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Chapter 1

Introduction

Data-driven systems span a wide class of application domains, many of which have a signfi-
cant impact on people’s lives. Examples of such domains include credit, insurance, predictive
policing, and personalized advertising. Fueled by the increased and centralized availability of
personal information, along with algorithmic and computational advances, such systems have
become fairly straightforward to develop and deploy. However, due to their size and complex-
ity, many of these systems are largely opaque; automated loan denials, high interest rates, and
prison sentence recommendations are not usually accompanied by any explanation of how such
decisions are made. As a result, the impact these systems bear on people’s lives, combined with
how opaque these systems are, has led to a strong call for accountability for these systems from
various quarters[7} |10} 25, 40] in order to address threats to privacy and fairness in the operation
of these systems. We use the term “accountable” to refer to computational mechanisms that can
be used to support detection of privacy and fairness violations, as well as explain how they came
about. We then leverage this understanding to repair systems to avoid future violations.

In this thesis, we will focus on privacy and fairness harms that arise out of improper in-
formation use. Limitations on information use are already well recognized norms in the do-
mains described above. For example, the use limitation norms in law and guidelines such as the
FTC’s FIPPs in United States [87]], the PIPEDA in Canada [72], and the GDPR in the European
Union [39], require information use to only be limited to the purposes for which it was collected,
and additionally restrict the use of sensitive information types such as health status, and sexual
orientation. Anti-discrimination laws in employment [4], housing, credit [S]] prevent the use of
protected attributes such as gender, race, nationality, and sexual orientation for making decisions.

However, the enforcement of limitations on information use in data-driven systems presents
some significant challenges.

Scale. In large codebases maintained by multiple parties, where information may be used for
many purposes, identifying prohibited uses is a challenging task. Further, in settings where
policies are framed and interpreted by privacy professionals independently from the code
developers, compliance workflows are often manual and therefore have low coverage.

Opacity. Systems that use machine learning are particularly opaque, even when their programs
are available for inspection. In the absence of an explanation for behaviors, determining
compliance is a non-trivial task.

Proxies. Information may be used indirectly through proxies even if it isn’t directly provided to



the system. Accounting for information use through proxies, and eliminating them entails
accounting for associations that may be present between features and sensitive attributes.
Normative Considerations. Privacy and non-discrimination constraints often contain excep-
tions based on normative ethical considerations and therefore theories of information use
need to be accompanied by mechanisms to express and allow such exceptions.
In this report, we describe completed and proposed work on analyzing information use that
address these challenges in support of the following thesis.

Tools for analyzing information use enable practical accountability mechanisms that
ensure data-driven systems respect meaningful privacy and non-discrimination prop-
erties.

We distinguish between two forms of information use: explicit and proxy use. A system
exhibits explicit use of an input if the input has a causal effect on the behavior of the system, that
is, changing the input, while keeping other inputs fixed, changes the behavior of the system. The
notion of explicit use is identical to that of interference in programs. This connection between
use, causality, and interference has been made formal in [96]].

However, information may also be used indirectly via inferences made from other data, even
if the particular piece of information has not been explicitly provided to the system. We call
such use proxy use. For example, the process of targeting residents of certain areas based on the
composition of race or nationality of origin of that area, is an illegal practice known as economic
redlining. In this case, area of residence can be used as a proxy for race or nationality of origin.

We now summarize the key completed and proposed works in support of this thesis, organized
along these two forms of information use.

1.1 Explicit Use

A system exhibits explicit use of an input if the input has a causal effect on the behavior of the
system, that is, changing the input, while keeping other inputs fixed, changes the behavior of
the system. This notion of explicit use is identical to that of interference in programs. Verifying
the absence of interference in programs has been the subject of much research, starting from
the work of Denning [30]. Applying such techniques to a privacy compliance workflow for
industrial-scale applications is a challenge we addressed in [83].

1.1.1 Completed: Bootstrapping Privacy Compliance at Scale

To contextualize the challenges in performing automated privacy compliance checking in a large
company with tens of thousands of employees, it is useful to understand the division of labor
and responsibilities in current compliance workflows [22, [54]. Privacy policies are typically
crafted by lawyers in a corporate legal team to adhere to all applicable laws and regulations
worldwide. Due to the rapid change in product features and internal processes, these policies are
necessarily specified using high-level policy concepts that may not cleanly map to the products
that are expected to comply with them. For instance, a policy may refer to “IP Address” which
is a high-level policy concept, and the product may have thousands of data stores where data
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derived from the “IP Address” is stored (and called with different names) and several thousand
processes that produce and consume this data, all of which have to comply with policy. The task
of interpreting the policy as applicable to individual products then falls to the tens of privacy
champions embedded in product groups. Privacy champions review product features at various
stages of the development process, offering specific requirements to the development teams to
ensure compliance with policy. The code produced by the development team is expected to
adhere to these requirements. Periodically, the compliance team audits development teams to
ensure that the requirements are met.

Our central contribution in this work is a workflow for privacy compliance in big data sys-
tems. Specifically, we target privacy compliance of large codebases written in languages that
support the Map-Reduce programming model [17, 165, |88]. This focus enables us to apply our
workflow to current industrial-scale data processing applications, in particular the data analytics
backend of Bing, Microsoft’s web search engine [1l]. This workflow leverages our two key tech-
nical contributions: (1) a language LEGALEASE for stating privacy policies, which is usable by
policy authors and privacy policy champions, but has precise semantics and enables automated
checking for compliance, and (2) a self-bootstrapping data inventory mapper GROK, which maps
low level data types in code to high-level policy concepts, and bridges the world of product de-
velopment with the world of policy makers, . These two contributions, are important components
of a privacy compliance workflow, currently used by Bing’s data analytics backend.

1.1.2 Completed: Explaining and Quantifying Explicit Use

Systems that employ machine learned models in their data analytics pipeline pose a significant
challenge to reasoning about how information is used due to their complexity. Many inputs are
used as features, and as a result have some causal effect on outcomes, which may be very low.
In [27], we develop a family of measures to quantify the causal influence of inputs of systems
on their outcomes. These measures provide a foundation for the design of explanations that ac-
company system decisions (e.g., explaining a specific credit decision) and for testing tools useful
for internal and external oversight (e.g., to detect algorithmic discrimination). Distinctively, our
causal QII measures carefully account for correlated inputs while measuring influence. They
support a general class of transparency queries and can, in particular, explain decisions about
individuals (e.g., a loan decision) and groups (e.g., disparate impact based on gender). Finally,
since single inputs may not always have high influence, the QII measures also quantify the joint
influence of a set of inputs (e.g., age and income) on outcomes (e.g. loan decisions) and the
marginal influence of individual inputs within such a set (e.g., income). Since a single input
may be part of multiple influential sets, the average marginal influence of the input is computed
using principled aggregation measures, such as the Shapley value, previously applied to measure
influence in voting.

1.1.3 Proposed: Distributional Faithfulness.

In order to measure the causal influence of inputs, we observe the outcome of the classifier on
counterfactual points, i.e. points which change one input while keeping all other inputs fixed.
Such causal experimentation is the staple of much of the natural sciences. However, in a problem
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peculiar to machine learning models, since counterfactual inputs may lie outside of distribution
the model was trained on, the model is not required to behave meaningfully on such inputs. We
will take two approaches to address this problem. First, we will consider influence measures that
restrict the set of counterfactuals to belong to the distribution that model was trained on, resulting
in a distribution faithful influence measure. Second, we will explore methods to retrain the
model on counterfactual points, in order bring the training distribution closer to the distribution
of counterfactual points. We term this approach counterfactual active learning.

1.2 Proxy Use

While the first part of this work focuses on explicit use, information can be used indirectly
through proxies, which allow a data processor to effectively infer protected information types
and use them even when they are not explicitly provided. In ongoing work, we propose a theory
of proxy use, and use it as a building block to construct theories of use privacy and proxy non-
discrimination. Importantly, this focus on use is a significant departure from a large body of prior
work that focuses on limiting disclosures for privacy (see [86] for a survey), and disparate impact
for fairness [44, 156, (74,91} 102], which can both be viewed forms of probabilistic association.

1.2.1 Ongoing Work: Use Privacy

Use privacy constraints restrict the use of protected information types and some of their proxies
in data-driven systems.

A use privacy constraint may require that health information or its proxies not be used for
advertising. Indeed, there are calls for this form of privacy constraint [29, |64, 70, 98]. In this
work, we consider the setting where a data-driven system is audited to ensure that it complies
with such use privacy constraints. The auditing could be done by a co-operative data processor
who is operating the system or by a regulatory oversight organization who has access to the data
processors’ machine learning models and knowledge of the distribution of the dataset. In other
words, we assume that the data processor does not act to evade the detection algorithm, and
provides accurate information.

In this setting, it is impossible to guarantee that data processors with strong background
knowledge are not able to infer certain facts about individuals [35]]. Even in practice, data pro-
cessors often have access to detailed profiles of individuals and can infer sensitive information
about them [33) 97]. Use privacy instead places a more pragmatic requirement on data-driven
systems: that they simulate ignorance of protected information types by not using them or their
proxies in their decision-making. This requirement is met if the systems (e.g., machine learning
models) do not infer protected information types or their proxies (even if they could) or if such
inferences do not affect decisions.

Recognizing that not all instances of proxy use of a protected information type are inap-
propriate, our theory of use privacy makes use of a normative judgment oracle that makes this
inappropriateness determination for a given instance. For example, while using health informa-
tion or its proxies for credit decisions may be deemed inappropriate, an exception could be made
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for proxies that are directly relevant to the credit-worthiness of the individual (e.g., her income
and expenses).

1.2.2 Proposed: Proxy Non-discrimination

Analogous to use privacy, proxy non-discrimination constraints restrict the use of protected in-
formation types such as gender, race and nationality for purposes such as credit, insurance and
healthcare.

Two popular approaches to addressing the problem of discrimination are the prevention of
disparate impact and disparate treatment. Disparate impact identifies cases where group parity is
violated i.e., where the fraction of individuals who get positive outcomes are very different across
protected and unprotected groups in the population. The 80% rule in hiring and promotions is an
embodiment of this approach that can be traced back to the Griggs v. Duke Power ruling [135].
However, it has been pointed out that the group parity often does not ensure outcomes which are
fair [38]]. On the other hand disparate treatment, rules out explicit uses of protected information,
which does not rule out inferences of protected information being used. Instead, as with privacy,
we take a pragmatic approach of detecting evidence of proxy use of protected information.

Both existing theories allow exceptions to constraints that severely affect the utility of the
system. Disparate impact terms these exceptions as business necessities, and disparate treat-
ment terms these as bona fide occupational qualtifications (BFOQ). In proposed work, described
in Section 4.3] we will develop a rigorous language for expressing such exceptions, similar to
LEGALEASE.

1.2.3 Proposed: Case Studies in Accountable Information Use

In this proposed task, we will perform two case studies in accountable information use in data-
driven system in order to demonstrate the practical viability of the theories and tools for analyzing
and repairing proxy use. The first proposed case study will be a predictive policing system, in
collaboration with Daniel Neill, who will provide guidance on predictive policing models. He
will also provide models developed from the crime and 911 dispatch data from the Pittsburgh
PA Bureau of Police, and will evaluate the utility of our mechanisms in this application area.
The second case study will use publicly available data for housing mortgages [42] to build an
automated loan approval system. Both of these case studies will carefully examine potential use
privacy and proxy non-discrimination violations in these systems and attempt to find repairs for
violations that don’t significantly impact the utility of these systems.

Completed and Proposed Work. In summary, in this report, we present the following com-
pleted and ongoing works and propose additional tasks in support of our thesis.
¢ (Completed) Bootstrapping privacy compliance in big data systems [83] (Chapter [2)).
* (Completed) Quantifying explicit use [27] (Chapter 3)
e (Proposed) Distributional faithfulness tradeoffs in causal analysis of machine learning
models (Section 3.1} expected completion by Summer 2017)
* (Ongoing) Use privacy in data driven systems (Chapter[d] expected completion by Summer
2017)



e (Proposed) Proxy non-discrimination and expressive use privacy policies (Chapter { ex-
pected completion by Fall 2017)

* (Proposed) Case studies in accountable information use (Chapter 4} expected completion
by Spring 2018).

1.3 Related Work

We now briefly discuss and compare with closely related work. See Chapter [5] for a more com-
prehensive discussion.

Information Flow Analysis. There has been significant research activity in restricting infor-
mation flows in programs over the last three decades, and language-based methods to support
these restrictions ([30, |68, [75]]). These methods enforce non-interference or variants of it from
sensitive inputs of the program to outputs. The first portion of our work on bootstrapping privacy
compliance in big data systems (Chapter[2)), draws ideas from this body of work, and adds a pol-
icy specification language that allows specification independent of code, along with a scalable
data inventory that allows information flow labels to be bootstrapped without significant human
effort.

Work on quantifying information flow has largely focused on quantifying the leakage of in-
formation about sensitive attributes to an adversary. Quantitative Information Flow is concerned
with information leaks and therefore needs to account for correlations between inputs that may
lead to leakage, making measures of associations between inputs and outcomes appropriate (see
[85]] for an overview). On the other hand, we take the position that information use is a causal
notion, and therefore measuring it requires destroying correlations through interventions.

Finally, a line of work on information use and information flow experiments [25) 26l 93],
formalizes the relation between causality, probabilistic non-interference, and information use,
and develops a framework for black-box experimentation on web services. Black-box experi-
mentation is an important approach to achieving accountability in data driven systems, but is not
the focus of this thesis.

Privacy in Statistical Systems. Privacy in the presence of data analytics has largely focused
on minimizing the disclosure of personal information. Differential privacy [37/] and its variants
belong to this class of properties in a setting with a trusted data processor and an untrusted
adversary trying to infer sensitive information about individuals. Differential privacy provides
the guarantee that any adversary will gain approximately the same information with or without an
individual’s participation in a dataset. Other formal properties related to privacy focus on limiting
the flow of information using notions such as statistical disclosure limitation [41], characterizing
possible inferences from data releases [21} 132} [82], or that your participation in a study should
not become known [53]].

Our notion of use privacy is quite complementary to this body of prior work. Instead of
trying to limit disclosures through system outputs, we focus instead on ensuring that protected
information types and their proxies are not used internally by the data analytics system, and could
be used in conjunction with methods that limit disclosures of sensitive information.
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Fairness in Statistical Systems. Recently, the algorithmic foundations of fairness in personal
information processing systems have received significant attention [16, 24,134,156, 102]. While
many of the algorithmic approaches [16} 56, [102]] have focused on group parity as a metric
for achieving fairness in classification, Dwork et al. [34] argue that group parity is insufficient
as a basis for fairness, and propose a similarity-based approach which prescribes that similar
individuals should receive similar classification outcomes, along with algorithms for achieving
this by design. However, this approach requires a similarity metric for individuals which is often
subjective and difficult to construct.

Instead of trying to achieve fairness by design, in our theory of proxy non-discrimination,
we attempt to detect and remove instances of discrimination arising out of identifiable explicit or
proxy use of protected attributes.
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Chapter 2

Qualitative Explicit Use

In this chapter, we briefly describe completed work on the enforcement of explicit use restric-
tions as a part of an automated privacy compliance workflow in an industrial-scale map reduce
system [83]. We interpret restrictions on information use in the sense of non-interference, i.e.,
a data type not supposed to flow to a program should not affect the output of the program. Two
important challenges for automating the compliance of such information use properties are that
the policies are often written in English by lawyers with limited programming abilities, and the
programs are not annotated with the relevant data types. In order to address these challenges
our proposed workflow leverages two key technical contributions: (1) a language LEGALEASE
for stating privacy policies, which is usable by policy authors, but has precise semantics and
enables automated checking for compliance, (2) a self-bootstrapping data inventory mapper
GROK, which maps low level data types in code to high-level policy concepts, and bridges the
world of product development with the world of policy makers. Specifically, we target privacy
compliance of large codebases written in languages that support the Map-Reduce programming
model [17, 165} 88]]. This focus enables us to apply our approach to current industrial-scale data
processing applications, in particular the data analytics backend of Bing, Microsoft’s web search
engine [1]], where it is currently deployed as a part of their privacy compliance process.

Overall, [83] makes three contributions: (i) designs LEGALEASE, an enforceable, expres-
sive, and usable privacy policy language; (ii) designs GROK, a self-bootstrapping, up-to-date,
verifiable data inventory for Map-Reduce-like big data systems, (iii) proposes a workflow for
automated privacy compliance checking, and (iv) demonstrates that it is feasible to perform and
sustain automated privacy compliance checking of existing state-of-the-art big data systems at
modest cost.

We now provide an on overview of the two key technical pieces of the workflow: LEGALEASE
and GROK, and refer the reader to [83]] for more details on the streamlined workflow for privacy
compliance checking and its evaluation.

2.1 LEGALEASE

LEGALEASE is a usable, expressive, and enforceable privacy policy language. The primary
design criteria for this language were that it (a) be usable by the policy authors; (b) be expressive
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enough to capture real privacy policies of industrial-scale systems, e.g., Bing; (c) and should
allow compositional reasoning on policies.

As the intended users for LEGALEASE are policy authors with limited training in formal lan-
guages, enabling usability is essential. To this end, LEGALEASE enforces syntactic restrictions
ensuring that encoded policy clauses are structured very similarly to policy texts. Specifically,
building on prior work on a first order privacy logic [31]], policy clauses in LEGALEASE allow
(resp. deny) certain types of information flows and are refined through exceptions that deny
(resp. allow) some sub-types of the governed information flow types. This structure of nested
allow-deny rules appears in many practical privacy policies, including privacy laws such the
Health Insurance Portability and Accountability Act (HIPAA) and the Gramm-Leach-Bliley Act
(GLBA) (as observed in prior work [31]]), as well as privacy policies for Bing and Google. A
distinctive feature of LEGALEASE (and a point of contrast from prior work based on first-order
logic and first order-temporal logic [[11} 31]]) is that the semantics of policies is compositional:
reasoning about a policy is reduced to reasoning about its parts. This form of compositionality
is useful because the effect of adding a new clause to a complex policy is locally contained (an
exception only refines its immediately enclosing policy clause).

We illustrate LEGALEASE through a series of examples that build up to a complex clause. In
the examples we use two user-defined attributes: DataType and UseForPurpose (our deployment
uses two additional ones AccessByRole and InStore). We define the concept lattice for each of
these four attributes in the next subsection.

The simplest LEGALEASE policy is DENY. The policy contains a single clause; the clause
contains no exceptions and no attribute restrictions. The policy, rather uninterestingly, simply
denies everything. We next add a restriction along the DataType attribute for graph nodes to
which IP address flows.

DENY DataType |IPAddress

As discussed in our running example, there is often a need to capture some limited form
of history of the data flow (e.g., that the IP address has been truncated before it can be used).
We capture this notion of typestate in the concept lattice for the DataType attribute (described
below). The lattice contains an element IPAddress:Truncated meant to represent the truncated
IP address, and the lattice element for IP address |IPAddress, such that IPAddress:Truncated <
IPaddress, where < is the partial order for the lattice. We next add the exception that allows us
to use the truncated IP address. The added lines are marked with <.

DENY DataType |IPAddress

EXCEPT 4

ALLOW DataType IPAddress:Truncated N

The above policy contains a clause with an exception. The first disallows any use of IP ad-
dress, while the exception relaxes the first allowing use when the IP address is truncated. Next,
we restrict the policy to advertising uses only by adding a restriction along the UseForPurpose
attribute for the value Advertising, while retaining the exception that allows the use of IP Address
when truncated.

DENY DataType |IPAddress

UseForPurpose Advertising q

EXCEPT

ALLOW DataType IPAddress:Truncated
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Information Flow

Analysis
File A Job 1
+InStore = AdClickLogs +UseForPurpose = AbuseDetect
= > =77
+Datatype = IPAddress Reads »|+Datatype ?7
P Address
File B Job 2
+InStore = AccountData +UseForPurpose = TruncateIP
+Datatype = Name — Not read +Datatype = 77
Writes truncated
- IP Address,
File C Job 3
+InStore = AdClickLogs +UseForPurpose = AdAuctions
=77 > =77
+Datatype = ?7? Reads Tuncateq PLrRatatype = ?7

IP Address

Figure 2.1: Example scenario showing a partially-labeled data dependency graph between three
files and programs.

The above policy corresponds to the English clause “full IP address will not be used for
advertising”. Note that since the first clause is restricted only to advertising use, and the second
rule does not relax that attribute, the net effect is that the clause applies only to use of IP address
for advertising and says nothing about non-advertising uses (consistent with the English clause).

Finally, consider the English policy “full IP address will not be used for advertising. IP
address may be used for detecting abuse. In such cases it will not be combined with account in-
formation.” This policy is encoded in LEGALEASE below. The first, second, and third sentences
correspond respectively to lines 1-4, 5-6, and 7-8.

DENY DataType IPAddress

UseForPurpose Advertising

EXCEPT

ALLOW DataType IPAddress:Truncated

ALLOW DataType IPAddress <
UseForPurpose AbuseDetect <
EXCEPT q

DENY DataType IPAddress, Accountinfo
The last clause (in lines 7-8) mentions that the combination of IPAddress and Accountinfo is
denied, but these elements can be used individually. It turns out that giving formal semantics to
such exceptions where combinations are disallowed whereas individual elements are allowed is
non-trivial. We revisit this issue when we give formal semantics to LEGALEASE.

2.2 GROK

The GROK mapper. GROK is a data-inventory for Map-Reduce-like big data systems. It maps
every dynamic schema-element (e.g., members of a tuple passed between mappers and reduc-
ers) to datatypes in LEGALEASE. This inventory can be viewed as a mechanism for annotating
existing programs written in languages like Hive [88]], Dremel [635], or Scope [17] with the in-
formation flow types (datatypes) in LEGALEASE. Our primary design criteria for this inventory
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were that it (a) be bootstrapped with minimal developer effort; (b) reflect exhaustive and up-to-
date information about all data in the Map-Reduce-like system; and (c) make it easy to verify
(and update) the mapping from schema-elements to LEGALEASE datatypes.

We use an example of how using GROK, compliance checking is reduced to a form of in-
formation flow analysis. Consider the scenario in Fig. There are three programs (Jobs 1, 2,
3) and three files (Files A, B, C). Let us assume that the programs are expected to be compliant
with a privacy policy considered in the previous section that says: “full IP address will not be
used for advertising. IP address may be used for detecting abuse. In such cases it will not be
combined with account information.” Note that the policy restricts how a certain type of per-
sonal information flows through the system. The restriction in this example is based on purpose.
Other common restrictions include storage restrictions (e.g., requiring that certain types of user
data are not stored together) and, for internal policies, role-based restrictions (e.g., requiring that
only specific product team members should use certain types of user data). While our policy lan-
guage is designed in a general form enabling domain-specific instantiations with different kinds
of restrictions, our evaluation of Bing is done with an instantiation that has exactly these three
restrictions—purpose, role, and storage—on the use of various types of personal information.

The data dependence graph depicted for the example in Fig. [2.1] provides a useful starting
point to conduct the information flow analysis. Nodes in the graph are data stores, processes,
and humans. Directed edges represent data flowing from one node to another. To begin, let
us assume that programs are labeled with their purpose. For example, Job 1 is for the purpose
of AbuseDetect. Furthermore, let us also assume that the source data files are labeled with the
type of data they hold. For example, File A holds data of type IPAddress. Given these labels,
additional labels can be computed using a simple static dataflow analysis. For example, Job 1
and Job 2 both acquire the datatype label IPAddress since they read File A; File C (and hence
Job 3) acquires the datatype label IPAddress:Truncated. Given a labeled data dependence graph,
a conservative way of checking non-interference is to check whether there exists a path from
restricted data to the program in the data dependence graph. In a programming language such as
C or Java, this approach may lead to unmanagable overtainting. Fortunately, the data analytics
programs we analyze are written in a restricted programming model without global state and
with very limited control flow based on data. Therefore, we follow precisely this approach.
Languages like Hive [88]], Dremel [65], or Scope [17] that are used to write big data pipelines in
enterprises adhere to this programming model. Note, that for the search engine that we analyze,
the data dependence graph does not come with these kinds of labels. Bootstrapping these labels
without significant human effort is a central challenge addressed by GROK.
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Chapter 3
Quantifying Explicit Use

Systems that employ machine learned models in their data analytics pipeline pose a significant
challenge to reasoning about how information is used due to their complexity. Many inputs are
used as features, and as a result have some causal effect on outcomes, which may be very low.
We therefore shift our focus from identifying what information was used to quantifying the de-
gree of use. In [27], we develop a family of measures called Quantitative Input Influence (QII)
to quantify the causal influence of inputs of systems on their outcomes. Importantly, these mea-
sures provide a foundation for explanations that accompany system decisions (e.g., explaining a
specific credit decision) and for testing tools useful for internal and external oversight (e.g., to
detect algorithmic discrimination).

Three desiderata drove the definitions of these measures. First, we seek a formalization of a
general class of transparency reports that allows us to answer many useful transparency queries
related to input influence, such as system’s decisions about individuals and groups. We achieve
this desideratum by formalizing a notion of a quantity of interest. QII measures the influence of
an input on a quantity of interest. A quantity of interest, denoted by @ 4(X), represents a property
of the behavior of the system A, for a given input distribution X. Our formalization supports
a wide range of statistical properties including probabilities of various outcomes in the output
distribution and probabilities of output distribution outcomes conditioned on input distribution
events. Examples of quantities of interest include the conditional probability of an outcome for
a particular individual or group, and the ratio of conditional probabilities for an outcome for two
different groups (a metric used as evidence of disparate impact under discrimination law in the
Us [2]).

Second, we seek input influence measures that appropriately account for correlated inputs—
a common case for our target applications. For example, consider a system that assists in hiring
decisions for a moving company. Gender and the ability to lift heavy weights are inputs to
the system. They are positively correlated with each other and with the hiring decisions. Yet
transparency into whether the system uses the weight lifting ability or the gender in making its
decisions (and to what degree) has substantive implications for determining if it is engaging in
discrimination (the business necessity defense could apply in the former case [2]). This observa-
tion makes us look beyond correlation coefficients and other associative measures. We achieve
the second desideratum by formalizing causal QII measures. These measures (called Unary QII)
model the difference in the quantity of interest when the system operates over two related input
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distributions—the real distribution and a hypothetical (or counterfactual) distribution that is con-
structed from the real distribution in a specific way to account for correlations among inputs.
Specifically, if we are interested in measuring the influence of an input on a quantity of interest
of the system behavior, we construct the hypothetical distribution by retaining the original dis-
tribution over all other inputs and independently sampling the input of interest from its marginal
distribution. The random variable X _,;U; represents the distribution that breaks the correlations
between input ¢ and all other inputs and thus lets us measure the influence of this input on the
quantity of interest, independently of other correlated inputs. The QII of an input ¢ on a quantity
of interest () 4 is defined as:

Qa(X) — Qa(X_Us).

Revisiting our moving company hiring example, if the system makes decisions only using the
weightlifting ability of applicants, the influence of gender will be zero on the ratio of conditional
probabilities of being hired for males and females.

Third, we seek measures that appropriately quantify input influence in settings where any
input by itself does not have significant influence on outcomes but a set of inputs does. In such
cases, we seek measures of joint influence of a set of inputs (e.g., age and income) on a system’s
decision (e.g., to serve a high-paying job ad). We also seek measures of marginal influence of
an input within such a set (e.g., age) on the decision. This notion allows us to provide finer-
grained transparency about the relative importance of individual inputs within the set (e.g., age
vs. income) in the system’s decision.

We achieve the third desideratum in two steps. First, we define a notion of joint influence of
a set of inputs (called Ser QII) via a natural generalization of the definition of the hypothetical
distribution in the Unary QII definition. Second, we define a family of Marginal QII measures
that model the difference on the quantity of interest as we consider sets with and without the
specific input whose marginal influence we want to measure. Depending on the application, we
may pick these sets in different ways, thus motivating several different measures. For example,
we could fix a set of inputs and ask about the marginal influence of any given input in that set on
the quantity of interest. Alternatively, we may be interested in the average marginal influence of
an input when it belongs to one of several different sets that significantly affect the quantity of
interest. We consider several marginal influence aggregation measures from cooperative game
theory originally developed in the context of influence measurement in voting scenarios and
discuss their applicability in our setting. We also build on that literature to present an efficient
approximate algorithm for computing these measures.

Recognizing that different forms of transparency reports may be appropriate for different set-
tings, we generalize our QII measures to be parametric in its key elements: the intervention used
to construct the hypothetical input distribution; the quantity of interest; the difference measure
used to quantify the distance in the quantity of interest when the system operates over the real
and hypothetical input distributions; and the aggregation measure used to combine marginal QII
measures across different sets. This generalized definition provides a structure for exploring the
design space of transparency reports.

Since transparency reports released to an individual, regulatory agency, or the public might
compromise individual privacy, we explore the possibility of answering transparency queries
while protecting differential privacy [36]. We prove bounds on the sensitivity of a number of
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transparency queries and leverage prior results on privacy amplification via sampling [S7] to
accurately answer these queries.

In [27], we demonstrate the utility of the QII framework by developing two machine learning
applications on real datasets: an income classification application based on the benchmark adult
dataset [63]], and a predictive policing application based on the National Longitudinal Survey of
Youth [3]. Using these applications, we argue the need for causal measurement by empirically
demonstrating that in the presence of correlated inputs, observational measures are not informa-
tive in identifying input influence. Further, we analyze transparency reports of individuals in
our dataset to demonstrate how Marginal QII can provide insights into individuals’ classification
outcomes. Finally, we demonstrate that under most circumstances, QII measures can be made
differentially private with minimal addition of noise, and can be approximated efficiently.

In summary, we makes the following contributions in [27]:

e A formalization of a specific algorithmic transparency problem for decision-making sys-
tems. Specifically, we define a family of Quantitative Input Influence metrics that accounts
for correlated inputs, and provides answers to a general class of transparency queries, in-
cluding the absolute and marginal influence of inputs on various behavioral system proper-
ties. These metrics can inform the design of transparency mechanisms and guide pro-active
system testing and posthoc investigations.

e A formal treatment of privacy-transparency trade-offs, in particular, by construction of
differentially private answers to transparency queries.

¢ An implementation and experimental evaluation of the metrics over two real data sets.
The evaluation demonstrates that (a) the QII measures are informative; (b) they remain
accurate while preserving differential privacy; and (c) can be computed quite quickly for
standard machine learning systems applied to real data sets.

3.1 Proposed Work: Distributional Faithfulness in Causal Anal-
yses of Machine Learning Models

The causal nature of QII and causal testing in general, requires evaluating the system under study
on counterfactual inputs. For example, in genetic studies, genes are often artificially removed to
study the effect of their absence. Similarly, in QII, we compare the outcomes of the model when
one input is changed via an intervention, breaking the correlation with other inputs as a result.
However, in a problem peculiar to the causal study of machine learning models, these counter-
factual points may lie out of the distribution of inputs the model has been trained to predict on.
As a result, the predictions of the model on these counterfactual inputs which lie outside the
model’s input distribution could be unreliable. In this proposed task we will explore two solu-
tions to this problem. In the first approach, we will define a notion of a faithful counterfactual
that lies within the support S of input distribution of the classifier, and define causal measures
such that only test against faith counterfactuals. In the notation used in QII, this would restrict
us to counterfactuals from the distribution X _;U; | X_;U; € S. In the second approach, we will
explore the effect of training the classifier on counterfactual points. As the model is also trained
on these counterfactual points, they are now part of the training distribution, thereby addressing
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the distributional faithfulness. Since, the labels for the counterfactual points are unknown, we
will need an external source to label these counterfactual points, which might be expensive, and
therefore we will explore active learning strategies to label these counterfactual points.

For evaluating the efficacy of such a counterfactual active learning algorithm, we will sim-
ulate a labeler by choosing a model that represents the ground truth on real world datasets, and
train a model to mimic this ground truth.

Task 1. Address the distributional faithfulness problem in causal analyses of machine learning
models using two approaches.

® Define faithful causal measures that only compare against counterfactuals belonging to

the input distribution of the model.

e Design a counterfactual active learning algorithm that trains the model on points from the

counterfactual distribution.
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Chapter 4

Proxy Use

While the first part of this work focuses on explicit use, information can be used indirectly
through proxies, which allow a data processor to effectively infer protected information types
and use them even when they are not explicitly provided.

We use an example, inspired by the Target case [33], to motivate the challenges in defining
proxy use in automated decision-making systems. Consider a pharmacy within a retail store,
such as Target. We consider various ways in which the retail store and its pharmacy may use in-
formation about the pregnancy status, purchases, and credit card type of its customers in making
decisions.

The pharmacy knows the pregnancy status of its customers (e.g., via a permitted informa-
tion flow from a doctor’s office to the pharmacy with prescription information). However, it is
restricted in how it may use this information to protect patient privacy. For example, it may
legitimately use pregnancy status directly to dispense medicine, but is prohibited from using
pregnancy status to target ads. Indeed, this form of use restriction to protect privacy is embodied
in privacy laws like the HIPAA Privacy Rule [71] and in many corporate policies (e.g., [48,166]]).
They reflect the understanding that knowledge restrictions are inadequate to protect privacy in
settings where the knowledge of certain information types may be used to achieve certain desired
purposes (e.g., treatment) but not for others (e.g., marketing). Prior work provides methods for
enforcing these explicit use restrictions in human and automated decision-making systems (e.g.,
(83,193, 193]).

Use restrictions get more nuanced when proxy use comes into play. For example, instead
of using the pregnancy status information available to the pharmacy, the retail store could use
information in the purchase history that are strong predictors (or proxies) for pregnancy status
(e.g., pre-natal vitamins) to target ads. Our goal is to capture this form of proxy use.

In ongoing work [28]], we propose a theory of proxy use, and use it as a building block to
construct a theory of use privacy and proxy non-discrimination. In this chapter, we first describe
a definition for proxy use in Section[4.1] The development of this definition is guided by axioms
that characterize reasonable conditions for proxy use. We then present ongoing and proposed
work on how to build theories of use privacy (Section {.2)) and proxy non-discrimination (Sec-
tion using the definition of proxy use as a building block. For more details, we refer the
reader to [28]], where we describe algorithms for detecting and repairing proxy use, their use in a
method for enforcing use privacy, and their evaluation on real datasets.
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4.1 Proxy Use

4.1.1 Definitions

We now present an axiomatically justified, formal definition of proxy use in data-driven pro-
grams. Our definition for proxy use of a protected information type involves decomposing a
program to find an intermediate computation whose result exhibits two properties:

e Proxy: strong association with the protected type

® Use: causal influence on the output of the program

In § we present a sequence of examples to illustrate the challenge in identifying proxy
use in systems that operate on data associated with a protected information type. In doing so,
we will also contrast our work with closely-related work in privacy and fairness. In §4.1.3] we
formalize the notions of proxy and use, preliminaries to the definition. The definition itself is
presented in §4.1.4 and §4.1.5] Finally, in §4.1.6] we provide an axiomatic characterization of
the notion of proxy use that guides our definitional choices.

4.1.2 Examples of Proxy Use

Prior work on detecting use of protected information types [24,45,160,91] and leveraging knowl-
edge of detection to eliminate inappropriate uses [45] have treated the system as a black-box.
Detection relied either on experimental access to the black-box [24, 60] or observational data
about its behavior [45, 91]]. Using a series of examples motivated by the Target case, we motivate
the need to peer inside the black-box to detect proxy use.

Example 1. (Explicit use, Fig. A retailer explicitly uses pregnancy status from prescription
data available at its pharmacy to market baby products.

This form of explicit use of a protected information type can be discovered by existing black-
box experimentation methods that establish causal effects between inputs and outputs (e.g., see
(24, 160]).

Example 2. (Inferred use, Fig. Consider a situation where purchase history can be used
to accurately predict pregnancy status. A retailer markets specific products to individuals who
have recently purchased products indicative of pregnancy (e.g., a1, as € purchases).

This example, while very similar in effect, does not use health information directly. Instead,
it infers pregnancy status via associations and then uses it. Existing methods (see [45, O1]])
can detect such associations between protected information types and outcomes in observational
data.

Example 3. (No use, Fig. Retailer uses some uncorrelated selection of products (a;,n, €
purchases) to suggest ads.

In this example, even though the retailer could have inferred pregnancy status from the pur-
chase history, no such inference was used in marketing products. As associations are common-
place, a definition of use disallowing such benign use of associated data would be too restrictive
for practical enforcement.

Example 4. (Masked proxy use, Fig. Consider a more insidious version of Example |2| To
mask the association between the outcome and pregnancy status, the company also markets baby
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Figure 4.1: Examples of models (decision trees) used by a retailer for offering medicines and
for selecting advertisements to show to customers. The retailer uses pregnancy status, past pur-
chases, and customer’s level of retail engagement. Products a; and a, are associated with preg-
nancy (e.g., prenatal vitamins, scent-free lotions) whereas products n; and n, are associated with
a lack of pregnancy (e.g., alcohol, camping gear); all four products are equally likely. Retail en-
gagement, (high or 1ow), indicating whether the customer views ads or not, is independent of
pregnancy.

products to people who are not pregnant, but have low retail engagement, so these advertisements
would not be viewed in any case.

While there is no association between pregnancy and outcome in both Example [3|and Exam-
ple[] there is a key difference between them. In Example[d] there is an intermediate computation
based on aspects of purchase history that is a predictor for pregnancy status, and this predictor
is used to make the decision, and therefore is a case of proxy use. In contrast, in Example
the intermediate computation based on purchase history is uncorrelated with pregnancy status.
Distinguishing between these examples by measuring associations using black box techniques
is non-trivial. Instead, we leverage white-box access to the code of the classifier to identify the
intermediate computation that serves as a proxy for pregnancy status. Precisely identifying the
particular proxy used also aids the normative decision of whether the proxy use is appropriate in
this setting.

4.1.3 Notation and Preliminaries

We assume individuals are drawn from a population distribution P, in which our definitions are
parametric. Random variables W, X, Y, Z, ... are functions over P, and the notation W € W
represents that the type of random variable is W : P — V. An important random variable
used throughout this chapter is X, which represents the vector of features of an individual that
is provided to a predictive model. A predictive model is denoted by (X, .A)p, where A is a
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f | A function
(X, A)p | Amodel, which is a function .A used for prediction, operating on random
variables X, in population P
X | A random variable

p | A program
(X, p)p | A syntactic model, which is a program p, operating on random variables
X

[p1/X]p2 | A substitution of p; in place of X in ps
X | A sequence of random variables

Table 4.1: Summary of notation used in the chapter

function that operates on X. For simplicity, we assume that P is discrete, and that models
are deterministic. Table summarizes all the notation used in this chapter, in addition to the
notation for programs that is introduced later in the chapter.

Proxies

A proxy for a random variable Z is a random variable X that is perfectly correlated with Z.
Informally, it is possible to use X and Z interchangeably in any function drawing inputs from
the same distribution.
Definition 1 (Perfect Proxy). A random variable X € X is a perfect proxy for Z € Z if there
exist functions [ : X — Z,g: Z — X, such that Pr(Z = f(X)) =Pr(9(Z)=X)=1. 0O
While this notion of a proxy is too strong in practice, it is useful as a starting point to explain
the key ideas in our definition of proxy use. This definition captures two key properties of
proxies, two-sidedness and invariance under renaming.

Two-sidedness Definition 1| captures the property that proxies admit predictors in both direc-
tions: it is possible to construct a predictor of X from Z, and vice versa. This strict two-sided
association criterion distinguishes benign use of associated information from proxy use as illus-
trated in the following example.

Example 5. Recall that in Figure ay, as is a proxy for pregnancy status. In contrast, consider
Example |3} where purchase history is an influential input to the program that serves ads to.
Suppose that the criteria is to serve ads to those with a;, n; in their purchase history. According
to Definition[l} neither purchase history or ay,n; are proxies, because pregnancy status does not
predict purchase history or ay,ny. However, if Definition[l|were to allow one-sided associations,
then purchase history would be a proxy because it can predict pregnancy status. This would
have the unfortunate effect of implying that the benign application in Example [3| has proxy use
of pregnancy status. [

Invariance under renaming This definition of a proxy is invariant under renaming of the
values of a proxy. Suppose that a random variable evaluates to 1 when the protected information
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type is 0 and vice versa, then this definition still identifies the random variable as a proxy.

Influence

Our definition of influence aims to capture the presence of a causal dependence between a vari-
able and the output of a function. Intuitively, a variable x is influential on f if it is possible to
change the value of f by changing = while keeping the other input variables fixed.
Definition 2. For a function f(x,y), x is influential if and only if there exists values xi, xs, Y,
such that f(xq,y) # f(za,y). O

In Figure pregnancy status is an influential input of the system, as just changing preg-
nancy status while keeping all other inputs fixed changes the prediction. Influence, as defined
here, is identical to the notion of interference used in the information flow literature.

4.1.4 Definition

We use an abstract framework of program syntax to reason about programs without specifying a
particular language to ensure that our definition remains general. Our definition relies on syntax
to reason about decompositions of programs into intermediate computations, which can then be
identified as instances of proxy use using the concepts described above.

Program decomposition We assume that models are represented by programs. For a set of
random variables X, (X, p)p denotes the assumption that p will run on the variables in X. Pro-
grams are given meaning by a denotation function [-]x that maps programs to functions. If
(X, p)p, then [p] is a function on variables in X, and [p](X) represents the random variable of
the outcome of p, when evaluated on the input random variables X. Programs support substitu-
tion of free variables with other programs, denoted by [p; / X|pa, such that if p; and p, programs
that run on the variables X and X, X, respectively, then [p; /X|p, is a program that operates on
X.

A decomposition of program p is a way of rewriting p as two programs p; and p that can be
combined via substitution to yield the original program.
Definition 3 (Decomposition). Given a program p, a decomposition (p1, X, py) consists of two
programs p1, pa, and a fresh variable X, such that p = [p1/X|ps. O

For the purposes of our proxy use definition we view the first component p; as the interme-
diate computation suspected of proxy use, and p, as the rest of the computation that takes in p;
as an input.
Definition 4 (Influential Decomposition). Given a program p, a decomposition (p1, X, p3) is
influential iff X is influential in py. [

Main definition

Definition 5 (Proxy Use). A program (X, p)p has proxy use for a random variable 7 if there
exists an influential decomposition (p1, X, p2) of (X, p)p, and [p1](X) is a proxy for Z. O
Example 6. In Figure this definition would identify proxy use using the decomposition
(p1, U, p2), where p, is the entire tree, but with the condition (a1, ay € purchases) replaced by
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the variable U. In this example, U is influential in ps, since changing the value of U changes
the outcome. Also, we assumed that the condition (a1, ay € purchases) is a perfect predictor
for pregnancy, and is therefore a proxy for pregnancy. Therefore, according to our definition of
proxy use, the model in has proxy use of pregnancy status.

4.1.5 A Quantitative Relaxation

Definition [3] is too strong in one sense and too weak in another. It requires that intermediate
computations be perfectly correlated with a protected attribute, and that there exists some input,
however improbable, in which the result of the intermediate computation is relevant to the model.
For practical purposes, we would like to capture imperfect proxies that are strongly associated
with an attribute, but only those whose influence on the final model is appreciable. To relax the
requirement of perfect proxies and non-zero influence, we quantify these two notions to provide
a parameterized definition.

e-proxies We wish to measure how strongly a random variable X is a proxy for a random vari-
able Z. Recall the two key requirements from the earlier definition of a proxy: (i) the association
needs to be two-sided, and (ii) the association needs to be invariant under renaming of the ran-
dom variables. The variation of information metric d,..(X, Z) = H(X|Z)+ H(Z|X) [20] is one
measure that satisfies these two requirements. The first component in the metric, the conditional
entropy of X given Z, H(X|Z), measures how well X can be predicted from Z, and H(Z|X)
measures how well Z can be predicted from X, thus satisfying the requirement for the metric
being two-sided. Additionally, one can show that conditional entropies are invariant under re-
naming, thus satisfying our second criteria. To obtain a normalized measure in [0, 1], we choose
1— dH(())((ZZ)) as our measure of association, where the measure being 1 implies perfect proxies,
and 0 implies statistical independence. Interestingly, this measure is identical to normalized mu-
tual information [20], a standard measure that has also been used in prior work in identifying
associations in outcomes of machine learning models [91]].

Definition 6 (Proxy Association). Given two random variables X and Z, the strength of a proxy
is given by normalized mutual information,

H(X|Z)+ H(Z|X)

AX,2)=1- ==

where X is defined to be an e-proxy for Z if d(X, Z) > .

d-influential decomposition Recall that for a decomposition (p;, X, p2), in the qualitative
sense, influence is given by interference which implies that there exists =, xy, x2, such that
[p2] (21, x) # [po](xe, ). Here x1, x4 are values for the output of py, that for a given z, change
the outcome of p,. However, this definition is too strong as it requires only a single pair of values
Z1, To to show that the outcome can be changed by p; alone. To measure influence, we quan-
tify interference by using Quantitative Input Influence (QII), a causal measure of input influence
introduced in [27]. In our context, for a decomposition (p;, X, p2), the influence of p; on p, is
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given by:

v(p1,p2) = Ex x&p([p)(X) # [p2d (X, [p1] (X))
Intuitively, this quantity measures the likelihood of finding randomly chosen values of the output
of p; that would change the outcome of p,.
Definition 7 (Decomposition Influence). Given a decomposition (p1, X, ps), the influence of the
decomposition is given by the QII of X on py. A decomposition (p1, X, ps) is defined to be
d-influential if L(py, p2) > 6.

(¢,9)-proxy use Now that we have quantitative versions of the primitives used in Definition
we are in a position to define quantitative proxy use (Definition[§]). The structure of this definition
is the same as before, with quantitative measures substituted in for the qualitative assertions used
in Definition
Definition 8 ((¢, §)-proxy use). A program (X, p)p has (¢, d)-proxy use of random variable Z iff
there exists a 0-influential decomposition (py, X, p2), such that [p](X) is an e-proxy for Z.

This definition is a strict relaxation of Definition |5, which reduces to (1, 0)-proxy use.

4.1.6 Axiomatic Basis for Definition

We now motivate our definitional choices by reasoning about a natural set of properties that a
notion of proxy use should satisfy. We first prove an important impossibility result that shows
that no definition of proxy use can satisfy four natural semantic properties of proxy use. The
central reason behind the impossibility result is that under a purely semantic notion of function
composition, the causal effect of a proxy can be made to disappear. Therefore, we choose a
syntactic notion of function composition for the definition of proxy use presented above. The
syntactic definition of proxy use is characterized by syntactic properties which map very closely

to the semantic properties.

Property 1. (Explicit Use) If Z is an influential input of the model ({X, Z}, A)p, then ({X, Z}, A)p
has proxy use of Z.

This property identifies the simplest case of proxy use: if an input to the model is influential,
then the model exhibits proxy use of that input.

Property 2. (Preprocessing) If a model ({X, X }, A)p has proxy use of random variable Z, then
for any function f such that Pr (f(X) = X) = 1, let A'(x) = A(z, f(x)). Then, (X, A')p has
proxy use of Z.

This property covers the essence of proxy use where instead of being provided a protected
information type explicitly, the program uses a strong predictor for it instead. This property
states that models that use inputs explicitly and via proxies should not be differentiated under a
reasonable theory of proxy use.

Property 3. (Dummy) Given (X, A)p, define A" such that for all x,x', A'(z,z') = A(z), then
(X, A)p has proxy use for some Z iff ({X, X}, A')p has proxy use of Z.

This property states that the addition of an input to a model that is not influential, i.e., has
no effect on the outcomes of the model, has no bearing on whether a program has proxy use or
not. This property is an important sanity check that ensures that models aren’t implicated by the
inclusion of inputs that they do not use.
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Property 4. (Independence) If X is independent of Z in P, then (X, A)p does not have proxy
use of Z.

Independence between the protected information type and the inputs ensures that the model
cannot infer the protected information type for the population P. This property captures the
intuition that if the model cannot infer the protected information type then it cannot possibly use
it.

While all of these properties seem intuitively desirable, it turns out that these properties can
not be achieved simultaneously.

Theorem 1. No definition of proxy use can satisfy Properties[I{d| simultaneously.

Proof. Proof by contradiction. Assume that there exists a definition of proxy usage that satis-
fies all four properties. Let X = {0,1}, and X is a uniform Bernoulli variable over X'. The
model A(z) = =z is the identity function. Let Z be an independent uniform Bernoulli vari-
able. According to (independence), A has no proxy usage of Z. Choose A'(z,z) = A(z)
which operates over X' x Z. By (dummy), A" has no implicit use of Z. We choose the fol-
lowing bijective transformation: f(z,2) = (u,2) = (x ® 2,2), and f'(u,2) = (u @ 2, 2)
In this transformed space, we choose A" = A’ o f~!. Therefore, A”(u,z) = u @ z, since
A (u, 2) = A (fHu, 2)) = A(u® z,2) = ud 2. According to (representation independence),
A" has no implicit use of Z. However, since z is an influential input of the model, according to
(explicit use of proxy), A" has implicit use of Z. Therefore, we have a contradiction. ]

The key intuition behind this result is that Property [2] requires proxy use to be preserved
when an input is replaced with a function that predicts that input via composition. However, with
a purely semantic notion of function composition, after replacement, the proxy may get canceled
out. To overcome this impossibility result, we choose a more syntactic notion of function com-
position, which is tied to how the function is represented as a program, and looks for evidence of
proxy use within the representation.

We now proceed to the axiomatic justification of our definition of proxy use. As in our
attempt to formalize a semantic definition, we base our definition on a set of natural properties
given below. These are syntactic versions of their semantic counterparts defined earlier.
Property 5. (Syntactic Explicit Use) If X is a proxy of Z, and X is an influential input of
{X, X}, p)p, then ({X, X'}, p)p has proxy use.

Property 6. (Syntactic Preprocessing) If ({X, X }, p1)p has proxy use of Z, then for any p, such
that Pr ([p2](X) = X) =1, (X, [pa/ X]p1)p has proxy use of Z.

Property 7. (Syntactic Dummy) Given a program (X, p)p, (X, p)p has proxy use for some Z
iff ({X, X}, p)p has proxy use of Z.

Property 8. (Syntactic Independence) If X is independent of Z, then (X, p)p does not have
proxy use of Z.

Properties [5] and [6] together characterize a complete inductive definition, where the induction
is over the structure of the program. Suppose we can decompose programs p into (py, X, ps)
such that p = [p;/X|p2. Now if X, which is the output of py, is a proxy for Z and is influential
in p,, then by Property [5| p, has proxy use. Further, since p = [p1/X]p,, by Property 6| p has
proxy use. This inductive definition where we use Property [5] as the base case and Property [0]
for the induction step, precisely characterizes Definition 5| Additionally, it is can be shown that
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Definition [3] also satisfies Properties [7] and [8] Essentially, by relaxing our notion of function
composition to a syntactic one, we obtain a practical definition of proxy use characterized by the
natural axioms above.

4.2 Use Privacy

We return to the Target example described earlier in the chapter to motivate our notion of use
privacy. Historically, data collected in a context of interaction between a retailer and a consumer
is not expected to result in flows of health information. However, such flow constraints consid-
ered in significant theories of privacy (e.g., see Nissenbaum [69]]) cannot be enforced because of
possible statistical inferences. In particular, prohibited information types (e.g., pregnancy status)
could be inferred from legitimate flows (e.g., shopping history). Thus, the theory of use privacy
instead ensures that the data processing systems “simulate ignorance” of protected information
types (e.g., pregnancy status) and their proxies (e.g., purchase history) by not using them in their
decision-making. Because not all instances of proxy use of a protected information type are in-
appropriate, our theory of use privacy makes use of a normative judgment oracle that makes this
inappropriateness determination for a given instance.

We model the personal data processing system as a program p. The use privacy constraint
governs a protected information type Z. Our definition of use privacy makes use of two building
blocks: (1) a function that given p, Z, and a population distribution P returns a witness w of
proxy use of Z in a program p (if it exists); and (2) a normative judgment oracle O(w) that given
a specific witness returns a judgment on whether the specific proxy use is appropriate (TRUE) or
not (FALSE).

Definition 9 (Use Privacy). Given a program p, protected information type Z, normative judg-
ment oracle O, and population distribution P, use privacy in a program p is violated if there
exists a witness w in p of proxy use of Z in P such that O(w) returns FALSE.

In this work, we formalize the computational component of the above definition of use pri-
vacy, by using our definition of proxy use which formalizes what it means to use an information
type directly or through proxies and design an algorithm to detect proxy uses in programs. We
assume that the normative judgment oracle is given to us and use it to identify inappropriate
proxy uses and then repair them.

This definition cleanly separates computational considerations that are automatically enforce-
able and ethical judgments that require input from human experts. This form of separation exists
also in some prior work on privacy [47] and fairness [34].

Task 2 (Ongoing). Develop a theory of use privacy, along with mechanisms for detection and
repair built on the definition of proxy use.

4.3 Proxy Non-discrimination
The theory of proxy non-discrimination prohibits the proxy use of membership in a protected

class for certain decisions. Currently, such restrictions for protected classes based on gender
or race are required by the law for education, credit, and employment. Indeed, our treatment
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of proxy use combines elements of causation and association found in two different parts of
anti-discrimination law in the US adapted to the setting of automated decision making systems.

Title VII of U.S. Civil Rights Act prohibits use of race, sex, and other protected attributes for
employment decisions [4]. Similar laws govern credit [43] and housing decisions [58]]. The case
law on enforcing these laws has developed various definitions of when such a protected attribute
is used for a decision.

Direct disparate treatment, on the one hand, corresponds to the obvious case: purposefully
and directly using the value of a person’s race or sex as an input to a decision-making process,
a causal property of the process given that data is unlikely to be provided accidentally to such
a process. Disparate impact, on the other hand, occurs when the same rule is applied to the
protected class without regard for class membership but results in significantly worse outcomes
for that class. The courts and regulators have used a variety of heuristics and statistical methods
to define “significantly”. The most well known is 80% rule, which requires that the rate of hiring
of a protected class should be within 80% of the rest [99]. These significance tests each measure
the degree of association, but not necessarily causation, between membership in a protected class
and employment outcomes.

The courts also recognize more subtle indirect usage, such as pretextually using neighbor-
hood (redlining) or education level as a proxy for race [76l]. Analogous to use privacy, our defini-
tion of proxy use allows for the formalization of such indirect uses. A further complication is that
employers can defend themselves against disparate impact by showing that the difference arose
due to a business necessity. For example, a moving company may require employees be able
to lift 2001bs, a requirement yielding a disparate impact on women, but possibly justifiable as a
business necessity. Thus, for automated testing of disparate impact to scale, it will require some
method of screening out suspected cases that are justified by a business necessity. Similarly, the
theory of disparate treatment contains exceptions for bona fide occupational qualifications for
gender.

Formalize proxy non-discrimination as restrictions on proxy use of membership in a
protected class, with justified exceptions guided by utility considerations.

Consider a case of external auditors discovering associations between race and outcomes in
a system that predicts the risk of recidivism used in sentencing systems (as in Angwin et al. [[7]]).
Using a theory of proxy discrimination will allow an analyst to identify proxies that explain the
presence of these associations, and then make fine-grained judgements of whether the use of
these proxies is justified for predicting recidivism.

While the theory of proxy non-discrimination and use privacy are mathematically isomor-
phic, this proposed task includes two additional pieces of work. First, the theory of proxy use
presented above only refers to proxy use at the level of a population, whereas individual harms
arising out of improper use are not accounted for. For instance, in the target case, the individ-
uals for whom the proxy was influential were harmed by the use. Further, to express complex
domain specific exceptions in policies, we will develop an extension to LEGALEASE (presented
in Chapter 2)) with semantics that also support proxy use.

Task 3. Develop a theory of proxy non-discrimination, built on the definition of proxy use with
the following features:

® A treatment of proxy use, centered around harms to an individual.
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® A language to express information use policies that also pertain to proxy use.

4.4 Case Studies in Accountable Information Use

In this proposed task, we will perform two case studies in accountable information use in data-
driven system in order to demonstrate the practical viability of the theories and tools for analyzing
and repairing proxy use. The first proposed case study will be a predictive policing system, in
collaboration with Daniel Neill, who will provide guidance on predictive policing models. He
will also provide models developed from the crime and 911 dispatch data from the Pittsburgh
PA Bureau of Police, and will evaluate the utility of our mechanisms in this application area.
The second case study will use publicly available data for housing mortgages to build an auto-
mated loan approval system [42]. Both of these case studies will carefully examine potential use
privacy and proxy non-discrimination violations in these systems and attempt to find repairs for
violations that don’t significantly impact the utility of these systems.

Task 4. Perform two case studies in accountable information use for a predictive policing system,
and an automated loan approval system.
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Chapter 5

Related Work

In this section we compare with related work on analyzing explicit information use (Section[5.1]),
and information use via proxies along with related theories of privacy and fairness(Section [5.2]).
Additionally, we compare with an emerging body of work on explaining machine learning sys-
tems (Section[5.3)).

5.1 Explicit Use

5.1.1 Qualitative Explicit Use

Information flow analysis of programs There has been significant work in restricting infor-
mation flows in programs over the last three decades [30] and on language-based methods that
support these restrictions, including languages like Jif [68]], which augments Java with informa-
tion flow types, and Flow Caml, which augments ML [75] (see [80] for a survey of these and
other language-based methods). These languages can enforce information flow properties like
non-interference with mostly static type checking. Taking Jif as one example language, we note
that prior work has shown that Jif principals can be used to model role-based [68]] and purpose-
based [52] restrictions on information flow. Additionally, recognizing that non-interference is too
strong a requirement, the theory of relaxed non-interference through declassification [19, 162, 81]],
allows expressing policies that, for instance, do not allow disclosure of individual ages, but allow
the disclosure of average age. This line of work also includes techniques for automated infer-
ence of declassification policies [92, [101] with minimal programmer annotations. While these
ideas have parallels in our work, there are also some significant differences. First, our policy lan-
guage LEGALEASE enables explicit specification of policies separately from the code whereas in
language-based approaches like Jif the policies are either expressed implicitly via typed interface
specifications or explicitly via conditionals on program variables. The separation of high-level
policy specification from code is crucial in our setting since we want the first task to be accessible
to privacy champions and lawyers. Second, since our goal is to bootstrap compliance checking
on existing code, we do not assume that the code is annotated with information flow labels. A
central challenge (addressed by GROK) is to bootstrap these labels without significant human
effort. Once the labels are in place, information flow analysis for our restricted programming
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model is much simpler than it is for more complex languages like Jif. Note that we (as well
as Hayati and Abadi [52]]) assume that programs are correctly annotated with their purposes. A
semantic definition of what it means for an agent (a program or human) to use information for a
purpose is an orthogonal challenge, addressed in part in other work [94].

Privacy policy enforcement over executions A second line of work checks executions of
systems (i.e., traces of actions produced by programs or humans) for compliance with privacy
policies that restrict how personal information may flow or be used. This line of work includes
auditing, run-time monitoring, and logic programming methods for expressive fragments of first-
order logic and first-order temporal logics [11, 12, 13, 46] applied to practical policies from
healthcare, finance and other sectors. These results are different from ours in two ways. First,
their language of restrictions on information flow is more expressive than ours—they can encode
role-based and purpose-based restrictions much like we do, but can express a much larger class
of temporal restrictions than we can in LEGALEASE with our limited typestates on data. Second,
since their enforcement engines only have access to executions and not the code of programs,
they can only check for direct flows of information and not non-interference-like properties. Such
code analysis is also a point of difference from enforcement using reference monitors of access
control and privacy policy languages—an area in which there is a large body of work, including
languages such as XACML [67] and EPAL [8].

5.1.2 Quantifying Information Use

Quantitative Information Flow One can think of our results as a causal alternative to quanti-
tative information flow. Quantitative information flow is a broad class of metrics that quantify the
information leaked by a process by comparing the information contained before and after observ-
ing the outcome of the process. Quantitative Information Flow traces its information-theoretic
roots to the work of Shannon [84] and Rényi [77]. Recent works have proposed measures for
quantifying the security of information by measuring the amount of information leaked from in-
puts to outputs by certain variables; we point the reader to [85] for an overview, and to [20] for an
exposition on information theory. Quantitative Information Flow is concerned with information
leaks and therefore needs to account for correlations between inputs that may lead to leakage.
The dual problem of transparency, on the other hand, requires us to destroy correlations while
analyzing the outcomes of a system to identify the causal paths for information leakage.

Experimentation on Web Services There is an emerging body of work on systematic exper-
imentation to enhance transparency into Web services such as targeted advertising [9, 26| 49,
59,160]. The setting in this line of work is different since they have restricted access to the an-
alytics systems through publicly available interfaces. As a result they only have partial control
of inputs, partial observability of outputs, and little or no knowledge of input distributions. The
intended use of these experiments is to enable external oversight into Web services without any
cooperation. Our framework is more appropriate for a transparency mechanism where an entity
proactively publishes transparency reports for individuals and groups. Our framework is also ap-
propriate for use as an internal or external oversight tool with access to mechanisms with control
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and knowledge of input distributions, thereby forming a basis for testing.

Quantitative Causal Measures Causal models and probabilistic interventions have been used
in a few other settings. While the form of the interventions in some of these settings may be very
similar, our generalization to account for different quantities of interests enables us to reason
about a large class of transparency queries for data analytics systems ranging from classification
outcomes of individuals to disparity among groups. Further, the notion of marginal contribution
which we use to compute responsibility does not appear in this line of prior work.

Janzing et al. [S3] use interventions to assess the causal importance of relations between
variables in causal graphs; in order to assess the causal effect of a relation between two variables,
X — Y (assuming that both take on specific values X = z and Y = y), a new causal model is
constructed, where the value of X is replaced with a prior over the possible values of X. The
influence of the causal relation is defined as the KL-Divergence of the joint distribution of all
the variables in the two causal models with and without the value of X replaced. The approach
of the intervening with a random value from the prior is similar to our approach of constructing
X_g.

Independently, there has been considerable work in the machine learning community to de-
fine importance metrics for variables, mainly for the purpose of feature selection (see [S0] for a
comprehensive overview). One important metric is called Permutation Importance [[14]], which
measures the importance of a feature towards classification by randomly permuting the values
of the feature and then computing the difference of classification accuracies before and after the
permutation. Replacing a feature with a random permutation can be viewed as a sampling the
feature independently from the prior.

There exists extensive literature on establishing causal relations, as opposed to quantifying
them. Prominently, Pearl’s work [73] provides a mathematical foundation for causal reasoning
and inference. In [89], Tian and Pearl discuss measures of causal strength for individual binary
inputs and outputs in a probabilistic setting. Another thread of work by Halpern and Pearl dis-
cusses actual causation [51]], which is extended in [[18]] to derive a measure of responsibility as
degree of causality. In [18]], Chockler and Halpern define the responsibility of a variable X to an
outcome as the amount of change required in order to make X the counterfactual cause.

5.2 Proxy Use, and Privacy and Fairness for Data-Driven Sys-
tems

Our theories of privacy and fairness: use privacy and proxy non-discrimination, are built on our
definition of proxy use, which requires the existence of an internal computation that is strongly
associated with a protected information type and has causal influence on the outcome. Much of
the prior work either aims to minimize (i) associations of outcomes with the protected informa-
tion type, or (ii) the causal influence of protected inputs on outcomes. We discuss in Chapter [4]
how, in many situations these criteria are not necessary or sufficient for identifying improper use
of information. Additionally, precisely identifying internal computations that are evidence of
proxy use, we can make fine-grained normative judgments about them and repair them if neces-
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sary. However, because of the focus on internal computations, our definitions apply to a setting
where an auditor has access to programs. We describe how these distinctions apply to specific
theories of privacy and fairness, and then discuss algorithmic considerations in the detection and
repair of proxy use.

5.2.1 Privacy

Minimizing disclosures Privacy in the presence of data analytics has largely focused on mini-
mizing the disclosure of personal information. Differential privacy [37] and its variants belong to
this class of properties in a setting with a trusted data processor and an untrusted adversary try-
ing to infer sensitive information about individuals. Differential privacy provides the guarantee
that any adversary will gain approximately the same information with or without an individual’s
participation in a dataset. Other formal properties related to privacy focus on limiting the flow
of information using notions such as statistical disclosure limitation [41]], characterizing possible
inferences from data releases [21},132,182], or that your participation in a study should not become
known [53]].

Our notion of use privacy is quite complementary to this body of prior work. Instead of trying
to limit disclosures through system outputs, we focus instead on ensuring that protected informa-
tion types and their proxies are not used internally by the data analytics system. Indeed, in many
settings it may be desirable to provide both use privacy and disclosure privacy for different sets
of principals. For example, when machine learning models are trained using personal data, it is
desirable to minimize disclosures pertaining to individuals in the training set, and reducing the
use of protected information types for the individuals the models are applied to.

Identifying explicit use The privacy literature on use restrictions has typically focused on
explicit use of protected information types, not on proxy use (see Tschantz et al. [93] for a
survey and Lipton and Regan [64]). Recent work on discovering personal data use by black-box
web services focuses mostly on explicit use of protected information types by examining causal
effects [25] 160]; some of this work also examines associational effects [59, 160]]. Associational
effects capture some forms of proxy use but not others as we argued in Section4.1]

5.2.2 Fairness

The algorithmic foundations of fairness in personal information processing systems have re-
ceived significant attention recently [16, 24, 34, 56, [74) [102]. While many of the algorithmic
approaches [16} 56, 102] have focused on group parity as a metric for achieving fairness in
classification, Dwork et al. [34]] argue that group parity is insufficient as a basis for fairness, and
propose a similarity-based approach which prescribes that similar individuals should receive sim-
ilar classification outcomes. However, this approach requires a similarity metric for individuals
which is often subjective and difficult to construct.

Proxy Influence Adler et al. [6] quantify the indirect influence of an attribute by obscuring
the attribute (along with associations) from a dataset and comparing the prediction accuracy of
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a model before and after obscuring. This approach does not distinguish between allowed and
prohibited proxy use, and therefore is not able to form a basis for normative judgements on
permitted proxy use, as required for determining privacy and fairness for systems.

5.2.3 Detection and Repair Models

Our definition of proxy use operates with white-box access to the prediction model. Prior work
requires weaker access assumptions.

Access to observational data Detection techniques working under an associative use defini-
tion [45,91] usually only require access to observational data about the behavior of the system.

Access to black-box experimental data Detection techniques working under an explicit use
definition of information use [25} 60] typically require experimental access to the system. This
access allows the analyst to control some inputs to the system and observe relevant outcomes.

The stronger access level allows us to decompose the model and trace an intermediate com-
putation that is a proxy. Such traceability is not afforded by the weaker access assumptions in
prior work. Thus, we explore a different point in the space by giving up on the weaker access
requirement to gain the ability to trace and repair proxy use.

Tramer et al. [91] solve an important orthogonal problem of efficiently identifying popu-
lations where associations may appear. Since our definition is parametric in the choice of the
population, their technique could allow identifying useful populations to apply our methods to.

5.3 Explaining Machine Learning Systems

Interpretable Machine Learning An orthogonal approach to adding interpretability to ma-
chine learning is to constrain the choice of models to those that are interpretable by design. This
can either proceed through regularization techniques such as Lasso [90] that attempt to pick a
small subset of the most important features, or by using models that structurally match human
reasoning such as Bayesian Rule Lists [61], Supersparse Linear Integer Models [[100], or Proba-
bilistic Scaling [79]. Since the choice of models in this approach is restricted, a loss in predictive
accuracy is a concern, and therefore, the central focus in this line of work is the minimization
of the loss in accuracy while maintaining interpretability. On the other hand, our approach to
interpretability is forensic. We add interpretability to machine learning models after they have
been learnt. As a result, our approach does not constrain the choice of models that can be used.

Simplified Retraining In [/8], Ribeiro et al., introduce an approach called Locally Inter-
pretable Model-Agnostic Explanations (LIME), which first maps the input space to an inter-
pretable space, and learns a simple model in the interpretable space that only trained in a small
neighborhood around an instance in the interpretable space. In the case where the simple model
is a linear model, the coeffients of the model serve as an explanation for the classification for the
instance. While the mapping to the interpretable space allows them to generate explanations for
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a larger set of models such as deep networks. However, the use of machine learning in generat-
ing the explanation means that the causal connection between the model and the explanation is
unclear. Additionally, our axiomatic approach to defining QII provides theoretical justification
for the use of Shapley value for QII.

Game-Theoretic Influence Measures Recent years have seen game-theoretic influence mea-
sures used in various settings. Datta et al. [23] also define a measure for quantifying feature
influence in classification tasks. Their measure does not account for the prior on the data, nor
does it use interventions that break correlations between sets of features. In our terminology, the
quantity of interest used by [23] is the ability of changing the outcome by changing the state of
a feature. This work greatly extends and generalizes the concepts presented in [23]], by both ac-
counting for interventions on sets, and by generalizing the notion of influence to include a wide
range of system behaviors, such as group disparity, group outcomes and individual outcomes.
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