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Abstract

We demonstrate that a supervised annotation
learning approach using structured features
derived from tokens and prior annotations per-
forms better than a bag of words approach.
We present a general graph representation for
automatically deriving these features from la-
beled data. Automatic feature selection based
on class association scores requires a large
amount of labeled data and direct voting can
be difficult and error-prone for structured fea-
tures, even for language specialists. We show
that highlighted rationales from the user can
be used for indirect feature voting and same
performance can be achieved with less labeled
data.We present our results on two annotation
learning tasks for opinion mining from prod-
uct and movie reviews.

1 Introduction
Interactive Annotation Learning is a supervised ap-
proach to learning annotations with the goal of min-
imizing the total annotation cost. In this work, we
demonstrate that with additional supervision per ex-
ample, such as distinguishing discriminant features,
same performance can be achieved with less anno-
tated data. Supervision for simple features has been
explored in the literature (Raghavan et al., 2006;
Druck et al., 2008; Haghighi and Klein, 2006). In
this work, we propose an approach that seeks super-
vision from the user on structured features.

Features that capture the linguistic structure in
text such as n-grams and syntactic patterns, referred
to as structured features in this work, have been
found to be useful for supervised learning of annota-
tions. For example, Pradhan et al. (2004) show that

using features like syntactic path from constituent
to predicate improves performance of a semantic
parser. However, often such features are “hand-
crafted” by domain experts and do not generalize to
other tasks and domains. In this work, we propose
a general graph representation for automatically ex-
tracting structured features from tokens and prior an-
notations such as part of speech, dependency triples,
etc. Gamon (2004) shows that an approach using
a large set of structured features and a feature selec-
tion procedure performs better than an approach that
uses a few “handcrafted” features. Our hypothesis
is that structured features are important for super-
vised annotation learning and can be automatically
derived from tokens and prior annotations. We test
our hypothesis and present our results for opinion
mining from product reviews.

Deriving features from the annotation graph gives
us a large number of very sparse features. Fea-
ture selection based on class association scores such
as mutual information and chi-square have often
been used to identify the most discriminant features
(Manning et al., 2008). However, these scores are
calculated from labeled data and they are not very
meaningful when the dataset is small. Supervised
feature selection, i.e. asking the user to vote for the
most discriminant features, has been used as an al-
ternative when the training dataset is small. Ragha-
van et al. (2006) and Druck et al. (2008) seek feed-
back on unigram features from the user for docu-
ment classification tasks. Haghighi and Klein (2006)
ask the user to suggest a few prototypes (examples)
for each class and use those as features. These ap-
proaches ask the annotators to identify globally rel-



evant features, but certain features are difficult to
vote on without the context and may take on very
different meanings in different contexts. Also, all
these approaches have been demonstrated for uni-
gram features and it is not clear how they can be
extended straightforwardly to structured features.

We propose an indirect approach to interactive
feature selection that makes use of highlighted ra-
tionales from the user. A rationale (Zaidan et al.,
2007) is the span of text a user highlights in support
of his/her annotation. Rationales also allow us to
seek feedback on features in context. Our hypothe-
sis is that with rationales, we can achieve same per-
formance with lower annotation cost and we demon-
strate this for opinion mining from movie reviews.

In Section 2, we describe the annotation graph
representation and motivate the use of structured
features with results on learning opinions from prod-
uct reviews. In Section 3, we show how rationales
can be used for identifying the most discriminant
features for opinion classification with less training
data. We then list the conclusions we can draw from
this work, followed by suggestions for future work.

2 Learning with Structured Features
In this section, we demonstrate that structured fea-
tures help in improving performance and propose a
formal graph representation for deriving these fea-
tures automatically.

2.1 Opinions and Structured Features
Unigram features such as tokens are not sufficient
for recognizing all kinds of opinions. For example,
a unigram feature good may seem useful for identi-
fying opinions, however, consider the following two
comments in a review: 1) This camera has good fea-
tures and 2) I did a good month’s worth of research
before buying this camera. In the first example,
the unigram good is a useful feature. However, in
the second example, good is not complementing the
camera and hence will mislead the classifier. Struc-
tured features such as part-of-speech, dependency
relations etc. are needed to capture the language
structure that unigram features fail to capture.

2.2 Annotation Graph and Features
We define the annotation graph as a quadruple: G =
(N,E,Σ, λ), where N is the set of nodes, E is the
set of edges E ⊂ N × N , Σ = ΣN ∪ ΣE is a

set of labels for nodes and edges. λ is the label-
ing function λ : N ∪ E → Σ, that assigns labels to
nodes and edges. In this work, we define the set of
labels for nodes, ΣN as tokens, part of speech and
dependency annotations and set of labels for edges,
ΣE as relations, ΣE = {leftOf, parentOf, restricts}.
The leftOf relation is defined between two adjacent
nodes. The parentOf relation is defined between the
dependency type and its attributes. For example, for
the dependency triple ‘nsubj perfect camera’, there
is a parentOf relation between the dependency type
‘nsubj’ and tokens ‘perfect’ and ‘camera’. The re-
stricts relation exists between two nodes a and b if
their textual spans overlap completely and a restricts
how b is interpreted. For a word with multiple senses
the restricts relation between the word and its part of
speech, restricts the way the word is interpreted, by
capturing the sense of the word in the given context.
The Stanford POS tagger (Toutanova and Manning,
2000) and the Stanford parser (Klein and Manning,
2003) were used to produce the part of speech and
dependency annotations.

Features are defined as subgraphs, G′ =
(N ′, E′,Σ′, λ′) in the annotation graph G, such that
N ′ ⊆ N ,E′ ⊂ N ′×N ′ andE′ ⊆ E, Σ′ = Σ′

N∪Σ′
E

where Σ′
N ⊆ ΣN and Σ′

E ⊆ ΣE and λ′ : N ′∪E′ →
Σ′. For a bag of words approach that only uses to-
kens as features, Σ′

N = T , where T is the token
vocabulary and E = φ and ΣE = φ (where φ is the
null set). We define the degree of a feature subgraph
as the number of edges it contains. For example, the
unigram features are the feature subgraphs with no
edges i.e. degree = 0. Degree− 1 features are the
feature subgraphs with two nodes and an edge. In
this paper, we present results for feature subgraphs
with degree = 0 and degree = 1.

Figure 1 shows the partial annotation graph for
two comments discussed above. The feature sub-
graph that captures the opinion expressed in 1(a),
can be described in simple words as “camera has
features that are good”. This kind of subject-object
relationship with the same verb, between the ‘cam-
era’ and what’s being modified by ‘good’, is not
present in the second example (1(b)). A slight modi-
fication of 1(b), I did a month’s worth of research be-
fore buying this good camera does express an opin-
ion about the camera. A bag of words approach that
uses only unigram features will not be able to differ-



entiate between these two examples; structured fea-
tures like dependency relation subgraphs can capture
this linguistic distinction between the two examples.

P24:amod
[16,29]

P23:JJ
[16,20]

P22:dobj
[12,29]

P21:nsubj
[5,15]

restricts

parentOf

parentOf

parentOf

(a)

(b)

Figure 1: The figure shows partial annotation graphs for two examples.
Only some of the nodes and edges are shown for clarity. Spans of nodes
in brackets are the character spans.

2.3 Experiments and Results

The dataset we used is a collection of 244 Amazon’s
customer reviews (2962 comments) for five products
(Hu and Liu, 2004). A review comment is annotated
as an opinion if it expresses an opinion about an as-
pect of the product and the aspect is explicitly men-
tioned in the sentence. We performed 10-fold cross
validation (CV) using the Support Vector Machine
(SVM) classifier in MinorThird (Cohen, 2004) with
the default linear kernel and chi-square feature se-
lection to select the top 5000 features. As can be
seen in Table 1, an approach using degree − 0 fea-
tures, i.e. unigrams, part of speech and dependency
triples together, outperforms using any of those fea-
tures alone and this difference is significant. Us-
ing degree − 1 features with two nodes and an
edge improves performance further. However, using
degree−0 features in addition to degree−1 features
does not improve performance. This suggests that
when using higher degree features, we may leave out
the features with lower degree that they subsume.

Features Avg F1 Outperforms
unigram [uni] 65.74 pos,dep
pos-unigram [pos] 64 dep
dependency [dep] 63.18 -
degree-0 [deg-0] 67.77 uni,pos,dep
degree-1 [deg-1] 70.56 uni,pos,dep,deg-0, deg-*
(deg-0 + deg-1) [deg-*] 70.12 uni,pos,dep,deg-0

Table 1: The table reports the F-measure scores averaged over ten cross
validation folds. The value in bold in the Avg F1 column is the best
performing feature combination. For each feature combination in the
row, outperforms column lists the feature combinations it outperforms,
with significant differences highlighted in bold (paired t-test with p <
0.05 considered significant).

3 Rationales & Indirect Feature voting
We propose an indirect feature voting approach that
uses user-highlighted rationales to identify the most
discriminant features. We present our results on
Movie Review data annotated with rationales.

3.1 Data and Experimental Setup
The data set by Pang and Lee (2004) consists of
2000 movie reviews (1000-pos, 1000-neg) from the
IMDb review archive. Zaidan et al. (2007) provide
rationales for 1800 reviews (900-pos, 900-neg). The
annotation guidelines for marking rationales are de-
scribed in (Zaidan et al., 2007). An example of a
rationale is: “the movie is so badly put together
that even the most casual viewer may notice the mis-
erable pacing and stray plot threads”. For a test
dataset of 200 reviews, randomly selected from 1800
reviews, we varied the training data size from 50 to
500 reviews, adding 50 reviews at a time. Training
examples were randomly selected from the remain-
ing 1600 reviews. During testing, information about
rationales is not used.

We used tokens1, part of speech and dependency
triples as features. We used the KStem stemmer
(Krovetz, 1993) to stem the token features. In or-
der to compare the approaches at their best perform-
ing feature configuration, we varied the total num-
ber of features used, choosing from the set: {1000,
2000, 5000, 10000, 50000}. We used chi-square
feature selection (Manning et al., 2008) and the
SVM learner with default settings from the Minor-
third package (Cohen, 2004) for these experiments.
We compare the following approaches:

Base Training Dataset (BTD): We train a model
from the labeled data with no feature voting.

1filtering the stop words using the stop word list: http:

//www.cs.cmu.edu/˜shilpaa/stop-words-ial-movie.

txt



Rationale annotated Training Dataset (RTD):
We experimented with two different settings for in-
direct feature voting: 1) only using features that
overlap with rationales (RTD(1, 0)); 2) features
from rationales weighted twice as much as features
from other parts of the text (RTD(2, 1)). In general,
R(i, j) describes an experimental condition where
features from rationales are weighted i times and
other features are weighted j times. In Minorthird,
weighing a feature two times more than other fea-
tures is equivalent to that feature occurring twice as
much.

Oracle voted Training Data (OTD): In order to
compare indirect feature voting to direct voting on
features, we simulate the user’s vote on the features
with class association scores from a large dataset
(all 1600 documents used for selecting training doc-
uments). This is based on the assumption that the
class association scores, such as chi-square, from a
large dataset can be used as a reliable discriminator
of the most relevant features. This approach of sim-
ulating the oracle with large amount of labeled data
has been used previously in feature voting (Ragha-
van et al., 2006).

3.2 Results and Discussion
In Table 2, we present the accuracy results for the
four approaches described in the previous section.
We compare the best performing feature configura-
tions for three approaches - BTD, RTD(1, 0) and
RTD (2,0). As can be seen, RTD(1, 0) always per-
forms better than BTD. As expected, improvement
with rationales is greater and it is significant when
the training dataset is small. The performance of
all approaches converge as the training data size in-
creases and hence we only present results up to train-
ing dataset size of 500 examples in this paper.

Since our goal is to evaluate the use of rationales
independently of how many features the model uses,
we also compared the four approaches in terms of
the accuracy averaged over five feature configura-
tions. Due to space constraints, we do not include
the table of results. On average RTD(1, 0) signif-
icantly outperforms BTD when the total training
dataset is less than 350 examples. When the train-
ing data has fewer than 400 examples, RTD(1, 0)
also significantly outperforms RTD(2, 1).
OTD with simulated user is an approximate up-

#Ex Approach Number of Features
1000 2000 5000 10000 50000

50

OTD 67.63 66.30 62.90 52.17 55.03
BTD 58.10 57.47 52.67 51.80 55.03
RTD(1,0)* 55.43 55.93 61.63 61.63 61.63
RTD(2,1) 57.77 57.53 52.73 52.30 56.33

100

OTD 71.97 71.07 70.27 69.37 64.33
BTD 64.17 64.43 62.70 56.63 64.37
RTD(1,0)* 65.43 63.27 65.13 67.23 67.23
RTD(2,1) 64.27 63.93 62.47 56.10 63.77

150

OTD 73.83 74.83 74.20 74.00 63.83
BTD 66.17 67.77 68.60 64.33 60.47
RTD(1,0)* 69.30 68.30 67.27 71.30 71.87
RTD(2,1) 68.00 67.07 68.43 63.57 58.90

200

OTD 74.83 75.87 75.70 75.10 56.97
BTD 71.63 71.37 72.57 71.53 58.90
RTD(1,0) 72.23 72.63 71.63 73.80 73.93
RTD(2,1) 71.20 71.10 73.03 70.77 57.87

250

OTD 75.63 76.90 77.70 77.67 62.20
BTD 72.60 73.57 74.73 75.20 58.93
RTD(1,0) 73.00 73.57 73.57 74.70 76.70
RTD(2,1) 72.87 73.90 74.63 75.40 57.43

300

OTD 76.57 77.67 78.93 78.43 68.17
BTD 72.97 74.13 74.93 76.57 63.83
RTD(1,0) 74.43 74.83 74.67 74.73 77.67
RTD(2,1) 72.67 74.53 74.37 76.53 61.30

350

OTD 76.47 78.20 80.20 79.80 71.73
BTD 74.43 74.30 74.73 77.27 66.80
RTD(1,0) 75.07 76.20 75.80 75.20 78.53
RTD(2,1) 74.63 75.70 74.80 78.23 64.93

400

OTD 77.97 78.93 80.53 80.60 75.27
BTD 75.83 76.77 76.47 78.93 70.63
RTD(1,0) 75.17 76.40 75.83 76.00 79.23
RTD(2,1) 75.73 76.07 76.80 78.50 68.20

450

OTD 77.67 79.20 80.57 80.73 77.13
BTD 75.73 76.80 77.80 78.80 74.37
RTD(1,0)* 74.83 76.50 76.23 76.47 80.40
RTD(2,1) 75.87 76.87 77.87 78.87 71.80

500

OTD 78.03 80.10 81.27 81.67 79.87
BTD 75.27 77.33 79.37 80.30 75.73
RTD(1,0) 75.77 77.63 77.47 77.27 81.10
RTD(2,1) 75.83 77.47 79.50 79.70 74.50

Table 2: Accuracy performance for four approaches, five feature con-
figurations and increasing training dataset size. Accuracy reported is
averaged over five random selection of training documents for three ran-
domly selected test datasets. The numbers in bold in a row represents
the best performing feature configuration for a given approach and train-
ing dataset size. The approach in bold represents the best performing
approach among BTD, RTD(1, 0) and RTD(2, 1) for a given train-
ing dataset size. ‘*’ indicates significant improvement in performance
over BTD (paired t-test with p < 0.05 considered significant).

per bound for rationale based approaches. It tells
us how far we are from direct supervision on struc-
tured features. On average, OTD significantly out-
performed RTD(1, 0) for training data size of 100,
150, 400, 450 and 500 examples but not always.
As can be seen from Table 2, difference between
OTD and RTD(1, 0) reduces with more training
data, since with more data and hence more rationales
we get better feature coverage.

Results presented here show that for a given train-
ing dataset, we can boost the performance by ask-



ing the user to label rationales. However, there is
an additional cost associated with the rationales. It
is important to evaluate how much total annotation
cost rationales can save us while achieving the de-
sired performance. In Figure 2, we compare the
number of training examples an approach needs to
achieve a given level of performance. As can be
seen, RTD(1, 0) needs fewer training examples to
achieve the same performance as BTD. The differ-
ence is large initially when the total number of train-
ing examples is small (50 forRTD(1, 0) and 150 for
BTD to achieve a performance between 66− 67).

Figure 2: The Figure shows the number of examples needed by the
two approaches, RTD(1, 0) and BTD, to achieve an accuracy in the
given range.

Comparison with Zaidan et al. (2007): Zaidan
et al. (2007) conclude that using only features from
rationales performs worse than both: 1) using all the
features in the documents, and 2) using features that
do not overlap with the rationales. The results pre-
sented in this paper seem to contradict their results.
However, they only experimented with unigram fea-
tures and only one approach to using features from
rationales, RTD(1, 0) and not RTD(2, 1). In order
to compare our work directly with theirs, we exper-
imented with an equivalent set of unigram features.
In Table 3, we present the results using same num-
ber of total features (17744) as Zaidan et al. (2007).
As can be seen from the table, when only unigram
features are used,RTD(2, 1) outperformsBTD but
RTD(1, 0) performs worse than BTD. Thus, our
results are consistent with (Zaidan et al., 2007) i.e.
using unigram features only from the rationales does
not boost performance.

From Table 3, we also analyze the improvement
in performance when part of speech and depen-
dency features are used in addition to the unigram
features i.e. using all degree − 0 subgraph fea-

#Ex Approach uni uni-pos uni-pos-dep

100

OTD 68.6 68.8 61.6
BTD 68.6 68.8 52.2
RTD(1,0) 68.2 68.1 69.0*
RTD(2,0) 70.0 67.0 51.7

200

OTD 73.6 73.8 75.3
BTD 73.6 73.8 67.1
RTD(1,0) 73.9 73.2 73.9*
RTD(2,0) 75.3* 70.3 65.2

300

OTD 76.2 76.1 79.1
BTD 76.2 76.1 73.7
RTD(1,0) 75.0 74.9 77.1*
RTD(2,0) 77.5* 73.3 74.8

400

OTD 77.4 76.8 79.9
BTD 77.4 76.8 76.2
RTD(1,0) 75.9 75.9 77.0
RTD(2,0) 78.0 74.7 77.7*

500

OTD 78.1 78.1 80.0
BTD 78.1 78.1 78.4
RTD(1,0) 76.3 76.2 77.6
RTD(2,0) 78.2 75.4 79.0

Table 3: The Table reports accuracy for four approaches in a setting
similar to (Zaidan et al., 2007). Accuracy reported is averaged over ten
random selection of training documents for two randomly selected test
datasets.The numbers in bold are the best among BTD, RTD(1, 0),
RTD(2, 1) for a given feature combination. ‘*’ highlights the signif-
icant improvement in performance over BTD (using paired t-test, with
p < 0.05 considered significant).

tures. For RTD(1, 0), adding these features im-
proves performance for all data sizes with signifi-
cant improvement for dataset size of 300 and 500 ex-
amples. RTD(1, 0) also significantly outperforms
BTD when all three features are used. For direct
voting on features (OTD), a significant improve-
ment with these structured features is seen when the
training dataset size is greater than 200 examples.
For BTD and RTD(2, 1) approaches, there is no
significant improvement with these additional fea-
tures. In the future, we plan to investigate further
the benefit of using higher degree subgraph features
for opinion mining from the movie review data.

Comparing ranking of features:We also com-
pared the features that the rationales capture to what
the oracle will vote for as the most relevant features.
Features are ranked based on chi-square scores used
in feature selection. We compare the ranked list of
features from RTD(1, 0), BTD and OTD and use
a weighted F-measure score for evaluating the top
100 ranked features by each approach. This measure
is inspired by the Pyramid measure used in Summa-
rization (Nenkova and Passonneau, 2004). Instead
of using counts in calculating F-measure, we used
the chi-square score assigned to the features by the
oracle dataset, in order to give more weight to the
more discriminant features. As can be seen from



Table 4, RTD(1, 0) outperforms BTD in captur-
ing the important features when the datasize set is
small (< 300) and this difference is significant. Be-
yond 300 examples, as the data size increases,BTD
outperforms RTD(1, 0). This implies that the ra-
tionales alone are able to capture the most relevant
features when the dataset is small.

100 200 300 400 500 600 700
RO 47.70 53.80 57.68 59.54 62.13 60.86 61.56
TO 31.22 44.43 52.98 60.57 64.61 67.10 70.39

Table 4: Weighted F-measure performance comparison of ranked list
of features from RTD(1, 0) & OTD(RO) and BTD & OTD(TO).
Results are averaged over ten random selections of the training data for
a randomly selected test dataset. Significant differences are highlighted
in bold (paired t-test with p < 0.05 considered significant).

4 Conclusion and Future Work
In this work, we demonstrated that using structured
features boosts performance of supervised annota-
tion learning. We proposed a formal annotation
graph representation that can be used to derive these
features automatically. However, the space of pos-
sible feature subgraphs can grow very large with
more prior annotations. Standard feature selection
techniques based on class association scores are less
effective when the dataset is small. Feature voting
from the user for identifying the relevant features
is limited to simple features. Supplementary input
from the user in terms of highlighted rationales can
be used instead to prune the feature space. The pro-
posed approach is general and can be applied to a
variety of problems and features.

In this work, we presented our results with
degree − 0 and degree − 1 feature subgraphs.
We will extend our algorithm to automatically ex-
tract higher degree features from the annotation
graph. For the rationale annotated training data
(RTD(i, j)), we experimented with two possible
values for i and j. We aim to learn these weights
empirically using a held out dataset. Rationales are
associated with an additional cost per example and
hence two approaches, with and without the ratio-
nales, are not directly comparable in terms of the
number of examples. In the future, we will conduct
an annotation experiment with real users to evaluate
the usefulness of rationales in terms of clock time.
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