to study genome-wide TF binding in vivo. The in vivo
protein-DNA interactions are first cross linked by formaldehyde, and then these cross linked
chromatin is sheared into fragments. The TF of interest is immunoprecipitated with specific an-
tibody, and then the cross linking is reversed to release the bound DNA fragments. The location
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Figure 1.1: Briefly, long RNAs are first converted into a library of cDNA fragments through
either RNA fragmentation or DNA fragmentation. Sequencing adaptors (blue) are subsequently
added to each cDNA fragment and a short sequence is obtained from each cDNA using high-
throughput sequencing technology. The resulting sequence reads are aligned with the reference
genome or transcriptome , and classified as three types: exonic reads, junction reads and poly(A)
end-reads. These three types are used to generate a base-resolution expression profile for each
gene, as illustrated at the bottom (TopHat and Cufflinks are a popular tool combination to do
this [86]). The reads are typically converted to RPKM/FPKM/TPM units which are a measure
of the number of transcripts in the cell. Figure is taken from [91]
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Figure 1.2: An overview of a typical Chip-chip or Chip-seq experiment. It shows cells to examine
being taken from a culture or tissue sample. Proteins attached to DNA are then cross linked to the
DNA (usually formaldehyde is used). Then the chromatin is sheared and the protein of interest
precipitated out using antibodies. The cross links are reversed, the DNA extracted and then
sequenced using a microarray or next generation sequencing. The sequenced DNA is mapped to
a reference genome to figure out the genome sites to which the antigen protein binds. Image has
been taken from [101]

of these DNA fragments bound by the TF is then determined by either hybridization to specific
microarray containing promoter regions from the genome (ChIPchip), or by direct sequencing
and aligning to the reference genome computationally (ChIP-seq) [101]. In the end we obtain hy-
bridization intensities (in case of ChIPchip) and tag densities (in case of ChIPseq) for the whole
geneome. Peak calling software can be run to identify true binding sites. Chip-Seq can also be
used to detect mehthylation patterns and histone marks by using the appropriate antibodies. An
overview of the experimental method is given in Figure 1.2.

We process Chip-Seq data from ENCODE [29] for 348 transcription factors to get our human
TF-DNA interaction network as in [76] comprising of 59K TF-DNA interactions.

1.3.3 Protein-protein interactions
Several experimental techniques of varying levels of accuracy exist to detect protein-protein
interactions including Yeast-2-hybrid, Immunoprecipitation, Co-crystallization, etc. [68] gives
a nice overview of the various experimental techniques to detect protein-protein interactions.
For our human protein-protein interaction network, we used the BIOGRID [80] and HPRD [72]
databases which collate interactions for the above such experimental sources. An interaction
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could have been detect in multiple independent experiments. We processed the interactions as
in [46] to obtain a weight set of edges between the proteins.

1.3.4 Virus-Host interactions
These are interactions between viral proteins and host cell proteins (that the virus has invaded).
These interactions are detected using the same techniques as general protein-protein interactions.
We obtained interactions between viral proteins and host cellular proteins from HPRD as well as
VirHostNet [65].

1.3.5 RNAi screens
RNAi is an endogenous cellular process by which messenger RNAs are targeted for degradation
by double-stranded (ds) RNA of identical sequence, leading to gene silencing. These can be
small interfering RNA (siRNA) or small hairpin RNA (shRNA). Initially used to knock down
the function of individual genes of interest, the technology was harnessed in several organisms
on a global scale with the production of RNAi libraries to silence most of the genes in their
genomes, allowing genome-wide loss-of-function screening [12]. For example, They are often
used to check whether a gene is causally related to a phenotype of interest (e.g. viral load) but
knocking down the gene and then measuring the phenotype. We use genome-wide RNAi screen
for HIV and Flu (H1N1 and H5N1) as a means to validate our predictions. An overview of the
RNAi process is in Figure 1.3.

1.3.6 Gene ontology
Gene ontology (GO) attempts to annotate genes with their biological context – specifically which
cellular components they are usually present in, what molecular functions they perform, and what
biological processes they are involved in [8]. Checking for enrichment of GO categories among
a group of genes is a useful and quick way to get an idea of the biological meaning of one’s
results. We use this technique as another method of validating our findings.

1.4 Computational techniques used in this thesis
Below we give a very brief overview of two of the main computational techniques we have used
in this thesis.

1.4.1 Multi-task learning
Multi-task learning is an approach to machine learning that learns a group of related problems
together, using a partly shared representation. This allows one to effectively increase the amount
of data available per parameter and reduce overfitting. This is especially important when re-
constructing biological response networks from high-throughput data because the number of
parameters to fit is very large relative to the number of samples. In addition, extensive data
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Figure 1.3: Overview of RNAi screening approaches used in different organisms. Long double-
stranded (ds) RNAs are introduced into a cell or and are intracellularly diced into small-
interfering RNAs (siRNAs). This leads to highly efficient knockdown because many different
siRNAs are generated from each dsRNA. Introduction of siRNAs into human (or vertebrate)
cells requires transfection. RNAi screens in human cells usually require multiple independent
siRNAs, either in individual wells or delivered as pools. Other methods for human cells in-
clude viral transduction of hairpin expression constructs or endoribonuclease-derived siRNAs
(esiRNAs), essentially pool of extracellular diced long dsRNAs. RISC, RNA-induced silencing
complex; T7, bacteriophage T7 promoter. Image taken from [12]
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from a well-characterized condition may be able to compensate for sparse data in a similar, less-
understood condition. Multi-task learning has been applied to many problems in the biological
domain including classification [92], genome-wide association studies [51, 52], protein struc-
ture [45], and pairwise protein-protein interaction prediction [53, 73].

As a primer on the general multitask framework, we discuss a common formulation of the
multitask learning problem.

The objective function commonly used for multi-task learning combines two related goals:
First, similar to standard machine learning applications (for example, classification) it tries to
minimize the loss (i.e. error) for each task while at the same time regularizing the parameters
used by each task to avoid overfitting. Second, it further regularizes the parameters across tasks
so that the final parameters are similar. A typical objective function is the following [26]

argmin
w1,...,wC

[{ C∑
i=1

L(yi, f(wT
i xi)) + λ1 · ||wi||p

}
+

{
λ2 ·

C∑
i=1

C∑
j=i+1

||wi − wj||p
}]

where C is the number of tasks, L is the loss function, f is a function of the dot product of the
task-specific weight vector and the data for the task, and p is the Lp norm for the regularization.
The left, red part, T1 is the task-specific part of the objective function while the right, blue part,
T2 is the regularization across tasks.

1.4.2 Integer programming
Integer programming is a mathematical optimization technique in which one has a linear objec-
tive function to minimize or maximize, a set of linear inequality constraints, and a subset of the
variables are restricted to only integer values.

An integer program in canonical form is expressed as

max cTx

subject to Ax≤ b

x≥ 0

This is in general an NP-hard problem [95] and thus unlikely to have an efficient solution
in all cases. However, over the past decades, there has be a tremendous amount of progress
in making this problem tractable for many practical cases. A typical strategy involves using a
branch and bound algorithm in combination with sophisticated branching heuristics and solving
linear programs to upper bound the optimal solution in case of a maximization problem (or
lower bound for minimization problem) [95]. This is what’s known as a complete algorithm
– as in such an algorithm will eventually find the optimal solution and provide a proof of its
optimality. However, often times, we don’t need to find the absolute optimal solution. The
advantage of settling for a solution that is close to the optimal (but not actually so) is that we
can apply much faster algorithms that scale much better, for example simulated annealing, tabu
search, large neighborhood search, etc. [56]. As we shall see later in this chapter, due to the size
of our problem, we are forced to resort to the latter techniques.
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1.5 Structure of this proposal document
In Chapter §2, we look at the multitask aspect of the problem mentioned in point (1) and present
our algorithm MT-SDREM. We also discuss an ongoing project to apply MT-SDREM to time
series gene expression data from Arabidopsis Thaliana. In Chapter §3, we present TimePath
which can be used to temporally annotate signaling pathways. We also discuss plans to apply
the algorithm to the Arabidopsis data as well as expression data from IPF lung disease samples.
Finally in Chapter §4, we discuss future plans to incoporate epigenetic data into our models.
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Chapter 2

MT-SDREM

MT-SDREM extends the Signaling and Dynamic Regulatory Events Miner (SDREM) which has
so far only been applied to reconstruct response networks for a single condition at a time [34].
Prior to discussing the multi-task learning procedures we first briefly discuss the SDREM method.
SDREM is an iterative procedure that combines regulatory and signaling network reconstruction
to model response pathways. For the regulatory part, SDREM uses time series gene expression
data with protein-DNA interaction data to identify bifurcation events in a time series (places
where the expression of previously co-expressed set of genes diverges – see Figure 2.1), and the
transcription factors (TFs) controlling these split events. While some TFs are transcriptionally
activated, others are only activated post-translationally via signaling networks. To explain these
TFs, the second part of SDREM links sources (host proteins that directly interact with the virus
/ treatment) to the TFs determined to regulate the regulatory network. This part of SDREM uses
protein-protein interaction (PPI) and protein modification data to infer such pathways – while
imposing the constraint that the direction of PPI in the inferred pathways is consistent. These
two parts (regulatory and signaling reconstruction) iterate a fixed number of times until the final
network is obtained. See [34] for complete details.

Like its single-condition predecessor [34], MT-SDREM iterates between finding pathways
that connect the upstream proteins that directly interact with an external stimulus (called source
proteins) and the downstream transcription factors (TFs) that regulate the response and learning
dynamic regulatory networks activated by these TFs. The learning process involves the simul-
taneous reconstruction of several such networks. While a different network is learned for each
condition, the joint learning framework allows sharing and/or constraining parameters across the
different networks which helps overcome the overfitting problem that is often an issue when
reconstructing biological networks.

We demonstrate how MT-SDREM can be used to gain insights into a clinically-relevant prob-
lem: characterizing the human response to viral infection. In particular, we explore the differ-
ences between mild, seasonal strains of the influenza A virus, which are typically H1N1 or
H3N2 strains [28], and lethal, pandemic strains such as the H1N1 1918 Spanish flu and highly
pathogenic avian H5N1 strains.
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B

C

Figure 2.1: H1N1 Regulatory network. Each path represents a set of genes with a similar ex-
pression profile. Split nodes are colored green and are annotated with the TFs that are predicted
to regulate genes in the paths going out of the split at the time point associated with the split.
The blue TFs are up-regulated at that split time point while the red TFs are down-regulated. The
black TFs are not differentially expressed at the split point. Note that several of the TFs included
in this latter group are likely post-transcripitionally regulated.
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2.1 Completed research
Here we present the Multi-Task Signaling and Dynamic Regulatory Events Miner (MT-SDREM) [46],
which uses multi-task learning to reconstruct response pathways and temporal regulatory net-
works. MT-SDREM is equipped to capitalize on the many dimensions in complex systems biol-
ogy datasets by integrating different types of experimental data in each condition, explaining
the time-dependent elements of a response (as observed in gene expression data), and con-
straining the inferred networks to be similar for related conditions or perturbations. Like its
single-condition predecessor [34], MT-SDREM iterates between finding pathways that connect
the upstream proteins that directly interact with an external stimulus (called source proteins)
and the downstream transcription factors (TFs) that regulate the response and learning dynamic
regulatory networks activated by these TFs. The learning process involves the simultaneous re-
construction of several such networks. While a different network is learned for each condition,
the joint learning framework allows sharing and/or constraining parameters across the different
networks which helps overcome the overfitting problem that is often an issue when reconstruct-
ing biological networks.

We demonstrate how MT-SDREM can be used to gain insights into a clinically-relevant prob-
lem: characterizing the human response to viral infection. In particular, we explore the differ-
ences between mild, seasonal strains of the influenza A virus, which are typically H1N1 or
H3N2 strains [28], and lethal, pandemic strains such as the H1N1 1918 Spanish flu and highly
pathogenic avian H5N1 strains.

2.1.1 MT-SDREM
MT-SDREM simultaneously investigates and infers regulatory networks and signaling pathways
for several biologically related conditions. For this, it uses both condition-specific gene expres-
sion and interaction data and general interaction data. We first discuss the input data that the
method utilizes and then present the modeling and learning frameworks.

Input Data

We use C to denote the set of conditions that are jointly modeled by MT-SDREM. Below we list
the datasets used by MT-SDREM.

1. Condition-specific: Time series gene expression data for each of the conditions that are
modeled by MT-SDREM.

2. Condition-specific: Sources Sc - the set of sources or host proteins which are known ex-
perimentally to interact with the pathogen / treatment applied when studying condition
c.

3. Condition-specific (optional): Screen hits A list of proteins for each condition whose re-
moval is known to phenotypically impact the response of the cells in that condition.

4. General and / or condition-specific: TF-gene binding data: A list of potential TF-gene
interactions with an optional probabilistic prior / likelihood for the interaction. If data is
available for the specific condition / cell type being studied these can be used, otherwise
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general data can be used as well. We denote by πt,g the interaction prior for TF t binding
with gene g.

5. General: Protein interaction network: A list of protein-protein interactions which may be
directed or undirected. The method can also use information regarding the confidence in
each interaction. We denote such confidence in edge e by πe and by E the set of all edges.

Application of multi-task learning to the inference of signaling and regulatory networks

One way to infer networks for each condition would be to run SDREM individually on the
expression data for different infections to infer regulatory and signaling cascades for each of
these conditions. However, several shared attributes can be jointly learned for these conditions
and given the scarcity of data compared to the number of variables (very few time points for each
expression experiment with thousands of genes in each model) such an approach can improve
the accuracy of the reconstructed networks for each condition. Specifically, the direction of
(the originally undirected) PPIs is likely to be similar for all conditions since several pathways
are likely used by multiple conditions. Similarly, TFs that are active in response to one virus are
more likely to be active in response to other viruses as well. MT-SDREM defines an optimization
function that captures these expected similarities while still allowing for a condition-specific
response component.

Multi-task objective for MT-SDREM

Recall that in the introduction, we called T1 the task-specific of a multitask objection function,
and T2, the part of the objective that enforces regularization across tasks. In MT-SDREM, the
loss minimizing part, T1, is achieved by the regulatory network learning procedure which learns
parameters for a IOHMM that uses a logistic regression classifier to compute transition prob-
abilities. The logistic regression classifier is regularized using Lasso to reduce the number of
active TFs inferred for each split. Thus in terms of the multi-task objective, yi corresponds to
the prediction regarding a gene trajectory at any split and xi is the TF-gene binding information.
wi is the set of logistic regression weights learned for each split. Note that the TF-gene binding
information xi is not specific to each split but is the same for the entire times series.

In addition to expression data, we use signaling network information to infer TFs that are
reachable from the infection sources. Such TFs are more likely to explain how the infecting
agents affects gene expression and so their weights are increased in our framework. To find
such TFs we need to orient the undirected edges and determine a weight for the paths leading
to these TFs from sources. These two procedures (edge orientation and TF re-weighting) are
shared across tasks and both affect the TF priors used by the logistic regression function. Thus
for MT-SDREM, the objective function is:

argmin
w1,...,wC

{
L(yi, f(φ(wi,B

i)T(xi))) + λ1 · ||wi||p
}
− ρ(B1, ..., BC)

whereB is the weight matrix learned for TFs for all tasks in the signaling network andBi are
the weights determined for task i. ρ is the similarity function used to constrain parameters across
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tasks which is described below (hence the negative sign in front of it as we are minimizing the
objective but we want to maximize the similarity).

An important difference between the standard multi-task learning framework and our method
is that while we regularize the within task parameters (wi’s), the between task parameters (Bi’s)
are not explicitly regularized. The reason is that the Bis are already constrained by the input
protein interaction network and so are inherently bounded.

Given Bi, the above equation can be optimized by fitting parameters to the IOHMM and
logistic regression function as was previously done in [33]. See Supplement Methods for details.

Between task regularization

Next we discuss how we use the signaling network to determine the values for B, the TF weights
used to reconstruct the regulatory networks. While the main goal of the regulatory network
reconstruction method is to explain the temporal gene expression trajectories using the dynamic
activation of TFs, the main objective when reconstructing the signaling network is to explain
how these TFs are activated by the infecting viruses. For this, we attempt to link sources (protein
interacting with the virus) and targets (TFs controlling virus-specific expression response) using
paths in the network. The orientation is determined by specifying edge directionality to optimize
the following equation:

max
∑
t∈T

∑
p∈Pt

I(p) · hp · st

where T is the list of TFs predicted to regulate the time series for a specific condition, Pt is
the set of paths that start from a source of this condition and end in TF t, hp is the weight of the
path which is defined as the multiplication of the probabilities of the edges in the path, and st is
the score of the TF t obtained from the regulatory network reconstruction. I(p) is an indicator
function indicating whether path p is satisfied or not (a path is satisfied if all the edges in the
path are oriented in a direction that links the source to the target) and thus optimizing the above
equations requires the assignment of directionality to the PPI edges (see [31, 34] for details).
Note that a Breadth First Search or a Depth First Search are not enough to solve this since we
assume PPI edges may be undirected. Thus, certain paths can contradict each other in terms
of the specific edge direction making this a non trivial optimization problem (in fact, it is NP
complete – see [33] for details and algorithm for solving this problem).

If we have multiple conditions we can simply run this function independently for each of
them leading to the following set of optimization problems:

max
∑
t∈Tc

∑
p∈P c

t

I(p) · hp · stc ∀c ∈ C

Here c goes over each of the conditions and the function is optimized independently for
that condition. However, such independent optimization may lead to contradictory directionality
assignments. In addition, it does not utilize shared properties between the conditions. Instead,
we would like to -
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1. Constrain the model to use shared parameters – thus the direction of the edges in the
signaling networks is constrained to be the same in all models.

2. Favor pathways which end in TFs that are used in more than one condition.

To achieve the first goal above we attempt to maximize the objectives for each condition
using a shared, directed, network. For this we modify the search procedure by assigning edge
direction to maximize the sum of the objectives across all networks.

The second requirement is more involved since it requires us to change node scores based
on TF usage across the conditions. To obtain more shared TFs we add an additional term to the
objective function. We introduce a new, global, parameter, α which is used to increase the weight
assigned to shared TFs.

2.1.2 Ranking proteins in reconstructed networks
Following the multi-task learning procedure we arrive at directed, weighted networks for each of
the conditions being studied. To further select the key proteins from each of these networks we
rank the proteins based on the ”path flow” going through a node. The path flow f through a node
n is defined as follows –

f(n) =
∑
p∈P

I(p) · hp

where P is the set of paths containing node n.
To combine the rankings from each condition into a single ranking, we compute the total flow

through all the nodes
Fi =

∑
n∈N

fi(n)

whereN is the set of genes and i is the condition and then we computed the % flow f̂i(n) = fi(n)
Fi

through a node. To get the combined score for a gene across conditions, we sum up the condition-
specific % flows to get s(n) =

∑C
i=1 f̂i(n) where C is the number of conditions. Then we rank

the genes in descending order of the final score s(n).

2.1.3 Results on Influenza data
RNAi screen hits

Using the screen hit data for H1N1 and H5N1 we compared the performance of MT-SDREM,
I-SDREM and Endeavour [2, 85]. Endeavour is a gene prioritization algorithm which uses a
set of seed genes (the sources) to rank genes based on several types of evidence including gene
expression, interaction networks derived from various sources, text mining, sequence similarity,
and functional annotations. It combines the individual rankings to create a global ranking for all
genes. For the MT-SDREM and I-SDREM results we ranked proteins based on the total number
of paths weighted by their score going through them. See Supplementary Methods for details.
For Endeavour, we configured it to use only BioGRID and HPRD as data sources as those are the
only sources we use to construct our PPI network. The expression data is not used by Endeavour.
We gave the source proteins as the seed genes to Endeavour. We further compared these three
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methods with a baseline method that is condition-independent: ranking nodes by their weighted
degree in the PPI network. The results are presented in Figure 2.2. For H1N1, the top 100 genes
in the Endeavour ranking include only 20 screen hits (p-value is 4.9E-7). For I-SDREM the
number increases to 35 (p-value 2.0E-19) whereas MT-SDREM obtains the highest number of
protein in the overlap 39 (p-value 1.7E-23). The baseline comparison where we rank by degree
has an overlap of 30 genes (p-value 9.4E-15). For H5N1, the top 100 genes for Endeavour and
for ranking by degree include only 5 screen hits (p-value 1.2E-6) whereas both I-SDREM and
MT-SDREM have an overlap of 9 screen hits (p-value 1.7E-13).
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Figure 2.2: Screen hits overlap for top 100 ranked genes for both H1N1 and H5N1. 925 H1N1
and 32 H5N1 screen hit proteins were present in our network.

GO enrichment comparisons

To compare the GO enrichment of shared genes / proteins we examined the top 500 genes in the
combined MT-SDREM network (ranked using the same sum of % of path flow going through
genes across the 3 networks as we did for the oPossum comparison) with the top 500 genes from
the combined ranking of the differentially expressed (DE) genes from each condition (combined
using the Kemeny-Young method as explained before). We used FuncAssociate [9, 10] to com-
pute standard GO enrichment for the genes. We found 3 categories, only 2 of which were immune
response related for which the p-value for DE genes was ≤ 0.001 but which were not present in
the MT-SDREM list or if present, their p-value was< 0.01. The categories are listed in Table 2.1.
However, for the vice versa comparison, we found a large number of categories for which the
MT-SDREM p-value was ≤ 0.001 but which were either not enriched for in the DE genes list
(most common outcome) or if present, their p-value was ≤ 0.01. A subset of the immune re-
sponse related categories are listed in Table 2.2. Note that we find significant enrichment for a
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Table 2.1: GO categories enriched in DE genes that are not enriched as significantly in MT-SDREM GO
comparison between the joint DE gene list and the joint MT-SDREM for the top 500 genes. The enrichment was
performed using the FuncAssociate tool [9]. Only categories with DE genes adjusted p-value of ≤ 0.001 and MT-
SDREM genes p-value of ≥ 0.01 are presented. If a p-value for MT-SDREM is NA, that means that that category
was not enriched for in the MT-SDREM list. All immune response related categories are presented.

GO Category DE p-value
≤

MT-SDREM
p-value

GO Category Description

GO:0045071 0.001 NA negative regulation of viral genome
replication

GO:0048525 0.001 0.019 negative regulation of viral process

very varied set of immune response processes including T cell activation, cytokine production,
activation of immune response, etc. as well as categories related to viral genome expression and
positive regulation of viral process. The DE genes list is only enriched for negative regulation of
viral process and viral genome replication.

2.2 Proposed research

2.2.1 Elucidating plant hormonal signaling networks

Plant hormones regulate myriad processes involved in almost all growth, development and envi-
ronmental responses. These hormones make competing demands for cellular resources and may
have conflicting or complementary objectives. Correct regulation of such complex processes can
only be achieved by a high degree of interaction (cross-regulation) between distinct hormonal
signaling pathways. Extensive evidence demonstrates that cross-regulation exists between these
signaling pathways. For example, many studies have highlighted the extensive cross-regulation
of all other hormone signaling pathways by the primary ET response transcription factor (TF),
EIN3, along distinct temporal profiles [16]. SA is a crucial component of plant basal and induced
response defenses, whilst BR is classically thought to be involved in multiple growth processes,
including cell division and elongation [37, 89, 103]. SL is a more recently characterized hor-
mone, involved primarily in branching but also drought responses, whose signaling pathway is
less well described than others [87] . Primarily, JA is considered a defense hormone [69]. How-
ever, the diverse roles of JA and ET signaling demonstrate that plant hormones are multifunc-
tional, exhibiting extensive cross-regulation of growth and defense processes [19, 69, 70, 77].

In collaboration with a group at Salk Institute, we are working on applying MT-SDREM to
time series gene expression data and Chip-seq data from Arabidopsis Thaliana when it is stim-
ulated by a variety of drugs. The data was collected using RNA-seq and examines the response
of Arabidopsis to five different hormone treatments – Methyle jasmonate (JA), Ethylene (ET),
Brassinosteroid (BR), Salicylic acid (SA), and Strigolactone (SL). Expression for each treatment
was document at six time points. The hormone-host protein interaction data was culled from a
literature search and the protein-protein interaction data was taken from [23]. We have already
run MT-SDREM on the data and are in the process of starting experiments to validate our pre-
dictions. We also have histone modification data from the same group (though only for a subset
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Table 2.2: GO categories enriched in MT-SDREM that are not enriched as significantly in Differentially
Expressed (DE) genes GO comparison between the Differentially Expressed gene list and MT-SDREM gene list
for top 500 genes. The enrichment was performed using the FuncAssociate tool [9]. Only categories with MT-
SDREM adjusted p-value of ≤ 0.001 and DE genes p-value of ≥ 0.01 are presented. If a p-value for DE genes is
NA, that means that that category was not enriched for in the DE genes list. Only select immune response related
categories are presented.

GO Category MT-SDREM
p-value ≤

DE genes p-
value

GO Category Description

GO:0002218 0.001 NA activation of innate immune re-
sponse

GO:0002684 0.001 NA positive regulation of immune sys-
tem process

GO:0002429 0.001 NA immune response-activating cell
surface receptor signaling pathway

GO:0046328 0.001 NA regulation of JNK cascade
GO:0001816 0.001 NA cytokine production
GO:0001959 0.001 NA regulation of cytokine-mediated

signaling pathway
GO:0042113 0.001 NA B cell activation
GO:0042110 0.001 NA T cell activation
GO:0043923 0.001 NA positive regulation by host of viral

transcription
GO:0019080 0.001 NA viral genome expression
GO:0048524 0.001 NA positive regulation of viral process
GO:0007259 0.001 NA JAK-STAT cascade
GO:0002573 0.001 NA myeloid leukocyte differentiation
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of the conditions and time points) and are looking into how to incorporate it into our models. We
will be talking further about this aspect in §4.
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Chapter 3

TimePath

While MT-SDREM is very good at inferring signaling networks, it does not provide temporal
information about the pathways it finds. In MT-SDREM, all pathways from source proteins
(protein interacting with the environment / pathogen) to TFs are assumed to be activated con-
currently which does not explain expression waves and response phases. Further, it does not
optimize a single target function but rather two, separate, functions for different models (one for
the IOHMM and the other for the combinatorial orientation algorithm) making it hard to deter-
mine optimal parameters for the networks. TimeXnet [67] is another method for reconstructing
such networks. It uses linear programming to formulate a max-flow problem imposing a con-
straint that the flow through expressed genes has to be greater than 0 so that they are accounted
for in the networks identified. TimeXnet has been applied to study immune response in mice.
However, TimeXnet does not directly consider the (often post-transcriptionally activated) source
of the resulting response which may lead to missing important pathways. In addition, TimeXnet
does not explain why some genes are activated early while others are only activated at a later
stage.

Here we present TimePath, a new method for reconstructing fully dynamic signaling and reg-
ulatory networks. TimePath uses a single Integer Programming (IP) based optimization function
to jointly construct the networks. Before delving further into the details of our method, we give
a brief overview of Integer programming.

3.1 Completed research

3.1.1 Methods

We initially select a large set of pathways that are rooted in source proteins and end in differentiall
expressed (DE) genes. This allows us to include sources that are only post-transcriptionally and
/ or post-translationally activated. Pathways for later DE genes are required to contain DE genes
or miRNAs from earlier phases to explain their delayed response. Next, we use the IP to select a
small subset of pathways that, together, explain the full set of DE genes. These selected pathways
are analyzed to determine phase specific proteins and miRNAs and select those that are key to
the response observed.
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We applied TimePath to reconstruct dynamic models for HIV-1 immune response. As we
show, the method accurately reconstructed the response networks identifying several known and
novel pathways. We have performed experiments based on novel predictions made by TimePath
several of which validated the ability of TimePath to determine a specific time for targeting a
protein in order to reduce viral loads.

Candidate pathways

To reconstruct the dynamic set of signaling pathways that are activated we first divide the time
series gene expression data into K phases. Initial response is likely driven by host proteins that
interact directly with virus proteins. However, later changes in expression data (for example,
expression changes that only occur 10 hours after infection) are likely driven by genes or TFs
that have been activated as part of an earlier expression response. In general we assume that
expression changes in phase i can be partially explained by activation / repression of a gene(s) in
phase i − 1. To guarantee that our reconstructed pathways satisfy this we impose the constraint
that any pathway that explains differential gene expression for a gene in phase i > 1 has to
include at least one gene that was differentially expressed (DE) in phase i− 1.

Based on these assumptions we initially select a subset of pathways that can be used to
explain the DE genes as follows:

1. We divide the time series into k phases each consisting of T/k time points where T is the
total number of points. We use k = 3 for this paper.

2. We extract the top N1 DE genes for each phase (we use N1 = 200).

3. We then search for the highest scoring N2 acyclic paths from the source proteins (host
proteins interacting with the virus of drug) to the targets (DE genes) for each phase (we
use N2 = 10 million here). We use the edge weights to compute a score for each path
(Supplementary methods). We also guarantee that the following constraints are satisfied
for each pathway:-

(a) The last edge in the path has to be a protein-dna interaction (i.e. we need a TF to
activate / repress the gene) [96].

(b) A path to a phase i > 1 target has to contain a node that is a target for phase i− 1.

In general, searching for the top N2 acyclic paths in a graph is a #P-complete problem which
is not considered to be solvable efficiently [7]. We thus use a heuristic to compute the set of
paths. See Supporting Methods for a detailed description of the above process.

Integer program to select subset of pathways

Given a set of top paths for each target, our next goal is to combine them to identify the actual
pathways that are activated as part of the response. Consider 2 targets g1 and g2 in phase k
that are known to be bound by the same TF A. If we believe that A explains the activation
of g1 in that phase it increases our belief that A is also the TF activating g2. More generally,
our goal is to select a subset of these pathways that, together, would minimize the number of
intermediate signaling and regulatory proteins that are used across all pathways while at the
same time maximize the number of targets that can be explained.
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To accomplish this we define a new Integer Programming (IP) problem which includes 3 sets
of binary variables (bv)

1. bv for a path to indicate whether it is selected or not

2. bv for a target to indicate whether there is at least one path ending at it

3. bv for protein to determine whether it is part of a path selected.

Using these variables we maximize the following objective

max
∑
p∈P

w(p) · bPp + λ1

K∑
k=1

∑
g∈Tk

fg − λ2
∑
g∈G

bGg (3.1)

with the constraints

∀p ∈ P, ∀g ∈ p, bGg ≥ bPp (3.2)

∀p ∈ P,
∑
g∈P

bGg ≤ |p| − 1 + bPp (3.3)

∀g ∈ G,∀p ∈ P (:, g), fg ≥ bPp (3.4)

∀g ∈ G,
∑

p∈P (:,g)

bPp ≥ fg (3.5)

where
• K is the number of phases.
• Tk is the targets for phase k.
• P is the set of all paths
• G is the set of all genes
• P (:, g) is the set of paths ending at gene g.
• w(p) is the weight of path p. The score of each a pathway p is defined as Πe∈EpP(e) where
Ep is the set of edges in pathway p and P(e) is the edge score.

• bPp is whether path p is selected or not.
• fg is whether gene g has even one selected path ending at it.
• bGg is whether gene g is selected.
• λ1−2 are the weights for balancing the minimization requirements in terms of intermediate

nodes and the maximization requirements in terms of the number of targets. They are the
parameters that decide in the end, how large of a network in terms of number of genes and
edges will be chosen.

Note that setting bGg = 0 for a specific gene immediately implies that bPp for a path containing
that gene is 0 and similarly that fg is 0 for that gene and so these variables are not independent
as the constraints above imply. We set bPp = 1 if and only if all the genes in the path are selected
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as enforced by constraints 1-2. fg is 1 if and only if there’s at least one path with bPp = 1 ending
at the gene g as enforced by constraint 3.

Since this is a problem with linear constraints, a linear objective and since the bg variables
are binary, this is an IP and not an Linear Program (LP). The IP we are dealing with however
is too large for standard IP solvers and we thus solve it using a greedy approach followed by
a tabu search heuristic to escape local minimum. Briefly, we start with all the nodes selected.
Then at each step, we search for a node whose addition or removal from network would increase
the objective the most (this is accomplished by flipping the bn variable for that gene). Paths that
contain a gene that is not in the current network are removed (i.e. their corresponding bp variable
is 0). Once we find such a node, we add or remove it and keep going until we can find no node
whose addition or removal will improve the objective. We randomly select nodes if there are ties
between them. Thus the results can differ from one run to another – however the actual genes
selected by the network change little according to our experimental results. See Supplementary
Results for details.

Ranking genes

After solving the IP we obtain a subset of the pathways that, combined, explain the observed
expression response over time. While we attempt to minimize the number of proteins in these
networks, we still end up with hundreds of proteins in the set of selected pathways. To identify
key proteins for follow up analysis, we rank genes for each phase based on the ”path flow” going
through them. The path flow f through a node n for phase i is defined as follows –

f(n) =
∑
p∈P

I(p) · w(p)

where P is the set of paths ending at a target in phase i and containing node n. I(p) is 1 when
the path p is selected and 0 otherwise. We further refine the phase specific genes for later phases
to remove those already identified by earlier phases. See Supporting Results for details.

3.1.2 Results

TimePath analysis of HIV data

We used TimePath to examine cell response to HIV infection. Time series expression data for
HIV-1 was obtained from Mohammadi et al [63] which profiled genes using SAGEseq every
2 hours for 24 hours after transfection with HIV-1 in Sup-T1 cell line. Expression data was
Normalized using DESeq [6]. In addition to HIV expression data we obtained interaction data
for HIV-1 proteins and host (human) proteins from VirHostNet [65]. Of the 235 proteins in
VirHostNet, 231 are present in our protein-protein interaction (ppi) network and were used as
potential sources.

TimePath also uses general protein-protein interactions from BIOGRID [80] and HPRD [72],
Post-translational Modification Annotations from HPRD and Protein-DNA interaction data [76]
(Methods).
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Figure 3.1: Dynamic signaling and regulatory network for HIV-1 immune response. The red
nodes are the host proteins that interact with the HIV-1 proteins (selected sources). Blue nodes
are intermediate signaling proteins and green nodes are the TFs that are predicted to directly
up/down-regulate the differential expression of target genes (targets not shown in figure, but the
average levels of the regulated targets for each TF is presented by the yellow nodes while the
size of each of the yellow nodes indicates how many genes belong to the cluster represented
by the node). The figure displays the top predicted nodes for each of the three phases and
also demonstrates is directly linked to the sources via the signaling proteins and DE genes in
earlier phases. Diamond shaped nodes were identified as supported RNAi screen hits (text) and
rectangular nodes are targets for the phase they are in. Nodes with bold blue border represent
proteins we experimentally tested. Note that some intermediate proteins may also be TFs. The
functional role in the network figure is based on the location of the protein in the selected paths
based on the IP.

To identify pathways for specific response phases we divided the time series expression into
3 phases (every 8 hours) and extracted 200 targets (DE genes) for each phase (Methods). We
next used the static interaction data to identify a large number of potential pathways connecting
sources and targets constraining potential pathways for later targets to contain a gene that is DE
at an earlier phase. A subset of these pathways that, together, explain the observed response
to HIV infection are then selected by the IP method. Pathways retained by the IP for this data
included a total of 607 genes of which 319 are targets. We next ranked proteins in these pathways
based on their importance to each phase (Methods).

Pathways and proteins identified for HIV response

The resulting dynamic network is presented in Figure 3.1.
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Table 3.1: Overlap between RNAi screen hits and top 100 genes for the different dynamic network recon-
struction methods and between edge list from Reactome (1265 edges in network) and the edges extracted by
the different methods. Comparison with a baseline ranking of the differentially expression (DE) genes is also
presented.

Method Overlap
with screen
hits

p-value Overlap
with Re-
actome
edges

p-value

TimePath 23 1.7× 10−17 101/3203 7.9× 10−44

SDREM 21 3.2× 10−16 74/3203 3.9× 10−24

TimeXnet 16 4.9× 10−10 54/2585 3.9× 10−16

DE ranking 5 0.23 NA NA

Statistical validation of the reconstructed network and comparison with other methods

To more globally assess the ability of TimePath to accurately identify pathways and proteins, and
to compare its performance with prior methods that were developed to reconstruct dynamic sig-
naling and regulatory networks we used several complementary datasets to test the reconstructed
pathways.

While several methods have been proposed for reconstructing biological networks [44], rela-
tively few are focused on analyzing dynamic response networks. These include SDREM [31, 33],
which combines a HMM method for modeling dynamic regulatory networks with a combinato-
rial algorithm for signaling network reconstruction and TimeXnet [67] which uses a linear pro-
gramming (LP) formulation to find important genes. Note that neither of these methods uses
miRNA expression data and so we constrained our comparison to TimePath models that do not
utilize such data.

In addition to comparing TimePath with prior methods that construct both signaling and
regulatory networks, we have also compared the top ranked genes from TimePath to the top DE
genes in the dataset (Supporting Methods) since several methods for analyzing gene expression
data still focus on such DE genes [74].

RNAi screen hits

First, we looked at RNAi screen experiments which test the impact of gene knockdown on HIV
viral load. Three such experiments were conducted though a meta-analysis of the results deter-
mined that only 3 proteins were detected by all studies [14]. We have filtered the combined list
to select a subset of the hits that are supported by at least two lines of evidence (Supplementary
Results) resulting in 389 supported hits, 364 of which were present in our initial network.

The results are in Table 3.1. We find that the pathways obtained by TimePath are significantly
enriched for screen hits (p-value of 1.7 × 10−17). This significant overlap also holds separately
for each the subset of proteins identified for the three phases. We next compared these results
to results from the other two network reconstruction methods and to the top DE genes. For this
comparison we ranked the genes using path flow for TimePath and SDREM (Methods) and used
the TimeXnet output ranking for that method. The RNAi overlap is presented in Tables 3.1. As
can be seen, rankings for all network reconstruction methods greatly outperforms the DE genes
rankings highlighting the importance of post-transcriptional and post-translational events in the

26



Table 3.2: Overlap with HIV screen hits at various stages of the algorithm. ”Pre-algorithm” is the initial
overlap for all genes in the network. ”Unexpressed genes filtered” is when we remove all genes from our
interaction network that are unexpressed. ”After pathway search” is that stage that uses all genes included in
the initial top scoring set of pathways. ”After IP” is the final stage after the IP (and thus the whole algorithm)
has run. As can be seen, the IP step seems to further improve the resulting set of genes indicating that the
selection process indeed identifies HIV response pathways.

Stage Overlap Overlap %
Pre-algorithm 364/16671 2.1

Unexpressed genes filtered 246/6604 3.7
After pathway search 144/1374 10.4

After IP 85/607 14.0

response process. Further, both TimePath and SDREM significantly outperform TimeXnet in
this analysis with almost a quarter of the top ranked genes supported by screen hits.

Analysis using GO and Reactome

To further analyze the pathways identified by TimePath we looked at the agreement between
them and two complementary databases: The Gene Ontology (GO) and the set of HIV curated
pathways in Reactome. GO analysis was performed on the top 100 genes (nodes) identified
based on the path flow metric (Methods) using FuncAssociate [9] while Reactome analysis was
performed using the set of pathway edges. The results indicate that the pathways obtained by
TimePath agree very well with known pathways involved in HIV response. The full list of en-
riched GO categories (corrected p-value ≤ 0.001) is presented on the Supporting Website and
includes ”toll-like receptor signaling pathway”, an important component of innate immune re-
sponse [58], ”positive regulation of defense response”, ”innate immune response-activating sig-
nal transduction”, etc. We also find that TimePath achieves a higher number and a higher percent-
age of significantly enriched immune related categories compared to SDREM and TimeXnet 3.3
using the FuncAssociate [9] tool. We compared the % of significantly enriched GO categories
that were immune response related (Supporting Methods). TimePath again has a both a slightly
higher number and a higher percentage of significantly enriched immune related categories com-
pared to SDREM and TimeXnet (Table 3.3).

Results for Reactome are presented in Table 3.1. As can be seen, we achieve a significant
overlap between edges in the selected pathways and those present in the HIV Reactome path-
ways. Comparison with the other methods clearly demonstrates the advantages of TimePath
which is able to identify a much larger number of correct interactions than the other two network
reconstruction methods. Note that Reactome comparison is not available for the DE gene list
since it does not contain interactions.

We have also analyzed the usefulness of the various stages of TimePath. As can be seen in
Table 3.2, each step in the TimePath method further improves the overlap with the screen hits.
Initially, only 3.7% of the expressed genes are screen hits. The initial pathway extraction step
increases the overlap to 10% while the overlap following IP increases to 14%.

Finally, we investigated the impact of the constraint imposed on later paths in our network
to include a DE gene from an earlier phase. As we show in Table 3.4, we obtain almost 3
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Table 3.3: GO comparison. We give the % of immune-related categories as well as the absolute number of
immune related categories and total categories enriched for in parenthesis. The p-value cutoff for all categories
was 0.05. The GO enrichment was performed on the top 100 genes as ranked by path flow (Methods) using the
FuncAssociate tool [9].

Method % of immune-related categories p-value
TimePath 11.16 (72/645) 2.074× 10−5

SDREM 8.04 (71/883) 0.077
TimeXnet 10.44 (66/632) 3.18× 10−4

Table 3.4: Validation for the time constraint
Method Overlap p-value

TimePath 101/3203 7.9× 10−44

TimePath without time constraint 37/3203 3.6× 10−5

times as many edges in the overlap compared to the network without the time constraint with
correspondingly better p-value.

Experimental results

To experimentally test the temporal predictions of TimePath we selected top ranking phase pro-
teins for which we could obtain commercial inhibitors and examined the impact of blocking
these proteins at various time points in the response (Figure 3.2). Note that the RNAi knock-
down screens discussed above were performed on a different cell type (Hela/TZM-bl and 293T)
and so, while they are useful for statistical validation, they may not completely reflect pathways
activated in Sup-T1 cells. More importantly, these screens do not provide information about the
dynamics of the response while our experiments are aimed at testing not just the predictions re-
garding top ranked proteins but also their phase specific assignment. We performed experiments
in which we varied the time of applying the inhibitors w.r.t the infection time. For each of the
proteins tested, inhibitors were applied 2 hours prior to infection (phase 1), 4 hours (phase 2) and
14 hours (phase 3) post infection. amount of infection was determined at 40 hours post infection
for all experiments. We concurrently measured cell viability to test the toxicity of the inhibitor.

The results are presented in Figure 3.2. As can be seen, for 5 of the inhibitors we tested (tar-
geting 11 of the 22 proteins tested) we observed a significant impact on viral load as predicted
by TimePath. Note that the screen results indicate that less than 1.5% of all proteins lead to
decreased viral load, and so such a high validation rate is a strong indication for the accuracy of
TimePath. Importantly, several of the time specific predictions were validated in these experi-
ments. We expected that inhibiting proteins that are ranked at the top for all phases or for phase
3, at any time, would lead to reduction in viral load since even early inhibition prevents them
from being activated at a later stage. We indeed see this effect for the STAT inhibition (ranked
in the top 30 for all phases) and for PSMA4 (ranked at the top only for phase 3). In contrast, for
proteins ranked high in phase 1 and lower at the next phases we expected to see a much greater
impact for the early treatment vs. later ones since their impact may have already been exerted
by the time of the later treatments. This is exactly what we see for two of these proteins. For
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Figure 3.2: Experimental validations. Relative infection after treatment with inhibitors. Sig-
nificant changes in infection are highlighted with a *. The inhibitor names are given on the X
axis and the target proteins of the inhibitors are given in parenthesis.

both NFKB1 (ranked 14 in the first phase but dropping to 50 in the 2nd) and for Raf1 (dropping
from 28 to 66) we see significant response when treated early but a much lower impact on viral
load when treated at later stages strongly supporting TimePath’s predictions. Published studies
suggest that NF-kB has a major role in HIV-1 transcription due to it is binding sites in HIV-1 LTR
and TAR-RNA [55, 82, 83, 93, 94]. Results from our analyses predicted a role for NF-kB during
the early phase (phase 1) and blocking this TF inhibited virus replication only in pretreatment (2
hours) and did not affect virus replication when treated at the later stages and this effect is inde-
pendent of cellular toxicity. Similarly, another protein Raf1, predicted as early phase response to
HIV-1 also exhibited similar phase dependent inhibition. Though Raf1 is known to interact with
HIV-1 Nef and perturb T cell signaling and activation pathway [42], the mechanisms by which
Raf1 exerts its effects is unclear. It is possible to predict that blocking Raf1 might have an effect
on the function of HIV-1 early protein Nef, thus altering T cell signaling and virus infection. An-
other phase 1 protein, CDK2 (dropping from 29 to 59) also showed strong impact when treated at
the early time point but unlike the other phase 1 predictions, later treatments continued to have a
significant impact on viral loads. CDK is known to play a role in HIV-1 transcription by the viral
transactivator, Tat [22], thus there is a direct correlation predicted by TimePath. However, block-
ing CDK using inhibitors blocked both at the early and late phase suggest that these inhibitors
might have direct and indirect effect on virus replication.

PSMA41 is part of the proteasomal complex and so inhibiting this protein with Carfilzomib
not only blocks the proteasomal pathway, but could also alter additional cellular processes such
as sumoylation, ubiquitination and Cul1 activity. These results are further supported by the early
time points predictions that identified SUMO1, UBE2I and CUL1 in Phase 1. Sumoylation of
HIV-1 integrase is essential for efficient viral replication [98] and cullin ligases are recruited by
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HIV-1 viral proteins to overcome host viral restriction factors, HIV-1 Vif degrades APOBEC
proteins [35] and HIV-1 Vpr induces degradation of UNG and SMUG uracil-DNA glycosy-
lases [75]. Also HIV-1 Vpr is known to interact with damaged DNA binding protein 1 (DDB1)
to induce G2/M arrest which contributes to efficient viral replication [38]. Indeed, many of the
factors predicted for the early stage response (Phase 1: 0-8 hours) are related to DNA modifica-
tion and chromatin remodeling (HDAC1, HDAC2, DNMT1, KAT2B) and cell cycle (CTNNB1,
CSNK2A1, CDK2, E2F1). Also there is an enrichment of transcription factors (P53, RELA,
NFKB1, NR3C1, Stat1, MYC, RAF1, TBP, YY1), which have binding sites on HIV-1 LTR.
These factors may have a role in integration of proviral DNA and regulation of HIV-1 transcrip-
tion.

3.2 Proposed research

3.2.1 Application to HIV related dementia
In collaboration with a group at the University of Pittsburgh, we applied TimePath to HIV data
from patients with HIV and increasingly severe forms of dementia (under submission). The goal
is to explore what exact role does HIV play in the progression of dementia in these patients.

3.2.2 Application to plant hormonal signaling
We’re also exploring the application of TimePath to time series gene expression data under var-
ious hormonal stimulations from Arabidopsis Thaliana (collaboration with group at Salk Insti-
tute). The data for Arabidopsis is the same as that described in § §2.2.1. Our initial plan is to run
TimePath on the given data with each phase covering two time points (total of 6 time points for
each experiment).

3.2.3 Application to IPF lung disease
We are also applying TimePath to gene expression data from IPF lung disesase at various stages
of progression (collaboration with group at Yale University). The IPF expression data is also
RNA-seq based and is taken from 15 different patients (10 of whom have the disease) at different
stages of disease progression. We also have epigenetics data for the patients. Our goal is to
identify the signaling pathways and regulatory TFs active at the different stages of the disease.
The approach we are taking is to infer a consensus gene expression profile as a function of how
far the disease has progressed for all genes that are differentially expressed in the disease. We
have used B-splines with 5 control points and patient specific gaussian noise to model the gene
expression profile. Our plan is to sample a time series expression profile for each gene related to
the disease at fixed disease progression points and use that as input for TimePath to obtain the
signaling pathways. We also have plans to incorporate the epigenetic data which we will talk
about in Chapter §4.
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Chapter 4

Incorporating epigenetic data for network
inference

4.1 Proposed research

As explored in this proposal, there is a large body of literature on how to infer signaling and
regulatory networks for a given condition. However an important aspect that all of the above
methods don’t consider is the role epigenetic modifications play in regulating gene expression.
Epigenetic modifications are changes to the DNA structure or associated chromatin proteins but
not involve changes to the DNA sequence itself. An illustrative figure is given in Figure 4.1. They
can take two forms – DNA methylation or histone protein modifications. They can be caused by
DNA damage, change in the environment, etc. They are key players in the differentiation of a
stem cell into different cell types and misregulation of epigenetics has been implicated in a wide
variety of diseases.

The primary means via which epigenetic modifications cause phenotypic change is by al-
tering gene expression by various mechanisms. Enhancers are genomic elements 50 − 1500bp
long, situated anywhere from 1bp to 1Mbp from the transcription start site (TSS) of a gene that
can regulate the expression of that gene [49, 78]. DNA methylation of enhancer regions can
impede the binding of transcription factors to that region. Methylated DNA can also be bound by
methyl-CpG-binding domain (MBD) proteins which can recruit chromatic remodeling proteins
to change the chromatin structure to make it much more compact (and thus hard for TFs to bind
to). The role of intra-genic methylation is less understood but is suspected to be important for the
regulation of transcript elongation, expression of intragenic coding and non-coding transcripts,
alternative splicing, and enhancer activation [54, 60]. Histone modifications can similarly cause
changes to chromatin structure which can increase or decrease the ability of an enhancer to be
bound or a gene to be expressed. In fact, histone modifications have also been shown to be pre-
dictive of active and poised enhancers1 [90, 99]. For example, the histone modification H3K27ac
has been shown to be associated with active enhancers [15, 21].

Recently, there has started to be an increasing interest in the role epigenetics plays in cell

1Active enhancers are those aiding in ongoing transcription, Poised enhancers are those that are not but are just
one step away from being active
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EPIGENETIC MECHANISMS
are affected by these factors and processes: 

Development •  (in utero, childhood)
Environmental chemicals• 
Drugs/Pharmaceuticals• 

Aging• 
Diet• 

CHROMOSOME

CHROMATIN

DNA

HISTONE TAIL

HISTONE TAIL

DNA accessible, gene active

DNA inaccessible, gene inactive
Histones are proteins around which 
DNA can wind for compaction and 
gene regulation.

HISTONE

GENE

EPIGENETIC
FACTOR

METHYL GROUP

DNA methylation
Methyl group (an epigenetic factor found 
in some dietary sources) can tag DNA 
and activate or repress genes. 

Histone modification
The binding of epigenetic factors to histone “tails” 
alters the extent to which DNA is wrapped around 
histones and the availability of genes in the DNA 
to be activated. 

HEALTH ENDPOINTS
Cancer• 
Autoimmune disease• 
Mental disorders• 
Diabetes• 

Figure 4.1: Epigenetic mechanisms are affected by several factors and processes including development in utero
and in childhood, environmental chemicals, drugs and pharmaceuticals, aging, and diet. DNA methylation is what
occurs when methyl groups, an epigenetic factor found in some dietary sources, can tag DNA and activate or repress
genes. Histones are proteins around which DNA can wind for compaction and gene regulation. Histone modification
occurs when the binding of epigenetic factors to histone ”tails”; alters the extent to which DNA is wrapped around
histones and the availability of genes in the DNA to be activated. All of these factors and processes can have an effect
on people’s health and influence their health possibly resulting in cancer, autoimmune disease, mental disorders, or
diabetes among other illnesses. Image taken from [1]
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biology. A large amount of epigenetic data is now regularly generated, thanks to next generation
sequencing methods. And the number of ways in which epigenetic modifications can affect
transcription are numerous [47, 79]. Thus it would be of great interest to have models that are
able to incorporate epigenetic information when inferring signaling and regulatory networks.

There have been some attempts to examine the influence of epigenetics on gene expression.
In [57], they use epigenetic and other genome features to predict differential gene expression
between lung cancer and control patients. [97] uses a bayesian network model to try and infer
causal links between epigenetic modifications within ±1kb of the TSS. [18] develops support
vector machine and support vector regression models to quantify the effect of epigenetic modifi-
cations on gene expression. They bin the DNA region±4kb of the TSS into 100bp sized bins and
feed the aggregate chromatin features in each bin as features for the SVM and SVR. Other meth-
ods have tried to integrate epigenetic priors into gene regulatory network inference [17, 100].
Both of the latter methods use the correlation between epigenetic profiles of genes as a prior
when inferring gene regulatory networks. In [36], they develop a two-stage model. First, for
a given cell line, they infer a gene sequence specific score of it being bound by any TFs us-
ing position-weight matrices (PWM), histone modifications and expression of nearby genes as
features and experimental binding data for 17 TFs for that cell line as the training data. They
then use that score as a prior to whether a TF binding location is actually bound when inferring
regulatory networks (they use a dynamic bayesian network for the second part). However this
approach is not applicable when no such TF binding data is available for a cell line. It is also not
applicable for epigenetic changes that are specific to a condition rather than a cell line.

Our focus is broader. Given an expression dataset, we want to figure out which signaling
pathways and transcription factors are active for that condition. There are three questions in
particular that we’re interested in :-

1. How do epigenetic modifications affect TF-DNA interaction strength and expression
in general. While several methods have been developed to predict TF-DNA binding en-
ergy (or sites) [3, 5, 27, 71, 81], to our knowledge, none of these methods take epigenetic
modifications into consideration. As such modifications can vary from cell type to cell
type and even from one condition to another within the same cell type, it is important to
incorporate them to get an accurate picture.

2. Can the pattern of epigenetic marks in enhancer regions be used to infer which TFs
have bound to the enhancer regions. We already have strong evidence in literature that
epigenetic marks can distinguish between enhancers and non-enhancers and even poised
and active enhancers. The pattern of those epigenetic marks (for example, which particular
histones H3K27ac is present at) and cross-referencing that with the potential TF-DNA
interaction map (derived from PWMs or Chip-Seq) could help us infer active TFs in the
nucleus. Relatedly, histone modification levels within a few thousand base pairs of the
TSS, have been shown to be to be highly predictive of gene expression [50, 61, 62] which
is additional evidence that histone modifications would supplement gene expression as
additional training data, when inferring which TFs are causing gene expression.

3. How can we integrate the above two models into our existing signaling and regulatory
network inference models. One way to integrate models for the strength of TF-DNA
interactions would be to put priors on the TF-DNA interaction strength in our models.
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Integrating (2), assuming there is some signal in the pattern, would be more complicated as
it would involve appropriately weighting that signal, and the signal from gene expression.

4.1.1 Effect of epigenetics on TF-DNA interaction strength and expression
There are several ways in which a TF can affect gene expression. It could bind to an enhancer and
recruit an activator or repressor protein (or act as one itself) [4]. Then depending on the cellular
context it could have varying effects on the gene expression. Or it could mediate changes in the
chromatin structure. This change could either facilitate a direct effect by the TF on the expression
of the gene or an indirect effect by increasing the local concentration of RNAP II [49]. Given
the myriad number of ways a TF can affect the expression of a gene, estimating the impact of
the epigenetic profile at the TF binding site on the expression directly would be an immense
challenge. Thus our goal is to focus on estimating the TF-DNA interaction strength itself and
use that as a prior for our regulatory inference models.

There is considerable evidence that tag density in Chip-Seq datasets is highly correlated with
binding affinity [48, 59] for most TFs. Given that, our aim is to try and predict Chip-Seq profiles
using the nucleotide and epigenetic sequence. There are a lot of methods that try and predict TF
binding or binding affinity based on the raw nucleotide sequence. Two in particular stand out as
methods that could act as a starting point – DeepBind [5] and DeepSea [102]. DeepBind takes
in raw sequence data to try and predict the ChipSeq, SELEX, and CHIP/CLIP profiles. It shows
excellent correlation with experimental data (∼ 0.8). DeepSea was designed to predict effects of
changing the nucleotide sequence (down to the single nucleotide level) on both TF binding and
on the epigenetic code. Both have code available online and should be a good platform to build
off of.

One challenge here would be that some of the histone marks might be a consequence of TF
binding rather than a cause. So in effect the binding affinity predictor could predict a strong
binding of a TF because of a particular epigenetic mark when the actual causation is the other
way around. However, as our plan is to use the affinity predictions as priors to the regulatory
network inference, this causation reversal may not matter as the final prior of that particular
TF-DNA interaction occuring would still be correct.

4.1.2 Can the pattern of epigenetic marks in enhancer regions be used to
infer which TFs have bound to the enhancer regions

As we just mentioned at the end of the last subsection, TF binding can also change histone marks
at or near the site the TF bound to. A very interesting question is whether one could use these
histone marks to try and infer active TFs. There are two key challenges however.

1. The Chip-Seq signals of histone marks are very broad and can range from several hundred
to thousand base pairs. Thus they may turn out to be too noisy to be able to have a strong
signal as to which TFs are active and bound to the genome.

2. While there are a large number of possible histone modifications, most studies choose to
examine only a handful of them. Thus there is a big missing data problem here that we
will have to deal with.
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There is no obvious way we can think of currently to handle (1) beyond developing a model
and seeing how it performs. Our current plan for is to start by using the TF-DNA binding data
obtained from Chip-Seq or PWM scan on the whole genome to classify TFs as active and non-
active which is then validated by checking how good the inferred set of TFs are at predicting
differentially expressed genes (via another model that uses the TF-DNA interactions in the vicin-
ity of the TSS of the gene as features). To handle (2), one possibility would be to simply train a
different model for each histone mark and combine the predictions for each model into one. We
are still exploring ideas however.

4.1.3 Integrating the above two models into our existing signaling and reg-
ulatory network inference models

We have already mentioned one possible way of integrating TF-DNA binding affinity predictions
by using them as priors for TF-DNA interactions. For integrating the signal from epigenetic
marks, one simple way would be to (pursuing thoughts similar to the end of the last subsection),
simply have another model which predicts active TFs based on differential expression data and
combine the predictions from both models to get the final set of active TFs.

4.1.4 Data available
We already have histone modification data from Arabidopsis Thaliana for the JA hormone treat-
ment described in § §2.2.1. We also expect to obtain methylation data for IPF lung disease project
descrbed in § §3.2.3.
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Chapter 5

Conclusion and timeline

A cell is a highly sophisticated piece of biological machinery with a staggeringly complex pro-
gram running it. This complexity can in turn lead to very large variability in cell behavior –
even between situations where you would expect no difference. Sophisticated mathematical
models thus become essential to taming this vast complexity and making reliable and accurate
predictons. The large amount of biological data being generated today presents us with a unique
opportunity to use computational techniques to generate such mathematical models.

In this thesis, we have attempted to deal with some aspects of a significant component of
cell biology – namely which signaling pathways and transcription factors (TFs) are active for
and related to a particular condition. We have talked about why it is so hard for experimental
methods to be able give us a complete picture of what is happening and how computational
techniques may aid us in completing that picture.

In particular, we have presented our solutions to three problems (1) learning from limited
data by using data from related conditions using multi-task learning (MT-SDREM) (2) Tempo-
ral annotation of signaling pathways and TFs (TimePath) (3) proposed incoporating epigenetic
modifications into our models in order to better infer the signaling and regulatory networks.

We have presented successful application of MT-SDREM to inferring important genes and
pathways related to Flu infection and of TimePath to inferring temporally annotated pathways for
HIV infection. We have also proposed applications of both methods to plant hormone signaling
data and of TimePath to IPF lung disease data. Finally, we have proposed application of the new
techniques we develop to incorporate epigenetic modifications on the plant and IPF data.

In regards to the timeline, given that I will be doing an internship from May 16 to August 9,
I aim to have a new method for incorporating epigenetic data ready by winter of 2017 so it can
be tested and written up. I aim to graduate in June of 2017.
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[75] Bärbel Schröfelbauer, Qin Yu, Samantha G Zeitlin, and Nathaniel R Landau. Human
immunodeficiency virus type 1 vpr induces the degradation of the ung and smug uracil-
dna glycosylases. Journal of virology, 79(17):10978–10987, 2005. 3.1.2

[76] Marcel H Schulz, William E Devanny, Anthony Gitter, Shan Zhong, Jason Ernst, and Ziv
Bar-Joseph. Drem 2.0: Improved reconstruction of dynamic regulatory networks from

44



time-series expression data. BMC systems biology, 6(1):104, 2012. 1.3.2, 3.1.2

[77] Fabian Schweizer, Patricia Fernández-Calvo, Mark Zander, Monica Diez-Diaz, Sandra
Fonseca, Gaétan Glauser, Mathew G Lewsey, Joseph R Ecker, Roberto Solano, and
Philippe Reymond. Arabidopsis basic helix-loop-helix transcription factors myc2, myc3,
and myc4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior.
The Plant Cell, 25(8):3117–3132, 2013. 2.2.1

[78] Daria Shlyueva, Gerald Stampfel, and Alexander Stark. Transcriptional enhancers: from
properties to genome-wide predictions. Nature Reviews Genetics, 15(4):272–286, 2014.
4.1

[79] Matthew Slattery, Tianyin Zhou, Lin Yang, Ana Carolina Dantas Machado, Raluca
Gordân, and Remo Rohs. Absence of a simple code: how transcription factors read the
genome. Trends in biochemical sciences, 39(9):381–399, 2014. 4.1

[80] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Breitkreutz,
and Mike Tyers. Biogrid: a general repository for interaction datasets. Nucleic acids
research, 34(suppl 1):D535–D539, 2006. 1.3.3, 3.1.2

[81] Wenjie Sun, Xiaoming Hu, Michael HK Lim, Calista KL Ng, Siew Hua Choo, Diogo S
Castro, Daniela Drechsel, François Guillemot, Prasanna R Kolatkar, Ralf Jauch, et al.
Thermos: Estimating protein–dna binding energies from in vivo binding profiles. Nucleic
acids research, 41(11):5555–5568, 2013. 1

[82] Norio Takada, Takaomi Sanda, Hiroshi Okamoto, Jian-Ping Yang, Kaori Asamitsu, Lilen
Sarol, Genjiro Kimura, Hiroaki Uranishi, Toshifumi Tetsuka, and Takashi Okamoto. Rela-
associated inhibitor blocks transcription of human immunodeficiency virus type 1 by in-
hibiting nf-κb and sp1 actions. Journal of virology, 76(16):8019–8030, 2002. 3.1.2

[83] Mahmud Tareq Hassan Khan, Carlo Mischiati, Arjumand Ather, Tatsuya Ohyama,
Kenichi Dedachi, Monica Borgatti, Noriyuki Kurita, and Roberto Gambari. Structure-
based analysis of the molecular recognitions between hiv-1 tar-rna and transcription fac-
tor nuclear factor-kappab (nfkb). Current topics in medicinal chemistry, 12(8):814–827,
2012. 3.1.2

[84] Debra J Taxman, Chris B Moore, Elizabeth H Guthrie, and Max Tze-Han Huang. Short
hairpin rna (shrna): design, delivery, and assessment of gene knockdown. RNA Therapeu-
tics: Function, Design, and Delivery, pages 139–156, 2010. 1.1
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