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Introduction
• Text Annotation a.k.a Information Extraction

Examples:
Simple/binary:
Classification (Spam or
not)

Multi-class:  Named
Entity Recognition
(NER), Part of Speech
(POS) Tagging

Complex/Structured:
Semantic Role Labeling,
Event Extraction
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How are Annotations learnt?
• Hand-coded Rules

– Need lots of rules, domain experts & doesn’t
generalize well

• Statistical Machine Learning Approach
– Requires a lot of pre-annotated training data
– Annotating text is a time consuming, tedious,

error prone process
– All examples are not equally informative or

equally easy to annotate
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Ben’s boss has 
asked him to 

annotate corpus 
with company 

establishment events

Ben
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Ben’s boss has 
asked him to 

annotate corpus 
with company 

establishment events

Ben

Traditional batch annotation process
• Human annotators must exhaustively and completely
annotate large amounts of data
• Requires a lot of user’s effort
• Much of this effort could be unnecessary if it doesn’t
help the learner.
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Ben’s boss has 
asked him to 

annotate corpus 
with company 

establishment events

Ben

Traditional batch annotation process
• Human annotators must exhaustively and completely
annotate large amounts of data
• Requires a lot of user’s effort
• Much of this effort could be unnecessary if it doesn’t
help the learner.

Interactive annotation process
• Learner suggest annotations it already thinks/knows
should be labeled
• User confirms and corrects automatic annotations
• Learner recommends documents that will help it
learn => Learner can ask questions
• User can see if and how their effort is being utilized

Ben! I am confused about a few
examples, can you help? “Microsoft

established a set of certification
programs …”- does this event also talk

about company establishment?

IAL



8

Language Technologies Institute

Interactive Annotation Learning
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Annotator

Learner

Initial
Data

Annotated
Data

Labeled
Data

User Annotation
& Verification

Annotation
Model

Recommender

Training
Data

Domain
Corpus

0

1

2

3

4

Ben selects an initial example set
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He annotates the structures he wants the
system to learn
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Interactive Annotation Learning
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The labeled data are input to a statistical
learner that creates an annotation model
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Interactive Annotation Learning
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The learned annotator is used to
annotate an additional set of
documents
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Interactive Annotation Learning
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for Ben’s verification



13

Language Technologies Institute

Interactive Annotation Learning
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Ben verifies or corrects the automatic
annotations, deletes the wrong ones and
adds the missing ones
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Missing Science
• Learning should happen naturally ( = “in task”)
• Interactive Learning

– User in the loop learning
– User sees the result of his effort

• Active Learning
– Faster convergence

• Interactive Learning
– Minimize user effort

• Interactive Active Learning
– Best of both the worlds !
– User effort as an Evaluation measure [Kristjannson et.al.]

& Recommendation Strategy (New!)
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Objective
• Hypothesis

– “There exists a combination of Active & Interactive
learning recommendation strategies that performs
significantly better than random selection in both
accuracy and user-effort measures.”

• Prove that the hypothesis holds for an example
problem: Named Entity Recognition
– Recommendation strategies
– Combination of several strategies
– Evaluation measures
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Interactive Annotation Learning
Framework
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Stanford NER (Finkel et al., 2005)
      - Based on CRFs

Human
Simulator

Initial Software Framework: (Ben Lambert & Jose Alavedra, SE II project)

Reuters corpus, CoNLL, 2003
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Approach
• Human Simulator

– Gold Standard (Perfect or Imperfect?)

• Recommenders: Selective Sampling Strategies:
• Uncertainty based [Thompson et. al., Culotta et. al …]

– That the model is most uncertain about
• Committee based [McCallum et. al. …]

– With most disagreement among committee of classifiers
• Diversity based [Shen et. al., Seokhwan et. al….]

– Different from those already in the training pool
• Representative power based [Shen et. al.]

– Most representative of other examples
• User effort based

– Easier to annotate
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Approach
• Human Simulator

– Gold Standard (Perfect or Imperfect ?)
• Recommenders

– Selective Sampling Strategies:
• Uncertainty based [Thompson et. al., Culotta et. al …]
• Committee Based Methods [McCallum et. al. …]
• Diversity based [Shen et. al., Seokhwan et. al….]
• Representative [Shen et. al.]
• User effort based
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Uncertainty based Recommenders
• Average Annotation Confidence (AC)

• Relative number of Annotations below threshold
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User Effort Based Recommenders

• Relative Document Length

• Annotations Density
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Composite Recommender
• Combining several recommenders where each

addresses different concerns
• How do we combine the result of two recommenders

– Weighted sum of scores [Shen et. al.]

– Two-stage approach [Shen et. al.]
Output of one recommender => Input of another

– MMR Combination [Seokhwan et. al.]

– Weighted Random Sampling [Sarawagi et. al.]
Weight each instance by its uncertainty & do weighted sampling -

preserves underlying data distribution

BA )1( !! "+
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Composite Recommender
• Combining several recommenders where each

addresses different concerns
• How do we combine the result of two

recommenders
– Weighted sum of scores [Shen et. al.]
– Two-stage approach [Shen et. al.]
– MMR Combination [Seokhwan et. al.]
– Weighted Random Sampling [Sarawagi et. al.]

 Weighted
Combination of
Active & Interactive
Strategies
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Evaluation Measures
• Annotation F-measure

• Expected Number of User Actions (ENUA)
[Kristjannson et al., 2004]
– An estimation of user effort
– Calculated by the human annotator simulator by comparing

the annotations made with Gold Standard

2 precision recall
F

precision recall

! !
=

+
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Experiments
• Data: Reuters Corpus w. Named Entities

CoNLL, 2003 [Sang et al., 2003]
– Training set: 900 documents
– Test set: 245 documents

• Evaluation
– Different recommendation strategies
– Baseline: Random
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Convergence Curves

F-Measure ENUA

AC (blue) - RBT (green) - Random (red)

RBT does good in F-
Measure (significance
p<0.05) but poorly in ENUA

• AC: Avg. annotation confidence

• RBT: Rel. docs below threshold

• RDL: Rel. doc length

• AD: Annotation density
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Convergence Curves

F-Measure ENUA

AD (blue) - RDL (green) - Random (red)

RDL does good in ENUA
(significance p<0.05) but
poorly in F-measure

• AC: Avg. annotation confidence

• RBT: Rel. docs below threshold

• RDL: Rel. doc length

• AD: Annotation density
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Convergence Curves
• Problem?

No recommendation strategy performing
well for both measures

• Solution:
Weighted combination of different
strategies
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The Right Balance
• Experiment for all combinations of RDL & RBT

ΔENUA (blue) & ΔF-Measure (red)

Cross-over point

0.7 RDL + 0.3 RBT

• AC: Avg. annotation confidence

• RBT: Rel. docs below threshold

• RDL: Rel. doc length

• AD: Annotation density

(1 )RDL RBT! !+ "

!
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Combined Strategy

F-Measure ENUA
Combined measure does
better than Random in
both cases; marginally for
F-Measure & significantly
for ENUA (p < 0.05)

0.7 RDL + 0.3 RBT (green) - Random (red)

• AC: Avg. annotation confidence

• RBT: Rel. docs below threshold

• RDL: Rel. doc length

• AD: Annotation density
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Conclusion
• There exists a combination of Active & Interactive

recommendation strategies which does better for both
the measures

• Promising results supporting this claim!
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Future Work
• Improvements in Recommendation Strategy

– Right balance between both measures
– Automatic estimation of optimal weight combinations
– Two-stage recommendation
– Presentation order

• Design the annotation simulator to be more human like

• Calculation of actual number of user actions (ANUA)
– Analysis of correlation between ENUA & ANUA

• Other recommendation strategies
– Committee based approaches  [McCallum et. al. 1998]
– Complex annotation types
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Questions ?


