

Improving Structured Data Entry on Mobile Devices
Kerry Shih-Ping Chang1, Brad A. Myers1, Gene M. Cahill2, Soumya Simanta2,

Edwin Morris2, Grace Lewis2
1Human-Computer Interaction Institute, 2Software Engineering Institute

Carnegie Mellon University
{ kerrychang, bam }@cs.cmu.edu, { gmcahill, ssimanta, ejm, glewis }@sei.cmu.edu

ABSTRACT
Structure makes data more useful, but also makes data entry
more cumbersome. Studies have found that this is especial-
ly true on mobile devices, as mobile users often reject struc-
tured personal information management tools because the
structure is too restrictive and makes entering data slower.
To overcome these problems, we introduce a new data entry
technique that lets users create customized structured data
in an unstructured manner. We use a novel notepad-like
editing interface with built-in data detectors that allow users
to specify structured data implicitly and reuse the structures
when desired. To minimize the amount of typing, it pro-
vides intelligent, context-sensitive autocomplete sugges-
tions using personal and public databases that contain can-
didate information to be entered. We implemented these
mechanisms in an example application called Listpad. Our
evaluation shows that people using Listpad create custom-
ized structured data 16% faster than using a conventional
mobile database tool. The speed further increases to 42%
when the fields can be autocompleted.

Author Keywords
Personal information management (PIM); data entry; struc-
tured data; mobile devices; autocomplete

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Inter-
faces – Input devices and strategies.

General Terms
Human Factors; Design.

INTRODUCTION
Various mobile personal information management (PIM)
applications have been developed to support people’s need
to record and consume information while they are on the
go. One of the key factors that affects whether users can
and will use a PIM application is how easily, quickly and
accurately they can enter data [4,6,10,11]. The most intui-
tive way, suggested by prior research, is simply entering
data as an unstructured note [4,6,11]. Unstructured PIM

applications (e.g., Memo, Notes) let people enter any text
they want, and the simple “open and type” interaction is
often preferred by mobile users who are in a hurry and can
only devote limited attention to the devices [6,18].

In contrast, structured PIM applications (e.g., Contacts,
Calendar) provide a set of predefined fields for users to fill
in when creating a new item. This structure increases the
usefulness of the data and is highly utilized in these applica-
tions to support searches, visualization of the data in calen-
dar and map views, and data sharing. However, entering
structured data is much less flexible than entering an un-
structured note. Structured applications force users to enter
data in predefined formats. They also restrict the kinds of
data that can go into the application by their predefined
fields, while prior studies have found that a significant
amount of what people want to store does not fit into these
fields [4]. Most structured PIM tools have limited customi-
zability, and even if customizable, require users to tediously
go through multiple screens to select types and names for
each field (e.g., see [9,14,20]). These downsides drive users
back to entering unstructured data into the “notes” field in
these applications or just into a separate plaintext note [6],

Figure 1. The Listpad Interface. The user is creating a list
of to-dos for a conference, where (1) is the title box, (2) is

the editing interface, with a label for the type and name of
the field currently being edited, and a gray hint text

suggesting a possible structure for the current item, and (3)
Listpad’s autocomplete suggestions are to the right of the

“Next Field” button, showing possible values for the
current field.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distribut-
ed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specif-
ic permission and/or a fee. Request permissions from permissions@acm.org.
UIST’13, October 8–11, 2013, St. Andrews, United Kingdom.
Copyright 2013 ACM 978-1-4503-2268-3/13/10 $15.00.
http://dx.doi.org/10.1145/2501988.2502043

but then the data loses all the advantages of structure. The
ease and flexibility of unstructured text input motivates us
to rethink the design of interfaces for creating structured
data on mobile devices. We show that we can bring the
benefits of unstructured input to make creating structures
and entering structured data more fluid on mobile devices.

Another barrier to effective use of both structured and un-
structured PIM applications on mobile devices is the diffi-
culty of typing on today’s touchscreen keyboards, which
can be slow and error-prone due to the small key size and
the lack of tactile feedback [18]. Minimizing the amount of
typing can thus be beneficial to users in their interactions
with mobile applications. Most smartphone input systems
have a built-in dictionary that provides word suggestions
for users as they type, or dictionary-based input techniques
like ShapeWriter [21] and Swype [19]. This occasionally
proves useful, but much of the data entered in PIM applica-
tions is likely to not be in the dictionary (e.g., proper
names, addresses, etc.). Similarly, speech recognition sys-
tems do not work well for entering data into PIM applica-
tions because speaking this kind of data is often awkward
and error-prone.

An insight that motivates our design is that when users are
entering a value, they are often giving the system more in-
formation about the data than just the text. For example, the
data typed in a “location” field in a Calendar is likely to be
some place’s name. The data a user types often already ex-
ists in some local or online database. For example, the entry
in the “location” field is likely to be some place in the cur-
rent city and could be looked up using a web service such
as Google Places. Similarly, the data in a “person” field is
likely to be found in that user’s contact book or on Face-
book or LinkedIn. Another insight is that data is often high-
ly inter-dependent, so that after entering one value, the next
value entered might also be about the same thing, such as
the phone number of a location. Because entering structured
data inevitably increases users’ cognitive load compared
with entering an unstructured note (even simply reading the
structure requires more attention from the user), we hypoth-
esized that we could compensate users by using these local
and online public databases to provide autocomplete sug-
gestions based on the structure to save users some of the
effort in typing.

To demonstrate our approach to addressing these issues, we
developed Listpad, a new PIM application for Android that
allows users to create customized structured data in an un-
structured, notepad-like interface, where users can add
structure to the text as they are entering the data (see Fig.
1). By “structure,” we refer to both the format of individual
fields (like a time or place or plain-text), and also the spe-
cific sequence of fields in a record (such as that a record has
a time, a name, then a location). Our goal is to design an
interface that places minimum restrictions on how users can
enter data, so that it is as quick to use as a note application,
while still providing the ability to let users easily create and

reuse customized structure for data. Furthermore, Listpad
eases data entry by augmenting the built-in autocomplete
mechanism with a rich collection of local and online data
based on the type of the field and the user’s context.

In summary, this paper makes the following contributions:

• A novel data entry technique that lets users create and
reuse flexible customized structures and enter struc-
tured data in an unstructured, notepad-like interface.

• The novel use of public and personal databases as
sources to provide autocomplete suggestions, which are
then used to provide rich hyperlinking among data
items and subsequent contextual autocompletes.

• An instantiation of these techniques in an Android ap-
plication called Listpad, which was shown in a within-
subjects evaluation to be faster compared to a mobile
notepad application (AK Notepad [1]) and a conven-
tional mobile database application (Memento [14]).
People were 16% faster using Listpad to create custom-
ized structured data in the phone compared to using
Memento. In addition, with the help of autocomplete,
this difference increases to 42% faster, and Listpad was
even able to outperform the notepad application by
18% when autocomplete can help with data entry.

SCENARIO
Here we describe a scenario where Jim, a graduate student,
is attending a conference in Pittsburgh and uses Listpad to
record a list of his activities. We use this scenario to give an
overview of how someone could use Listpad. Later we will
explain our system in detail.

A day before the conference, Jim wants to make a to-do list
for the conference, such as interesting talks he wants to
attend, on his phone. Jim notices that the conference pro-
vides a mobile app, but the app does not let him add any
personal items like his lunch meeting or make any annota-
tions. So he uses Listpad, which provides fully flexible data
entry. Jim first downloads the conference programs in an
Excel file and imports it to Listpad’s database. Then he
starts a new list in Listpad. Jim begins by entering some
talks he wants to attend. Jim sets Listpad to use the confer-
ence program he just imported as the source of autocom-
plete suggestions. Now as he types, he sees that Listpad
searches the programs and suggests talks that match what
he has entered. Fig. 1 at 3 shows that just after typing a sin-
gle letter, Jim finds the full name of the talk among the
suggestions. Jim quickly autocompletes the field, and
Listpad further suggests other information about the talk,
such as the time, location and speaker. Again, Jim uses the
suggestions and enters the talk’s time and room. Jim enters
a few more talks and his lunch meeting and saves the list.
By default Listpad displays data in a list view (Fig. 5 at 1).
Jim chooses to display his list in a day view (Fig. 5 at 4),
where he can view the talks by their times of the day in a
calendar. Later while listening to a talk, Jim thinks of a cool

idea. He opens his list in Listpad, and quickly adds a new
field to the talk and types in the idea.

During the conference, Jim talks to his friends and finds
that several universities have parties at night. He wants to
quickly write down the times and locations of the parties.
Jim opens the same list in Listpad and starts adding the par-
ty information. When he is about to enter where the party is
held, he links Listpad to Google Places, an online location
database. Now as he types, Listpad uses Google Places as
the source to provide autocomplete suggestions (Fig. 3 at
left). The places returned are sorted by their distances from
his current location. Again, just after a few taps Jim finds
the place he wants among the suggestions, and using the
autocomplete he quickly fills in the name, address and
phone number of each place. Later in the day, Jim opens
Listpad and views his list in a map view (Fig. 5 at 2), which
plots the restaurants on a map using their locations.

RELATED WORK
The design of our data entry technique is inspired by prior
studies on how people record information in real life. Re-
search has found that a large amount of information that
people record is in the format of a list, which consists of
multiple items with similar structure. Examples are to-do
lists, desired items, login/password information, etc.
[2,4,13]. Therefore, Listpad particularly focuses on support-
ing mobile entry of lists of this kind of information. The
need for structured data has been well addressed in [11], as
the authors argue that structured data is the “lingua franca”
of many daily applications from music players to productiv-
ity applications, all of which rely on specific data structures
to provide their services. Most complaints about structured
PIM tools are due to two reasons. First is that these tools
are often too rigid and lack customizability as to the kinds
of data that can be stored. Studies have found that much
personal information is unable to fit into the existing struc-
tures provided by applications [4]. In order for the data to
be storable, the user sometimes must pick an arbitrary field
in which to put the data, even though the description of the
field does not match the data [6]. As a result, a key feature
we designed in our mechanism is to let users define custom-
ized structures to fit their needs. Also, studies reported that
people naturally tend to record information tersely, often
using abbreviations or partial sentences [2,13], whereas
most structured tools require rigid and full entry of data or
force users to enter data through standard GUI widgets.

Another problem identified in the literature is that entering
structured data requires more cognitive load for the users
because they have to read extra GUI elements [11] and en-
ter the information into the rigid, structured format, which
users may want to avoid if they need to enter data in a hurry
[6]. Therefore, Listpad lets users type in data in their pre-
ferred formats and uses flexible data detectors [12,17] to
extract the values. For example, Listpad recognizes date
information in different formats, such as “Sept. 19” or
“9/19”, and does not force users to enter dates through date

input widgets. Listpad also lets users link self-defined fields
to local or online databases which are then used for auto-
complete suggestions. Many mobile systems and computer
text editors (such as Emacs) provide autocomplete using
dictionary words or the users’ typing history. Listpad’s au-
tocomplete is different in that its autocomplete suggestions
come from data sources that are relevant to the user-defined
structure, and can be from on-line web services. For exam-
ple, the autocomplete suggestions for a “book” field could
be book names from Google Books.

The idea of letting users enter structured data using unstruc-
tured text has been explored in several prior systems for
desktop computers. Inky [15] is a command line tool for
entering data quickly into well-known structured desktop
PIM applications such as Email or Calendar. The interface
provides graphical feedback to suggest what field the data
will go into. Listpad focuses on a different problem, which
is to facilitate creating customized structured data instead of
entering data into existing structures in other applications.
Jourknow [11] lets users enter plaintext notes and automati-
cally adds context-related information to the note, such as
when and where it is created. Similar to Inky, Jourknow can
extract structure from plaintext and use it as input for well-
known structured PIM tools based on predefined grammars,
such as creating a calendar event by typing “Meet David at
3pm”. Again, our work is different from Jorknow as we
focus on the creation of customized structured data. Jour-
know also allows users to create customized structured data
using Notation3 syntax [3], which uses many extra punctua-
tion characters. We feel that such syntax is not intuitive to
learn and also is not suitable to use on mobile devices be-
cause it would require much extra typing and frequent
switching between the letter and symbol keyboards.

Mobile database applications are designed for creating cus-
tomized structured data on mobile devices. Examples are
commercial tools such as Memento [14], Tap Forms [20]
and HanDBase [9]. All of these use a traditional form-based
interface and a similar procedure to set up the database as is
used on desktop computers: they require the user to first
specify the type and name of each field in the database, and
then use entirely different screens to enter the data items.
Users can add or delete a field after the database is created,
but the changes will affect all the items in the database. In
contrast, Listpad lets users do all these operations in the
same editor and uses data detectors to help identify the type
and name of a field, so that users do not necessarily have to
specify everything explicitly. Listpad also allows users to
flexibly add or delete any field in an individual item with-
out affecting other items. Most of the mobile database ap-
plications allow users to build links to cross-reference to
other entries in its database. Selecting a desired entry re-
quires the user to go through multiple form interfaces. In
Listpad, we make such linking more fluid and extend the
idea to include connecting to online web services. To make
the interface more integrated, we use these entries as auto-
complete suggestions for the user while typing in the data.

Despite having many shortcomings, mobile database appli-
cations are apparently successful commercial products. For
example, Memento, which we used for our user study, has
between 100,000 to 500,000 installs on Google Play, show-
ing that there is a demand for entering and viewing struc-
tured data on mobile devices.

LISTPAD
In Listpad, we define a list as a collection of items. Each
item has one or more customizable fields. Whereas most
lists have a fairly uniform structure, this is not a require-
ment – in fact every item could have a different structure. In
the scenario, Jim’s list has items of three different struc-
tures: one for presentations having the fields time, talk, and
room, the lunch meeting with event, people, phone number,
and time, and some items about parties with time, place,
address and phone. All lists are created and edited in a
notepad-like interface (Fig. 1 and Fig. 2). The title of the
list can be added or modified through the textbox at the top.
Below this textbox are all items in the list. Each item starts
with an orange bullet, which is automatically displayed
when the user enters a new line. Within an item, fields are
separated by the blue diamond symbols, which are inserted
using the blue “Next Field” button (Fig. 3 at 1).

Just as if it was a plaintext editor like Notepad, the user can
edit the text freely, for example to delete a diamond symbol
or a new line anywhere using the regular delete key, or
moving the cursor and adding a diamond or new line any-
where. This would be useful to split a string into two fields,
or delete a return to merge two items into one. We designed
this feature to make creating structured data a very flexible
process. The user can always type in unstructured data if in
a hurry, or the user might copy and paste unstructured data
from the web or elsewhere. Later, the user can add structure
to the data by inserting the blue diamonds and then viewing
and editing the list in the structured layout.

The decision to use a special character (the blue diamond)
as the separator for fields was made to avoid the use of
more common characters that often appear in data. For ex-
ample, many data types use commas internally, such as
names (“Olsen, Jr.”) addresses (“3rd Street, Apt. 3”), and
dates (“Oct. 7, 2012”). Rather than requiring users to dis-
ambiguate and correct possibly erroneous parsing or use
unfamiliar special characters (as in [11]), we decided to add
an easy-to-hit and unambiguous button to separate fields.

Listpad uses a label under the text that the cursor is at to
show the type and name of the field (Fig. 2 at 1). The label
icon represents the field type, and the label text is the field
name. The default type and name are “text” and “Field n”,
where n is the number of the field in an item (Fig. 2 at 4).
However Listpad will detect and change the type and name
based on the value that the user types (see next section).
Alternatively, the user can tap on the label to bring up a
dialog box, where the field type can be changed through a
dropdown list and the field name can be edited (Fig. 2 at 2).

When the user moves the cursor to another field by either
tapping on it or inserting a diamond symbol to start a new
field, the label moves to the new location and shows the
new current field type and name (Fig. 2 at 3 and 4).

Data Detectors
Listpad currently supports 10 different data types: text,
number, phone, date, time, date and time, address, email,
website, and link. Except for “link” (see the next section)
and text, for the rest of the eight data types Listpad provides
corresponding data detectors to try to recognize the type of
the current field value to see if it matches any of the prede-
fined formats. When the system detects a type format other
than a basic string, it updates the field type and name on the
label in real time. Note that this use of data detectors is
quite different from current smartphones or prior research
[12,17], where the type is used to provide actions when
tapping on the data in a plaintext note. In Listpad, the in-
ferred types are persistent, and are used to define the struc-
ture for fields. (Tapping on the fields can also still invoke
actions in Listpad, as discussed below.)

The default field name for a field is the name of the type
(e.g., Fig. 2 at 1). Sometimes the default names are suffi-
cient. For example, in our scenario when Jim enters the
time of a talk, he just uses the default field name “date and
time”. If the user manually assigns a type to the field using
the dialog box, the data detectors will no longer run. If the
value that the user enters disagrees with the manually-
specified type format, Listpad assumes that the user wants
to consider the new value to be of the specified type, and
simply allows it. For example, there might be a phone num-
ber format that Listpad currently does not recognize, such
as an international number. This is an example of a design
decision in the direction of flexibility and ease of entry. Of

Figure 2. (1) The user is editing a list that has one item with
two fields. The label shows the type (the calendar icon) and
name (the label text) of the second field, both being “Date”,
because Listpad detects that the field value (“9/10”) is in a

date format. The user could tap on the label and bring up (2)
the dialog box to change the field type and name manually.

(3) The label updates after the user changes the field name to
“Due date”. (4) The user presses on the “Next Field” button
to start a new field. The label moves to the new location and

shows the default field type “Text” and name “Field 3”.

course, uses of that item will be affected if Listpad does not
understand the format. For example, unrecognized dates
and times will not be shown in the calendar view. But some
uses still work. For example, tapping on a phone number
will always open the dialing application and attempt to dial
that number, even if Listpad does not recognize the phone
number format. In the future we plan to make the data de-
tectors customizable by the users.

Autocomplete Suggestions
In addition to data detectors, another process that constantly
runs in the background while the user types is the autocom-
plete engine that generates suggestions. Android has built-
in autocomplete suggestions using a dictionary that comes
with the default keyboard (Fig. 3 at left, the blue text).
Listpad’s autocomplete suggestions are placed right above
Android’s autocomplete suggestions and next to the “Next
Field” button (Fig. 1 at 3 and Fig. 3), and can be scrolled
horizontally left and right to see more suggestions. The user
can choose from either list. Listpad’s autocomplete sugges-
tions come in the following categories.

Built-in Keywords
Listpad has a set of built-in keywords that are used by the
data detector to recognize certain types, such as date key-
words (“January” ~ “December”, “Monday” ~ “Friday”,
“/”), time keywords (“AM”, “PM”, “:”), and address key-
words (“Road”, “Street”, “Avenue”…). These are added to
the autocomplete list to facilitate entering these types of
data. For example, “AM” will be shown if the field value
seems to be in a 12-hour clock format. Considering the fact
that mobile information needs are highly contextual, we add
three more “context keywords” in the autocomplete word
list, which are “today”, “current time” and “current loca-
tion”. These words, when in the suggestion bar, are shown
in blue to signify that they are not the actual text that will
be inserted into the field.

Values of Fields in the Same List
The same fields in items in the list may reuse values entered
into that field in previous items. For example, when enter-
ing an assignment list, the value in the course field may be

repeated in multiple items because a course can have multi-
ple assignments. Listpad searches for fields in other items
that have the same field type and name as the current field,
and includes their values as autocomplete suggestions.

Local and Online Databases
As mentioned earlier, in Listpad we explore the possibility
of using local personal and online databases based on our
observation that data is often highly interdependent. The
idea is that if the data is already somewhere in another da-
tabase, then the user should be able to simply reference the
value instead of retyping it. Unlike the other autocomplete
engines already discussed that look for possible suggestions
independent of the field types, the autocomplete engine for
local and online databases is only activated when the user
has set the field type to “link” to a particular data source.
This design decision was made for two reasons: first, send-
ing a request to the databases on every keystroke would use
up system resources because it requires Internet access.
Second, searching through multiple on-line databases using
the incomplete string that the user enters might return many
irrelevant results. Asking the user to pick from these results
may cause more cognitive load than just typing in the value.
Therefore, we thought it was an appropriate tradeoff to re-
quire the user to help Listpad narrow down the search space
to a particular kind of data so that Listpad can present accu-
rate suggestions.

To set up the link to a local or online database, the user first
sets the field type to “link” using the dialog box shown in
Fig. 2 at 2, and then selects the desired source name from a
list of available sources in a popup menu. After the user
picks a source, the default field name changes to match the
source (e.g., Fig. 3 at left). Then when the user types in the
field, the field value is sent as the query string to the con-
nected data source every time that the user enters a charac-
ter, and the returned search results are shown as autocom-
plete suggestions.

Listpad uses an extensible architecture that allows new data
sources to be added, often without programming [5]. Some
example sources we have used with Listpad include two
local – Android’s People (the contact app) and Listpad’s

Figure 3. (Left) After the user sets the field to link to Google
Places, the default field name becomes “Place”, and search

results from Google Places are shown as autocomplete sugges-
tions. (Right) When the user starts a new field, Listpad shows
options for the user to import more information about the se-

lected place from the linked database.

Figure 4. (1) When the user starts a new item, Listpad uses

gray text to suggest a possible structure for it. (2) The user can
tap on the brown button to switch to a different structure, or

(3) choose a blank structure to start define a new item.

own databases - and five online databases – Google Places,
Rotten Tomatoes (a movie database), Last.fm (a music da-
tabase), Google Books, and Wine Searcher. The users can
add new sources for autocomplete to Listpad in two ways.
First, the user can import Excel files to Listpad’s database,
as Jim does in the scenario. Second, if the source is a re-
mote online database, Listpad’s architecture allows it to be
added to the system as a plug-in. Furthermore, Listpad pro-
vides a web configuration tool, called Spinel, which allows
end-users to create these plug-ins for Listpad without writ-
ing any code. The design of this architecture is explained in
detail elsewhere [5]. Here, we will only briefly introduce it
in the implementation section below.

After the user selects an autocomplete suggestion, Listpad
not only inserts the full string for the user, but also provides
autocomplete options for other fields of the selected item
when the user moves to the next field (Figure 3 at right). If
the user taps on a suggestion, not just the field value but
also the field type and name will be autocompleted. Besides
helping the user quickly enter other related information of
an item, these autocompletes also serve another purpose:
autocomplete has become a popular way for users to ex-
plore an information space and therefore serves as implicit
queries [16]. For example, if a user has just entered “Bob”
in the first field of an item, Listpad will then provide in its
autocomplete menu the other information that it knows
about Bob as possible values for other fields, which could
help users understand what information is available and
also helps them ensure that they have the right person with-
out having to leave Listpad.

Entering a New Item and Reuse of Existing Formats
The user can press the “return” key to start entering a new
item. Gray text appears on the new line to suggest a possi-
ble structure of this new item, based on the existing items in
the same list (Fig. 4 at 1). The user can tap on the brown
arrow button to cycle among the different structures that
have been used for other items in this list (Fig. 4 at 2), and
the last choice is a blank structure (Fig. 4 at 3) to start to
define a new structure.

Viewing a List, Sorting and Searching
In addition to helping with the entry of the data through
autocompletions, the structure of the data also enables
Listpad to provide multiple views and sorting of the items,
and actions when a user taps on items. Listpad provides:

1) A list view, where each item is displayed in a list layout
showing its first field as the title and the rest of the fields in
a line of small gray text under the title (Fig. 5 at 1). The
user can sort the items in alphabetical order, number order
(if the items have number fields), time order (if the items
have date or time fields), and distances from the current
location (if the items have address fields).

2) A note view, which shows the list just as in the editor.
We provide this view in case the user only wants to enter
unstructured notes. This makes Listpad fully capable of
being used as simply a traditional notepad application.

3) A map view, where each item with an address field is
plotted on a map showing its first and second non-address
fields as a popup when the marker is tapped (Fig. 5 at 2).

4) A month view, where each item with a date or date and
time field is displayed in a month calendar (Fig. 5 at 3),
showing its first non-date field as the title.

5) A day view, which is similar to the month view, but for a
single day. It displays items with a time or date and time
field in a day calendar (Fig. 5 at 4).

In the list, map, month and day view, tapping on an item or
a marker opens a detail view (Fig. 5 at 5) that shows all
fields in the item, including the field types and names, in a
list layout. In this view, Listpad provides actions on various
types of data. For example, phone numbers are linked to the
dialing application and addresses are linked to Maps. A link
field is linked to its source item. For example, Place names
from Google Places are linked to their Google Places
webpage. Person names from the People contacts list are
linked to their record in People.

Finally, Listpad currently supports free text search through
all items. We are adding structured searching and filtering
to the system, so that users will be able to search on indi-
vidual fields or filter based on the structured value, such as
only viewing places near me.

IMPLEMENTATION

Data structures
One of the challenges in implementing Listpad was to de-
sign an efficient database structure to store highly-dynamic,
yet flexibly-structured data. We used db4o [7], an open
source object-oriented database system, to host all of our
data. In the database, each item in a list consists of a value

Figure 5. Listpad supports viewing a list in (1) a list view, (2) a map view, (3) a calendar month view, (4) a calendar day view, and a

note view (not shown here, which displays a list as what it looks like in the editor). Clicking on an item entry in (1), (3), (4) or a
marker in (2) opens (5) a detail view that shows all fields in the item, including the field types and names.

object and a format object. The value object holds an Ar-
rayList of the field values in an item. Each value object has
an ID that links it to a format object that has an ArrayList of
types and names that specify the types and names of the
fields in the value object. Every time a new item is created,
the system searches in the database to see if there is any
existing format object that is the same as the newly created
format object. If so, the system links the newly created val-
ue object to the existing format object, then stores only the
value object. If not, then the system links the newly created
value object to the newly created format object, and stores
both of them in the database. Listpad uses Lucene [8] to do
indexing and searching of text.

Adding new online data sources
Listpad accesses all online data sources through their offi-
cial web APIs. Listpad uses two types of APIs for each
source. One is a “search” API that searches the database by
the query string. The other is a “detail” API that retrieves
the full record of an item given its ID returned in the search
result. To enable new data sources (new APIs) to be added
dynamically without recompiling the system, each data
source is stored as a separate JSON file that describes the
usage of its APIs, including the authentication parameters,
the request URLs, and the paths to the desired fields from
the returned models. We called this JSON file a data source
“plug-in”. All plug-ins are put in a designated folder on the
mobile device. When Listpad starts, it reads all plug-in files
inside that folder to determine what sources are available.
Installing a new data source requires simply putting a new
plug-in file into that folder on the phone.

Currently, this plug-in architecture supports data sources
that provide REST web APIs and return JSON data. Be-
cause the plug-in itself is just a JSON file, anyone who is
familiar with how web APIs work can create a new plug-in
using any text editor. We also provide a web-based configu-
ration tool that lets people create a new plug-in using a
web-based GUI without programming. Full details are de-
scribed elsewhere [5].

USER STUDY
We evaluated the design of Listpad using a within-subject
study. A key innovation in Listpad is allowing users to add
structure to data on the fly while typing in a notepad-like
interface. Therefore, we thought it would be interesting to
compare Listpad with two different extremes – a conven-
tional mobile database application that requires the struc-
ture to be defined beforehand and uses standard form inter-
faces for all editing, and a plain-text notepad application in
which users only enter unstructured data. We hypothesized
that Listpad would be slower than the notepad when struc-
ture was being created, but the time could be compensated
for when Listpad could autocomplete the data by linking to
a relevant source using the structure. We selected the Me-
mento Database [14] for the mobile database application
and AK Notepad [1] for the notepad application because of

their high ratings on the Google Play marketplace. All par-
ticipants used the experimenter’s phone for the study,
which is a Samsung Galaxy Nexus. Participants used An-
droid’s default keyboard, with its autocomplete using the
built-in dictionary, to enter the data in all three applications.

Tasks
We designed five tasks to assess different aspects of our
prototype system. All tasks relate to entering structured data
into the phone. The data was presented to participants in a
table on paper. For Listpad and Memento, participants had
to enter an exact item as given, with the same field name,
type and value for each field in the same order. If the field
structure did not exist, participants had to create the struc-
ture themselves. For AK Notepad, however, because there
was no notion of items and fields in the notes, we asked
participants to ignore the field type and field name and
simply enter the field values in order, to use commas to
separate each field, and to press “return” to start a new
item. From our observations, this is a common format when
people create a list of things in their own notes.

The first task was to add two items to an existing “Account
and Password” list. For both the first and second tasks, all
needed structure was already set up in the existing list and
therefore participants did not need to create or modify any
of the structure. In the first task, participants typed the val-
ues into the correct fields. We used this task as a warm-up
task and to ensure that participants understood Listpad’s
way of specifying structured data. The second task was to
add two items to an existing “My CDs” list. This task was
similar to the first one, but this time, Listpad linked the
fields to Last.fm to provide autocomplete suggestions. We
hypothesized that participants would enter data faster with
Listpad, since this time the data could be autocompleted.
The third task was to create a new list named “My shopping
list” that has two items in it. This task required participants
to create the structure in Listpad and Memento and manual-
ly enter the values. We hypothesized that with Listpad, par-
ticipants would spend less time creating customized struc-
tured data than with Memento. The fourth task was to cre-
ate a new list named “Restaurants” that has two items. This
task was similar to the third one, but using Listpad partici-
pants only needed to set up the first field as a link field to
Google Places, and the rest of the fields could be autocom-
pleted. We hypothesized that Listpad would be much
quicker than Memento with the help of autocomplete for
creating the structure. The fifth task was to modify the
“Restaurants” list by adding two new fields to it without the
help of Listpad’s autocomplete. We hypothesized that
Listpad would help participants be quicker when modifying
an existing structure compared to Memento. For each task,
we designed three sets of data for the participants to enter
using the three different tools. For tasks one to four, each
data set had 82~87 characters. For task five, each data set
had 27 characters. We randomly assigned datasets to tool to
guard against any differences. We found no significant dif-

ferences in the time that participants spent on each task
entering different data sets, showing that we were success-
ful at matching difficulty among the datasets.

Participants
Fifteen paid participants (ages 22-35) were recruited, all
students or staff in our university. All participants used An-
droid phones as their primary phones, so they were familiar
with the Android UI in general. Participants rated their ex-
pertise with using computers and Android phones on a 7-
point scale from “no experience” to “very experienced”.
The average rating for using computers for all participants
was 6.67 and for Android was 5.6. None of the participants
had used Memento or AK Notepad before. However, all
participants had used other notepad applications, at least on
regular computers, and they were all familiar with the form
input interface because it is also used in other common An-
droid applications such as People and Calendar.

Procedure
We randomized the order of the tools and the order of the
data sets given to each participant. For each tool, the partic-
ipants first received a short tutorial that covered how to
create a list. We did not show participants the features in
the tool that were irrelevant to the tasks, such as sorting and
searching. The participants practiced with the tool as part of
the tutorial. The data for the practice tasks was presented in
the same table format as the real tasks, but the data structure
was completely different. The whole tutorial took about 15
minutes for Listpad and Memento and 8 minutes for AK
Notepad. After the tutorial, the participants began the first
real task, as described above. The experimenter measured
the time participants spent on each task. Participants were
told to work quickly and carefully, and to enter the exact
words that were on the sheets, except that they did not have
to worry about upper and lower case. If the participants
mistyped anything, they were asked to correct it. The cor-
rection time counted as part of the final task completion
time. After finishing all five tasks, participants moved to
the next tool, received the tutorial and did the tasks. After
finishing all three tools, participants filled out a short sur-
vey to provide feedback. The study took between 60 and 75
minutes, depending on how fast the participant could type.

Results
Across all tasks, in addition to performance (time) we were
evaluating the usability of the three tools by watching for
any breakdowns and asking participants for their prefer-
ences. A paired-samples t-test was conducted to compare
the time that participants spent on each task using different
tools. The results are reported below and in Figure 6.

Task 1: Participants completed the task faster with Memen-
to (M=88.47s, SD=19.78), than with AK Notepad
(M=93.74s, SD=17.7) or Listpad (M=101.47s, SD=21.75).
The difference between Memento and Listpad was signifi-
cant (t(14)=3.19, p<0.01). We observed that some partici-
pants still appeared to be learning how to use Listpad dur-
ing this first task. Because all participants were already
familiar with entering data in a form interface, we suspect
that the difference between Memento and Listpad on the
first task was likely due to this learning effect. In all subse-
quent tasks, times in Listpad matched or beat Memento.
The difference between Listpad and AK Notepad was not
statistically significant.

Task 2: Participants spent significantly less time when us-
ing Listpad (M=56.59s, SD=9.6) than using Memento
(M=72.3s, SD=20.31; t(14)=5.55, p<0.01) and AK Notepad
(M=76.52, SD=22.63; t(14)=5.31, p<0.01). This result
shows that participants understood how to use Listpad’s
autocomplete suggestions, and were able to use autocom-
plete to cut down their data entry time by an average of
24%. There was no significant difference between the Me-
mento and AK Notepad times.

Task 3: Participants completed this task significantly faster
using Listpad (M=131.62s, SD=37.58) than using Memento
(M=156.14, SD=29.89; t(14)=3.76, p<0.01) by 16%. The
result shows that the way Listpad lets people define struc-
ture while entering data could significantly shorten the time
needed to create customized structured data. Both Listpad
and Memento were slower than AK Notepad, where no
structure is needed (M=98.82s, SD=25.47; t(14)=4.89,
p<0.01; t(14)=12.23, p<0.01). The result confirms our hy-
pothesis that specifying structure does require extra time.

Task 4: We found that Listpad’s autocomplete significantly
shortens the time participants needed to create and enter

Figure 6. The average task completion time of Listpad, Memento and AK Notepad. Shorter bars are better.

structured data. Participants were 42% faster using Listpad
(M=70.75s, SD=9.73) than using Memento (M=120.95s,
SD=30.37; t(14)=9.01, p<0.01) and 18% faster than using
AK Notepad (M=82.62, SD=20.04; t(14)=3.04, p<0.01).
The difference between Notepad and Memento was also
significant (t(14)=10.08, p<0.01). The result shows that
participants with the help of autocomplete could create
structure and enter data even faster than creating an un-
structured note that only contains the values of the fields.
Although in order to get the autocomplete suggestions with
Listpad, participants had to set up the structure for the first
field, the time later saved by the autocomplete on subse-
quent fields was considerably more than the time spent de-
fining the first structure.

Task 5: Participants completed this task significantly faster
using Listpad (M=55.32s, SD=11.81) than using Memento
(M=65.27s, SD=13.3; t(14)=3.75, p<0.01) by 15%. Partici-
pants spent less time using Notepad (M=29.27, SD=10.9)
than both Listpad (t(14)=8.78, p<0.01) and Memento
(t(14)=13.32, p<0.01). The result is consistent with the re-
sult in Task 3: Listpad helps people modify structure signif-
icantly faster than Memento, but it is still faster to have no
structure at all.

Subjective Results
In the survey we asked participants to rate the three tools on
a 7-point scale from “very hard” to “very easy” in various
scales, including ease of learning and entering and editing
data. Participants rated AK Notepad as the most easy-to-
learn tool. It received higher rating (M=6.13, SD=0.92)
than both Memento (M=4.87, SD=1.3; t(14)=5.10, p<0.01)
and Listpad (M=5.2, SD=1.42; t(14)=2.43, p=0.03). For
ease of entering and editing data, participants rated Memen-
to as the hardest-to-use tool. It received lower rating
(M=4.73, SD=1.49) than both Listpad (M=5.93, SD=1.39;
t(14)=2.55, p=0.02) and AK Notepad (M=5.47, SD=1.25;
t(14)=2.13, p=0.05). Listpad was rated highest, but the dif-
ference between Listpad and AK Notepad is not significant.

Finally, we asked participants to rate how they liked the
tools on a 7-point scale from “don’t like it at all” to “like it
a lot”. Participants rated Listpad (M=6.21, SD=0.89) higher
than both Memento (M=4.6, SD=1.18; t(14)=4.46, p<0.01)
and AK Notepad (M=4.21, SD=1.37; t(14)=4.16, p<0.01).

DISCUSSION
The study confirms several interesting possible use cases
for Listpad in real life. All participants reported Listpad’s
autocomplete as the feature they liked the most among the
three tools. They described the autocomplete to be “fast”,
“saved a lot of typing”, and that it “makes finding and en-
tering data a lot easier”. On average, Listpad received the
highest rating in “the ease of entering and editing data”.
Although we told participants not to worry about the upper
and lower case of the data, many participants still tried to
have the letters correctly capitalized. One person insisted on
entering all the upper and lower case letters correctly. He

later wrote in the survey that the correctness of the data was
more important to him than the speed of entering data, so he
really liked the autocomplete.

The main usability issue we found with Listpad was the
delay caused by the network connection when showing the
suggestions from online databases. The delay was not a
problem for most participants, as their average speed of
entering data was still faster using autocomplete even with
the delay. We did find one participant who could type so
fast that he had to pause for a noticeable amount of time to
wait for the suggestions to show up. However, that partici-
pant still liked the autocomplete feature and said it was “fun
to hit a button and have the whole address just pop up.”

10 out of the 15 participants reported that they had notes or
lists of items on their own phone. Participants’ notes cov-
ered a wide range of topics. The most common ones were
to-do and shopping lists, followed by lists of ideas, expens-
es, movies, books, songs/albums, food, contact details, re-
minders, login/password info, discount cards, favorite
quotes and recipes. We were excited to see these examples
because many of them include public information and could
be easily entered and put into structures by using autocom-
plete from available web services. For example, infor-
mation in a shopping list could be autocompleted using the
data from Amazon or grocery store web data sources.

Participants liked that in Listpad they could create structure
as they were entering the data, which they said was easier
and more intuitive than Memento, where they had to use
separate interfaces for entering data and creating the field
structures. All participants successfully utilized the data
detectors in Listpad to set up the structure, which saved
time compared to Memento where they had to manually
assign both a type and name for every field. Participants
expressed interests in using Listpad in real life and suggest-
ed practical features they would like, such as connecting
Listpad to Google Drive and grouping lists with folders.

Limitations
Our study has several limitations. First, the study was run in
a quiet lab setting, which was different from real life where
people are often distracted or interrupted by the environ-
ment. However, we suspect that this would affect all three
tools and therefore would not change our main study find-
ings. Second, in the study, we asked the participants to en-
ter the exact same words as given. This requirement was
necessary in order to compare data entry times, but it also
violated the reality that people sometimes use abbreviations
when entering data on mobile phone. For the tasks where
Listpad did not provide autocomplete (tasks 1, 3, and 5), we
believe this again would equally affect all three tools and
should not change the comparative findings. For the tasks
where Listpad did provide autocomplete (tasks 2 and 4), the
time differences between Listpad and the other tools may
decrease if abbreviations were allowed. However, it would
not change our main findings about autocomplete, which is

that it ensures that users can enter correct and complete data
quickly. Finally, all our participants were fluent with typing
on the touchscreen. For novice users who do not type on
touchscreens well, using more GUI-like input widgets (such
as a calendar widget) to enter some data may be faster and
easier. We are considering adding a way to popup these
kinds of widgets from Listpad’s autocomplete bar.

CONCLUSIONS AND FUTURE WORK
We have presented a new data entry mechanism that facili-
tates creating customize structured data on mobile devices.
It allows users to define structure while entering data using
an unstructured, notepad-like interface, and uses data detec-
tors to help determine the structure. The design was shown
to be usable and more efficient than conventional mobile
database applications and was preferred by experienced
smartphone users. In addition, autocomplete using local and
online data sources lets people create structured data even
faster than entering unstructured notes in a note application.

Future work can be in many directions. First, we can extend
the Listpad to allow storing multimedia data such as images
and audio. Second, we can explore ways to automatically
identify relevant local or online databases to use as auto-
complete sources. One possibility is to use the list titles or
tags. For example, lists having a “people” tag by default
could link to Facebook’s database. Third, we can allow
syncing personal lists with their linked data sources after
the lists are entered to keep them up to date. Using the con-
ference scenario for example, if Listpad is linked to an
online conference program database and one talk is moved
to another room, the room information in user’s personal
list will automatically get updated. Finally, we can explore
using Listpad-like data entry for conventional PIM applica-
tions like contacts. We feel that these interaction mecha-
nisms are a starting point on the way to making many dif-
ferent kinds of data entry on mobile devices more efficient.

ACKNOWLEDGMENTS
We would like to thank Ruogu Kang for her help with the
statistics for the paper. This material is based upon work
funded and supported by the Department of Defense under
Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering
Institute, a federally funded research and development cen-
ter. This material has been approved for public release and
unlimited distribution. DM-0000293

REFERENCES
1. AK Notepad on Android. https://aknotepad.com/

2. Bellotti, V., Dalal, B., Good, N., Flynn, P., Bobrow,
D.G., and Ducheneaut, N. What a to-do: studies of task
management towards the design of a personal task list
manager. Proc. CHI, ACM (2004), pp. 735–742.

3. Berners-Lee, T. and Connolly, D. Notation3.
http://www.w3.org/TeamSubmission/n3/

4. Bernstein, M., Van Kleek, M., Karger, D., and schraefel,
m.c. Information scraps: How and why information
eludes our personal information management tools.
ACM Trans. Inf. Syst. 26, 4 (2008), 24:1–24:46.

5. Chang, K.S., Myers, B.A., Cahill, G.M., Simanta, S.,
Morris, E., and Lewis, G. A Plug-in Architecture for
Connecting to New Data Sources on Mobile Devices.
Proc. VL/HCC, IEEE (2013), to appear.

6. Dai, L., Lutters, W.G., and Bower, C. Why use memo
for all?: restructuring mobile applications to support
informal note taking. CHI'05 extended abstracts ACM
(2005), pp. 1320–1323.

7. db4o. http://www.db4o.com/

8. Apache Lucene. http://lucene.apache.org/

9. HanDBase. http://www.ddhsoftware.com/handbase.html

10. Kalnikaité, V. and Whittaker, S. Software or wetware?:
discovering when and why people use digital prosthetic
memory. Proc. CHI, ACM (2007), pp. 71–80.

11. Van Kleek, M., Bernstein, M., Karger, D.R., and
schraefel, mc. Gui --- phooey!: the case for text input.
Proc. UIST, ACM (2007), pp. 193–202.

12. Lieberman, H., Nardi, B.A., and Wright, D. Grammex:
defining grammars by example. CHI'98 conference
summary, ACM (1998), pp. 11–12.

13. Lin, M., Lutters, W., and Kim, T. Understanding the
micronote lifecycle: improving mobile support for
informal note taking. Proc. CHI, ACM (2004), pp. 687–
694.

14. Memento Database. http://mementodatabase.com/

15. Miller, R., Chou, V., and Bernstein, M. Inky: a sloppy
command line for the web with rich visual feedback.
Proc. CHI, ACM (2008), pp. 131-140.

16. Mooty, M., Faulring, A., Stylos, J., and Myers, B.A.
Calcite: Completing Code Completion for Constructors
Using Crowds. Proc. VL/HCC, IEEE (2010), pp. 15–22.

17. Nardi, B.A., Miller, J.R., and Wright, D.J.
Collaborative, programmable intelligent agents.
Commun. ACM 41, 3 (1998), pp. 96–104.

18. Oulasvirta, A., Tamminen, S., Roto, V., and Kuorelahti,
J. Interaction in 4-second bursts: the fragmented nature
of attentional resources in mobile HCI. Proc. CHI,
ACM (2005), 919–928.

19. Swype. http://www.swype.com/

20. Tap Forms. http://www.tapforms.com/

21. Zhai, S. and Kristensson, P.O. The word-gesture
keyboard: reimagining keyboard interaction. Commun.
ACM 55, 9 (2012), 91–101.

