How to Teach Programming in the AI Era?
Using LLMs as a Teachable Agent for Debugging

Qianou Ma!, Hua Shen?, Kenneth Koedinger!, and Sherry Tongshuang Wu'!

1 Carnegie Mellon University, Pittsburgh PA, USA
{qianoum, krk, sherryw}@cs.cmu.edu
2 University of Michigan, Ann Arbor MI, USA
huashen@umich.edu

Abstract. Large Language Models (LLMs) now excel at generative skills
and can create content at impeccable speeds. However, they are imper-
fect and still make various mistakes. In a Computer Science education
context, as these models are widely recognized as “Al pair program-
mers,” it becomes increasingly important to train students on evalu-
ating and debugging the LLM-generated code. In this work, we intro-
duce HYyPoCOMPASS, a novel system to facilitate deliberate practice on
debugging, where human novices play the role of Teaching Assistants
and help LLM-powered teachable agents debug code. We enable effective
task delegation between students and LLMs in this learning-by-teaching
environment: students focus on hypothesizing the cause of code errors,
while adjacent skills like code completion are offloaded to LLM-agents.
Our evaluations demonstrate that HYPOCOMPASS generates high-quality
training materials (e.g., bugs and fixes), outperforming human counter-
parts fourfold in efficiency, and significantly improves student perfor-
mance on debugging by 12% in the pre-to-post test.

Keywords: LLM - teachable agent - debugging - CS1.

1 Introduction

LLMs are becoming an integral part of software development — commercialized
tools like GitHub Copilot are now advertised as “your Al pair programmer”
and generate up to 46% of users’ code [6]. Despite their prevalence, LLMs of-
ten produce unpredictable mistakes [I1], e.g., GPT-4 can still make mistakes
17% of the time in coding tasks for introductory and intermediate program-
ming courses [22]. The impressive yet imperfect generative capabilities of LLMs,
coupled with the associated risks of excessive reliance on these models, under-
score the importance of teaching evaluation skills to students. In the context of
programming, students must improve their debugging and testing skills [2].
However, debugging tends to be overlooked in formal educational curricula,
especially in introductory Computer Science classes (i.e., CS1) [2I]. Prior re-
search has outlined various factors contributing to the absence of debugging
instruction, such as instructors’ limited time budget for developing specialized



2 Q. Ma et al.

Fig. 1: In HyPOCOMPASS, given a programming problem description (A), a stu-
dent user (in the role of a Teaching Assistant) needs to compile a test suite (B)
and assist multiple LLM-simulated agents (e.g., Bob, Chelsea, Dave) in an Office
Hour Queue (C) through a chat interface (E). Each LLM-agent acts as a novice
seeking help with a buggy solution (D) and provides feedback to the user (F).

debugging materials and assessments [19]. Consequently, students primarily learn
debugging from working on their own mistakes, which can be rather frustrating
— they must invest substantial time and effort in hypothesizing the cause of bugs
while grappling with other cognitively demanding tasks, such as understanding
and writing code. These challenges prompt us to ask:
Research Question: Can we train students to improve debugging skills by
providing explicit and scaffolded practice with minimal cost to instructor time?

In this work, we focus on training students’ abilities in hypothesis construc-
tion, a critical step in debugging as established by prior work [29/30]. We in-
troduce HyPoComPass (Figure [I} Section [3), an interactive, LLM-augmented
intelligent tutoring system for debugging. Leveraging LLMs’ material generation
capability, we have these models imitate CS1 students who have written buggy
code and require assistance from Teaching Assistants (TAs). Human novice stu-
dents assume the role of the TA, who helps troubleshoot these bugs. This enables
students to deliberately practice the skill of hypothesizing about the defects of
LLM-generated code, delegating other tasks not core to hypothesis construc-
tion (e.g., code completion) to the LLM. As a result, HyPOCOMPASs fosters an
engaging learning environment using the teachable agent framework [3] and pro-
vides students with guided exposure to LLM-generated bugs. We also employ
prompting strategies such as focused task formation and over-generate-then-
select to improve LLM generation quality in HyPOCOMPASS (Section .

We conducted two evaluation studies and found that HYPOCOMPASS saves
instructors’ time in material generation and is beneficial to student learning.



	How to Teach Programming in the AI Era? Using LLMs as a Teachable Agent for Debugging

