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ABSTRACT
The field of EDM has focused more on modeling student
knowledge than on investigating what sequences of different
activity types achieve good learning outcomes. In this pa-
per we consider three activity types, targeting sense-making,
induction and refinement, and fluency building. We inves-
tigate what mix of the three types might be most effective
in supporting robust student learning. To do so, we col-
lected data from students in grades 4 and 5 who completed
sequences of activities in largely random order. Students sig-
nificantly improved from pretest to posttest, suggesting that
incorporating all three types can support learning gains. Us-
ing hierarchical linear modeling, we found that students who
get relatively more fluency problems achieve higher posttest
scores. This finding suggests that fluency-building activi-
ties are most effective in helping students learn, although
our data do not allow us to conclude that fluency alone is
sufficient. This work represents a step towards better under-
standing what combination of different learning mechanisms
may best support robust learning.

1. INTRODUCTION
Intelligent tutoring systems (ITSs) have been very effective
at enhancing student learning [12, 6]. They typically pro-
vide step-level support for complex problem solving such
as correctness feedback, next-step hints, and error-specific
feedback. ITSs also provide individualized problem selec-
tion [11, 3]. It is interesting to consider ITS effectiveness
from the perspective of the Knowledge-Learning-Instruction
(KLI) framework [5]. KLI posits that three mechanisms
of learning—sense-making (SM), induction and refinement
(IR), and fluency-building processes—may all be important
for robust learning (persistent learning that supports future
learning) in any complex domain. However, existing ITSs
typically focus only on the IR mechanism through the pro-
vision of scaffolded, tutored problem solving. It is possible
that providing support for all three learning mechanisms will
lead to more robust learning. Supporting the three learning

mechanisms would however require a wider range of activity
types than typical ITSs offer, to add or enhance support for
SM and fluency. Further, it would require that we answer
key questions of how and when to provide the different activ-
ity types to different learners in an individualized manner,
which may itself depend on the student’s learning process
so far.

In this paper we take a preliminary step towards answering
these questions. Fractions Tutor [8] is a web-based intel-
ligent tutoring system for fourth and fifth grade fractions
learning. We significantly extended the Fractions Tutor to
support all three learning mechanisms. We then collected
data from over 600 students with constrained random prob-
lem sequences. This allowed us to do a preliminary analysis
to understand the contributions of activities targeting the
three different learning mechanisms. We did this by fitting
a hierarchical linear model (HLM) to our data to see how
posttest scores are influenced by the proportion of each ac-
tivity type in problem sequences as well as looking at the
correlation of each activity type with posttest scores. A
challenge in drawing conclusions from our data is that the
mix of activity types each student was presented with was
correlated with the number of problems each student did,
but despite this challenge, we show that fluency-building
activities are more effective for robust learning.

There has been related work on how to combine two different
types of activities, such as worked examples and problem-
solving practice [10]. More recent work on MOOCs has an-
alyzed the effectiveness of different activity types chosen by
the student (instead of the tutor) [4, 2]. More relevant to
the current work is prior work on SM and fluency processes
in the Fractions Tutor [8, 9]. While that work also uses hier-
archical linear modeling [9], their model includes predictors
corresponding to experimental conditions, whereas we have
random trajectories with no experimental conditions. Using
random sequences gives us the potential to compare a wider
variety of relative compositions and sequences of activity
types than a standard experimental study.

Finally, prior EDM work has looked at the related problem
of how to measure the relative efficacy of different activities
[1, 7]. While these works deal with a very similar problem
to ours, they differ in at least two main respects from the
present work. First, their models consider the efficacy of dif-
ferent activities in performance while being tutored, whereas



Figure 1: Sample IR (left), SM (center), and fluency (right) activities.

we are interested in robust learning (i.e. performance on a
posttest). Second, they only consider which individual ac-
tivity is best rather than what mix of activities is best. Our
modeling approach could in theory suggest optimal mixes of
activity types, although we find that in this case the best
fitting model reduces to one that can only suggest the rel-
ative efficacy of each activity type. It would be worthwhile
to compare our findings with the results we can obtain from
these models as next steps of our work.

2. METHODS
2.1 Fractions Tutor
For this work, our Fractions Tutor covered topics empha-
sized in the Common Core1: making and naming fractions,
fraction equivalence and comparison, and fraction addition.
For each topic, we designed three activity types designed to
promote each of the KLI learning mechanisms. KLI does not
provide strict design guidelines and so we now describe how
our designed activities targeting each learning mechanism
are in line with KLI’s definitions.

Under KLI, IR processes are non-verbal learning processes
that improve the accuracy of knowledge [5]. Activities to
promote IR processes emphasized procedural learning and
practice via fine-grained task decomposition and step-level
guidance and feedback, as is typical of ITSs [11]. An IR
activity for a procedure for the comparison of two fractions
is shown in Figure 1, on the left.

In KLI, SM processes are “explicit, verbally mediated learn-
ing in which students attempt to understand or reason” [5].
Our SM activities included instructional videos designed to
promote conceptual understanding of targeted fractions top-
ics. The videos were divided into small segments and in-
terspersed with brief supporting problem-solving exercises.
Each SM activity concluded with a drag-and-drop fill-in-
the-blank question designed to help students self-explain the
underlying concepts. An example SM activity for the cross-
multiplication procedure is shown in Figure 1 (center). Un-

1The Common Core State Standards determine the math
curriculum for students from kindergarten through high
school in most US states: http://www.corestandards.org/.

like the IR activities that teach the application of this pro-
cedure, the SM activities were designed to help students un-
derstand why a certain procedure (e.g., cross-multiplication
to compare and order fractions) is effective.

Finally, under KLI, fluency-building processes are non-verbal
processes that strengthen memory and enable students to
apply their procedural knowledge faster and more fluently [5].
Thus the fluency activities were designed to promote the
development of rapid reasoning about fractions and fluent
performance on minimally-decomposed problem-solving ex-
ercises. Whereas students received support from the tutor
via step-level hints in IR activities and video-replays in SM
activities, neither were available in fluency activities. See a
sample fluency activity in Figure 1, on the right.

2.2 Activity Selection
Since we wish to be able to understand a broader range of
activity orderings and mixes rather than a small fixed set, we
presented activities to students in a semi-randomized order.
A semi-randomized order was chosen as a compromise be-
tween two potentially competing objectives. The first is to
enhance student learning broadly and for the students that
participated in this initial data collection. This objective
would push us towards selecting an activity order that draws
upon existing research on effective sequencing and satisfies
commonly assumed topic orderings. Our second objective is
to be able to find effective (potentially adaptive) orderings
that may fall outside of the reach of standard procedures. To
balance these two competing objectives, we chose to provide
students with activity sequences that initially satisfy a pre-
requisite structure over activity types and topics (designed
by the authors). Students could be presented with any ac-
tivity whose prerequisites had already been presented. This
ensured some semantic ordering, e.g. students would not be
presented with addition problems before being introduced
to the concept of a fraction! However, only a fixed set of
26 problems have prerequisites; once a student finishes the
first 26 problems, the student is randomly presented with
problems from a large pool of remaining problems.



Figure 2: Simulation of potential activity type or-
derings. Each column represents a sequence of activ-
ity types for a student who was given 100 problems.

2.3 Data Collection
We collected data from students using the tutor in eight
schools spanning two school districts. Students took a pretest,
used the tutor for several sessions, and then took a posttest.
The pretest and posttest consisted of 16 items covering con-
ceptual and procedural understanding over skills involved
with the three topics. Items were developed by building off
of Common Core standards and prior assessment items de-
veloped for the Fractions Tutor. For our data analysis we
only used data from students who at least started each of
the pretest and posttest, which includes 639 students.

3. ANALYSIS AND RESULTS
Our ultimate objective for this initial analysis was (1) to
evaluate if the new tutor helped students improve their un-
derstanding of the material, and (2) to determine what static
mix of activity types (SM, IR, and fluency) has the most ef-
fective learning outcomes.

3.1 Learning Gains
The mean pretest score is 5.82±3.19 and the mean post test
score is 8.23 ± 2.78 (both out of 16). Students significantly
improved from pretest to posttest (paired t-test, t(638) =
27.67, p < 10−110). The effect size was d = 1.09, which
is considered a large effect size. These results demonstrate
that our assortment of activity types can support learning
gains, even when those activities are largely randomized.

3.2 Correlation of Variables
Exploratory data analysis revealed a substantial variation
in both the number of activities done (mean: 49.6 ± 30.9)
and the amount of time students had with the tutor (mean:
183.2 ± 82.3 minutes). Due to the prerequisite structure
and semi-randomized ordering used, the number of activities
and amount of time spent on the tutor influenced the rela-
tive proportion of each activity type that the students com-
pleted. To see this we can look at a set of possible simulated
sequences that could have been given to students: Figure 2
shows 100 such sequences of 100 problems each. We can

Predictor Pearson’s r Partial Pearson’s r p-value

SM -0.48 -0.15 5.8 ∗ 10−4

IR 0.26 -0.033 1

Fluency 0.44 0.18 5.0 ∗ 10−6

Table 1: Pearson’s r correlation coefficients be-
tween proportion of problem types and posttest
scores, along with partial correlation coefficients
when controlling for the number of problems done
and amount of time spent on the tutor and Bonfer-
roni corrected p-values for the partial correlations.
The predictor variables represent the proportion of
problems done by the student that were SM, IR, or
fluency.

observe that students completing 26 problems or less would
only receive SM and IR problems. In addition, because the
total number of SM activities was fewer than the other two
types of activities, if a student did a very large number of
activities, the fraction of activities he/she completed would
eventually be dominated by IR and fluency.

To help tease apart the strong correlation between the num-
ber of problems and the distribution of activity types com-
pleted, we computed the partial correlation between the pro-
portion of problems belonging to each activity type and the
posttest score, controlling for both the total number of prob-
lems done as well as the amount of time spent by the student.
The results are shown in Table 1.

The decrease in magnitude between the raw correlation and
partial correlation for each activity type tells us that the
number of problems done and total time spent on the tutor
accounts for some of the correlation with post test, as ex-
pected. More interestingly, the proportion of fluency prob-
lems is significantly positively correlated with the posttest
scores even after considering the number of problems done
and time spent. This suggests that having relatively more
fluency problems is beneficial for students, beyond the fact
that the students who did more fluency problems tend to
have completed more problems; we will verify this with our
hierarchical linear modeling. On the other hand, the pro-
portion of SM problems is significantly negatively correlated
with the posttest score even after accounting for time and
number of problems.

Since we want to limit the extent to which students who got
more time tended towards a certain mix of activity types,
we restricted our subsequent analysis to only those students
from one school district who had 150-200 minutes of tutor
time in between pretest and posttest. This yielded a sample
size of 268 students.

3.3 Impact of Activity Proportions
The second key issue we wished to investigate was how stu-
dent learning may be influenced by the mix of different ac-
tivity types that they complete. To address this issue, we
used hierarchical linear modeling to predict posttest scores
as a function of the mix of SM, IR and fluency problems
that a student completed. In the analysis below, we con-
sider two-level HLMs that treat the class the student is from
as a level-2 variable. Using a two-level model resulted in a



Predictor Coefficient p-value

Intercept 12.97 5.4 ∗ 10−9

Pretest Score 0.59 < 1.0 ∗ 10−15

Proportion SM -11.20 9.0 ∗ 10−8

Proportion IR -7.67 .021

Table 2: The coefficients of the HLM and their sig-
nificance with a Bonferroni correction for doing four
t-tests. (Satterthwaite approximations were used to
compute the degrees of freedom.)

better fit than just using linear regression. (We tried adding
school as a level-3 variable, but this did not improve the
fit.) After trying a variety of models, we found that the
best fitting model (in terms of cross-validated RMSE) was
one of the simplest. The best model used only three predic-
tor variables: pretest score, proportion of SM problems, and
proportion IR problems. (Note that proportion of fluency
problems is not a necessary predictor since the three propor-
tions sum to one.) The coefficients for the level-1 variables
of the HLM and their p-values are given in Table 2. We
see that both the coefficient for the proportion of SM and
the coefficient for the proportion of IR were significant and
negative. Thus our model suggests fluency is the most ef-
fective activity type (since minimizing the proportion of IR
and SM maximizes the posttest score) followed by IR, which
agrees with our partial correlation analysis. The apparent
lack of efficacy of SM problems may be because these items
were substantially more time consuming for students to com-
plete than the two other activity types (partially due to the
videos). This suggests that even if SM problems are use-
ful, their relative effectiveness per time spent may be lower
than more active problems. This is also supported by recent
results on the benefit of learning by doing [4].

If our model generalized to all possible sequences, it would
suggest that students should do as many fluency problems
as possible and not do any SM or IR problems. To allow for
non-trivial mixes of activity types, the model would need to
include interaction terms between the proportions of differ-
ent activity types. However, such models had statistically
insignificant coefficients and worse fits than the model pre-
sented.

Nonetheless, it is important to note that any student who
did fluency problems in our study necessarily also did SM
and IR problems due to the prerequisite structure. There-
fore we cannot reliably evaluate the value of a sequence con-
sisting of only a single activity type using our model; such a
sequence is very different from sequences the students actu-
ally received. Rather, the conclusion we can draw from our
model is that if we were able to provide additional tutoring
to students who already did many problems using our tutor,
we should probably just give them more fluency problems.

Notice that our model includes no term for the total number
of problems a student did (which we know correlates well
with the posttest score). When adding such a term to our
model, the fit was worse and the coefficient for that term
was both small and statistically insignificant. This implies
that the proportion of fluency problems is a better predictor
than the number of problems a student did!

4. CONCLUSION
We have extended an existing intelligent tutoring system to
include activity types that support all three learning mecha-
nisms posited by the Knowledge-Learning-Instruction frame-
work. In a large-scale classroom study, our ITS had learning
gains with a large effect size. A preliminary analysis indi-
cates that students who have a high percentage of fluency
problems have the largest posttest scores, suggesting that
fluency-building activities are most effective in helping stu-
dents learn. However, many open questions remain. To
what extent are SM and IR problems necessary? Does the
appropriate mix of activity types differ for different topics
(e.g. making fractions vs. fractions addition)? We hope
to address these questions as we work towards our primary
goal of learning personalized policies that best support ro-
bust student learning.
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