

EDSER-5
5th International Workshop on

Economic-Driven
Software Engineering

Research

ICSE’03
International Conference on Software Engineering

Portland, Oregon
May 3-11, 2003

EDSER-5 Proceedings

5th International Workshop on Economic-Driven
Software Engineering Research

Table of Contents

Educational issues in economics driven software engineering
CourseForges: Open Source Curriculum Design for
Value-Based Software Engineering ..1
Mary Shaw, Shawn Butler, Hakan Erdogmus and Klaus Schmid

Evaluating the value of software
Reasoning About the Value of Dependability: The iDave Model ...5
Barry Boehm, LiGuo Huang, and Apurva Jain
Use of Real Options Theory to Value Software Trade Secrets ...9
Donald J. Reifer

Aiming for values in software
Intentional Software Systems: Engineering Intentionality in Processes of Software
Development and Runtime Execution ...13
Kevin Sullivan
Time is Not Money: the case for multi-dimensional accounting in value-based
software engineering...17
Vahe Poladian and Shawn Butler, Mary Shaw and David Garlan

Testing
About the Return on Investment of Test-Driven Development..23
Matthias M. Müller and Frank Padberg
Selecting a defect prediction model for maintenance resource planning
and software insurance ...29
Paul Luo Li, Mary Shaw and Jim Herbsleb

Architectural economics
ArchOptions: A Real Options-Based Model for Predicting the
Stability of Software Architectures ...35
Rami Bahsoon and Wolfgang Emmerich
Understanding the Economics of Refactoring ..41
Eleni Stroulia and Rob Leitch

COTS
Composable Process Elements for Developing COTS-Based Applications47
Ye Yang, Jesal Bhuta, Barry Boehm, Dan Port and Chris Abts
WinWin Spiral Approach to Developing COTS-Based Applications54
Barry Boehm, Dan Port and Ye Yang

Risky business
Economic Risk-Based Management in Software Engineering: The Hermes Initiative60
Stefan Biffl, Michael Halling and Paul Grünbacher
Software Dependability Risks and the Insurance Process..66
Dan Port and LiGuo Huang
Using Risk to Balance Agility and Discipline...70
Barry Boehm

CourseForges
Open Source Curriculum Design for Value-Based Software Engineering

Mary Shaw,
School of Computer Science
Carnegie Mellon University

+1-412-268-2589 <etc>
http://www.cs.cmu.edu/~shaw

mary.shaw@cs.cmu.edu

Shawn Butler
School of Computer Science
Carnegie Mellon University

+1-412-268-[[[?]]]
http://www.cs.cmu.edu[[[?]]]
shawn.butler@cs.cmu.edu

Hakan Erdogmus
Institute for Information

Technology
National Research Council

+1-613-991-1018
http://lit-iti.nrc-cnrc.gc.ca

hakan.erdogmus@nrc.cnrc.gc
.ca

Klaus Schmid
Fraunhofer IESE

+49-6301-707-158
http://www.iese.fhg.de/Staff/sc

hmid
klaus.schmid@iese.fhg.de

ABSTRACT
As a relatively young discipline within software engineering,
value-based software engineering does not yet have an established
curriculum. The area draws on models and techniques in so many
other disciplines that it is likely to be some time before a single
individual is ready to prepare a course or a textbook. Several of
the EDSER-4 participants expressed interest and enthusiasm for
sharing the effort of developing curriculum and course materials.
Inspired by the success of open source software development,
especially the distributed collaboration, the free public access to
the results, and the lack of administrative overhead; we decided to
try to establish a similar community for curriculum development.
This report describes progress to date, with emphasis on the
community standards for cooperation and sharing.

Keywords
Value-based software engineering education, cooperative
curriculum development, open source curriculum development,
value-based body of knowledge.

1. BACKGROUND
Course Forges was initiated at the EDSER 4, the 2002 Workshop
on Economics Driven Software Engineering Research. Many
EDSER participants want to add cost considerations to our
software courses, but we don't see near-term prospects for a
unified textbook. Further, we all have different expertise in the
area. To complicate matters further, most of us don't have the
opportunity to add a full course to our institutions' curricula.
We decided that we could help each other by sharing the effort,
with different people designing teaching units covering from one
lecture to a few weeks' content. Two other communities have
reaped the benefits of collaboration, and we would like to build
on their success.
• We decided that pride of ownership is much less important

than quality, and we should develop the materials in the style
of open source software.

• We recognize that consistent presentation helps the reader
find information and also helps the author to cover the content
consistently. The patterns community has developed useful
expositions of software from this intuition, and we would like
to do likewise for course content.

The Course Forges community has been established to share
effort and benefit of curriculum development in software
engineering. In the fullness of time, this may come to serve

different curriculum areas. We begin with by focusing on value-
based software engineering -- techniques that consider cost as
well as benefit in making software design decisions.
Section 2 describes the shared principles -- the Community
Values -- that guide this community -- the Course Forges
Alliance. Section 3 introduces the web site where the
collaborations are taking place. Section 4 describes a potential
curriculum for EDSER; Section 5 invites further discussion and
active participation.
In the longer term, we hope to find ways to share the presentation
of this material to students, though the academic calendars of
universities present formidable obstacles to doing this smoothly.

2. COMMUNITY VALUES
Members of a collaborative community expect to share effort and
benefits. This page is the current draft of our shared values,
principles and standards. It includes a declaration of principle, or
shared intent and a discussion of rights and responsibilities of
members of the community,

2.1 Overview
We agree in principle to adapt the open source software
development model for our purposes. This implies
• Collaborative development

o Shared development, without an ego stake in authorship
o Shared documents in a common, relatively public place

• Community standards
o Shared development effort, with recognition as the chief

incentive
o Intellectual property ground rules encouraging sharing,

with public content on this site and the possibility of
extending the work for profit in other venues

o Consistent structure for curriculum units, in the style of
the patterns community

2.2 Declaration of Shared Intent
• Content: We are jointly interested in developing a curriculum

for value-based software decision making, that is, for software
design and development in which the significance of cost is
on a par with that of functionality.

• Collaboration: We would like to share the effort of
developing and possibly of offering this material. To this end
we need a collaborative environment for developing and
distributing the material, so we adapt the open source
software model to work for curriculum materials.

CourseForges 4/12/2003 1

4

http://www.iese.fhg.de/Sstaff/schmid
http://www.iese.fhg.de/Sstaff/schmid

• Adaptability: Our specific institutional requirements will lead
us to courses that differ in detail, so we see the greatest
promise in creating a set of short curriculum components that
can be combined in different ways. Given the relative youth
of this area, it is especially important to have curriculum
components that can be incorporated in established courses.

• Format: We believe that a lecture-based format is often
inadequate for this material. Formats with greater student
engagement, such as projects and case studies, are usually
more appropriate. Such materials also have greater promise
for asynchronous shared offerings.

• Audience: The principal target audience is advanced
undergraduates and early masters students; some of the
components may fit in sophomore-level software engineering
courses as well.

• Resources: Whenever possible, we would like to rely on
external resources, including case studies and open source
development tools.

2.3 Rights and Responsibilities
Legal obligations, especially with respect to intellectual property,
are expressed in the license terms. This draft of license terms is
modeled on the Open Source Initiative's Open Source Definition
for code:
• Free redistribution: Material may be redistributed, by anyone,

including as part of a larger redistribution, in printed or
electronic form. Fees may not be charged for this
redistribution, other than reasonable reproduction costs.

• Public originals: If derived forms (e.g., object code of tools)
are distributed, the original form (e.g., source code) must be
easily available as well. The original form is the preferred
form for further development.

• Free evolution: Modification and derivative works are
encouraged. They must be redistributed in accordance with
this license, without requirement for additional licenses.
Redistribution may not discriminate against people, groups, or
fields of endeavor.

• Noncontamination: If this material is distributed with other
material, it may be separated from the package for further
redistribution. However it does not "contaminate" the other
material. (e.g., if incorporated in a textbook, the rest of the
book can be copyrighted by the author, but not the
incorporated material -- and the difference must be clear)

This license is very similar to the Creative Commons (
http://www.creativecommons.org/) Attribution-Noncommercial
License (http://creativecommons.org/licenses/by-nc/1.0)
We also recognize moral obligations. The academic community
operates on credit and attribution, especially for promotions and
other recognition. Showing influence on other institutions'
curricula can be significant at some schools. Therefore we
strongly encourage anyone who uses our materials to:
• Acknowledge: Record the use of material from a Forge at the

obvious place in that Forge. Say what course and institution,
what level and how many students, evaluation

• Contribute: Consider returning improvements to the Forge

3. THE COURSE FORGE
Just as the SourceForge web site provides a development
environment for many independent open source software
development projects, we intend the CourseForges site to provide
a development environment for many independent cooperative
curriculum developments. We begin with one Forge -- for value-
based software engineering.

3.1 The Web Site
We began with a conventional web site with discussion areas for
public comment and other pages edited by a few core people. This
site, http://courseforges.org, contains some discussion of tooling
requirements and community values.
We have recently decided that the ability for participants to
update the site easily is, at least for now, more important than
sophisticated structure or layout. Accordingly, active
development, of the organization, of content outlines, and of
individual curriculum units, is now taking place on a Wiki at
http://seg.iit.nrc.ca/yawc/courseforges/public/wiki.cgi
While we are a small community, simple password protection is
sufficient -- anyone who can edit anything can edit everything.
We rely on good will, change logs, and the Wiki's built-in version
management to keep things under control. This should suffice
until the materials are adopted, or even considered for adoption,
by people who are not developers. At that time we will need
either more sophisticated security or open discussion groups, and
we'll move to the open source model in which everyone can
review materials, download content, and discuss changes -- but
only credentialed people can actually make changes.

3.2 The CourseForges Alliance
The CourseForges Alliance is a group of software engineering
researchers committed to collaborative development of
curriculum material in the same spirit of sharing that is
demonstrated on the Open Source Software development
community.
Anybody can browse the pages or download the documents on
this site. Members of the Course Forges Alliance may create new
pages, upload files and images, and modify existing pages.
Password protection enforces this restriction
The friends of the Alliance encourage and support the activity,
and they may use the materials, but they are not actively involved.

4. COURSE CONTENTS
While the CourseForges Alliance is open for everyone to
contribute, it is fundamentally grounded in the EDSER-
community: a group of researchers who address software
engineering predominantly from an economic point of view.
Consequently, it is planned that the first full course material will
be available for a lecture on the EDSER topics. Such a lecture
does not yet exist, nor does there exist full agreement on what the
topics that should be covered would be.

4.1 Pragmatic Considerations for
CourseForges Course Development
When looking at the problem of world-wide course construction,
we need to accept that due to differences in local situations, there
will never be a single, generic set of course materials that can be
arbitrarily used at each university. Rather, the local situation like

CourseForges 4/12/2003 2

5

http://www.creativecommons.org/
http://creativecommons.org/licenses/by-nc/1.0

Software Business the available time for students, lectures the students previously
took, the specific focus of the lecturer, and so forth, must be taken
into account. This poses a need for adaptability when developing
a course. Being software engineers, we recognize of course the
similarity between this situation and the development of a
reference architecture for a line of software products [1].

The key topics in the software business part are the market-
oriented viewpoint (TTM, cost, pricing, customer value, etc.) and
the financial concepts (NPV, compound interest, etc.). In addition,
this part could address technologies from marketing science in
more detail (analysis of customer preferences) and the issue of
business strategy (e.g., balanced scorecard approach). Thus, we need to define a customizable approach to developing

such a course. The modules of the course must be scalable and,
while consistently building on each other, we need to ensure
mostly independence of the modules. One approach to achieve
this could be to define a basic skeleton of topics that each course
must cover (the basics of value-based software development).
This base content could be supplemented by other parts that are
by themselves not required by other parts. Thus, a module –
respectively its content – should be tagged as either required or
optional.

Value Models
This would be the main part and probably also take the main time
of such a course. The basis for any kind of model is to make
certain aspects measurable, thus this part would start with the
topic of metrics and measurement and would further discuss.
Then different forms of models would be discussed along with
model-building approaches. This point could also link back to the
first part by discussing more complex topics from finance like
options and decision tree analysis. Finally, aspects important to
the development of models like simulation-based approaches and
model validation would be discussed. A full list of topics could
look like this (<opt> marking typical parts that could be left out):

In order to enable the lecturers to tailor or replace modules
according to their needs, and to reorder modules, we need to
define what is it each module provides, i.e., the objectives of the
module, as well as the specific concepts and methods it provides,
so that other modules can build on this. In order to support the
reordering and replacement, it is also important that each module
makes known the specific preconditions it has on other modules.

• Metrics and measurement (types of metrics, GQM, etc.)
• Utility theory <opt>
• Metrics estimation (data elicitation/ gathering techniques)

<opt> 4.2 Possible Content of an EDSER-Course
• Model types (rule-based, quantitative, etc.) <opt> We are far from having a final definition of how an EDSER-

course could look like. However, in order to provide focus to such
a discussion, we provide here one specific curriculum proposal. In
particular, we use this opportunity to point out the range of
variability such a curriculum would still support.

• Model building approaches (regression models, CoCoMo,
simulation models <opt>, DTA <opt>, QFD <opt>)

• Financial models (options, book-keeping methods) <opt>
• Model validation A high-level structure of such a course could consist of the

following four blocks: Decision Making
Here, typical decision making techniques like the analytical
hierarchical process (AHP) or other multi-attribute techniques
would be discussed. Further, AI approaches to decision making
(e.g., rule-based, case-based-reasoning, and so forth) could be part
of this section.

• Software Business: This part focuses on providing the students
with an understanding of the intrinsic relation between a
product, its characteristics, and their relation to the market
place. This would also provide the basics for financial and
strategic analysis.

Applications • Value Models: This part teaches the students the fundamentals
of the different forms of value that are relevant in software
development and provides them with the key concepts relevant
to building value models of software engineering activities.

The applications could of course be distributed across the various
sections, wherever appropriate. However, in a specific
applications section more voluminous topics could be addressed
like the analytical methods for software design: the CBAM-
approach, the approach by Sullivan et al. on the value of
modularity, or constructive techniques like product line scoping
or process optimization (e.g., Agile development). This section
would mainly serve a better anchoring of the previous topics and
would actually enable the students to understand the software
engineering concepts they learned so far better.

• Decision Making: A key part of value-based software
engineering is the need to make decisions based on value
tradeoffs. Thus, in this part decision making techniques are
taught.

• Applications: A collection of examples should illustrate the
main technologies taught in the course. These could be
discussed either as a fourth part at the end of the course, or
scattered throughout the lecture. For this reason, each example
description should also describe the required student knowledge
for its discussion.

5. INVITATION
For CourseForges to succeed, even within the value-based
software engineering community, it needs to provide enough
useful curriculum material that faculty find it worth the time to
look for content there. If it's successful, it will attract other new
authors. The challenge for us is to bootstrap the activity so that it
has a chance of achieving critical mass.

While this schema could provide a common skeleton for all
EDSER-courses, the individual instantiation would probably
strongly vary in terms of the extent of their treatment of the
various topics. We provide here a key list of some topics and
point out some parts that could be left out (are treated
superficially) in specific courses. So this is an invitation to participate in the refinement of

community values, the structure of the Wiki, and the development

CourseForges 4/12/2003 3

6

of curriculum materials. Contact any of the authors or visit the
CourseForges Wiki for further information.

6. ACKNOWLEDGMENTS
The CourseForges Wiki is hosted by the National Research Council of
Canada at http://seg.iit.nrc.ca/yawc/courseforges/public/wiki.cgi. The
static web site http://courseforges.org is hosted by Carnegie Mellon
University. This work is supported by the National Science Foundation
under Grant ITR-0086003, by the Sloan Software Industry Center at
Carnegie Mellon, by the High Dependability Computing Program from
NASA Ames cooperative agreement NCC-2-1298, by the Software

Engineering Institute, under the Networked Systems Survivability
Program., and in part by the Eureka 2023 Programme, ITEA project
ip00004, Café

7. REFERENCES
[1] Dewayne E. Perry. Generic Architecture Descriptions for Product

Lines. In Development and Evolution of Software Architectures for
Product Families, Second International ESPRIT ARES Workshop,
Las Palmas de Gran Canaria, Spain, February 1998. LNCS 1429,
pp.51-56, Springer, 1998.

CourseForges 4/12/2003 4

7

Reasoning About the Value of Dependability:
The iDave Model

Barry Boehm
Department of Computer Science
University of Southern California
 Los Angeles, CA 90089, USA

(213)-740-8163

boehm@sunset.usc.edu

 LiGuo Huang
Department of Computer Science
University of Southern California
 Los Angeles, CA 90089, USA

(213)-740-6505

liguohua@usc.edu

Apurva Jain
Department of Computer Science
University of Southern California
 Los Angeles, CA 90089, USA

(213)-740-6505

apurvaja@usc.edu

ABSTRACT
In this paper, we present a framework for reasoning about
the value of information processing dependability
investments called the Information Dependability Attribute
Value Enhancement (iDAVE) model. We describe the
overall structure of iDAVE, and illustrate its use in
determining the ROI of investments in dependability for a
commercial order processing system. We conclude that
dynamic and adaptive value-based dependability
mechanisms such as iDAVE model will become
increasingly important provided evidence that
dependability attribute requirement levels tend to be more
emergent than pre-specifiable.

General Terms
Measurement, Design, Economics.

Keywords
Value, Cost, Dependability , Return On Investment

1. INTRODUCTION
This paper presents a framework for reasoning about the value of
information processing dependability investments called the
Information Dependability Attribute Value Enhancement
(iDAVE) model. It assumes that a project makes baseline
investments in developing information processing capabilities that
generate baseline flows of costs, benefits, and returns on
investment (ROI). From this baseline, iDAVE provides ways to
specify additional investments in enhancing dependability, and to
determine the resulting additional costs and the resulting
improvements in both dependability attribute levels and their
ensuing system benefits. These can then be used to determine the
ROI of the dependability investments.

The paper describes the overall structure of iDAVE, and
illustrates its use in determining the ROI of investments in
dependability for a commercial order processing system. It shows
how the results not only provide a useful decision aid for
dependability investments, but also provide deeper insights on the
nature of dependability investment processes, and on the nature of
information processing dependability analysis methods.

2. NATRUE AND STRUCTURE OF THE
iDAVE MODEL
The overall form of the iDAVE model is shown in Figure 1. An
initial set of cost estimating relationships (CER’s) is provided by
the COCOMO II model [3]. The COCOMO II CER’s enable users
to express time-phased information processing capabilities in
terms of equivalent size, and to estimate time-phased investment
costs in terms of size and the project’s product, platform, people,
and project attributes. Additional future CER’s would include the
COCOTS CER’s for COTS-related software costs [1], inventory-
based CER’s for hardware components and COTS licenses, and
activity–based CER’s for associated investments in training and
business process re-engineering.

Figure 1. Proposed Information Dependability Attribute
Value Enhancement (iDAVE) Model

An initial set of dependability attribute estimating relationships
(DER’s) is provided by the COQUALMO model [7]. It enables

8

users to specify time-phased levels of investment in improving
dependability attributes, and to estimate the resulting time-phased
dependability attribute levels. The current version of
COQUALMO estimates delivered defect density in terms of a
defect introduction model estimating the rates at which software
requirements design, and code defects are introduced, and a
subsequent defect removal model. The defect introduction rates
are determined as a function of calibrated baseline rates modified
by multipliers determined from the project’s COCOMO II
product, platform, people, and project attribute ratings. The
defect removal model estimates the rates of defect removal as a
function of the project’s levels of investment in automated
analysis tools, peer reviews, and execution testing and tools.
Initial CER’s are available to estimate the costs of these
investments. Further COQUALMO extensions will refine its
current DER’s, and will provide further DER’s for estimation of
additional dependability attributes such as reliability, availability,
and security [5].
The iDAVE model’s initial dependability value estimating
relationships (VER’s) assume that a baseline business case
analysis has been performed for various components of value
(profit, customer satisfaction, on-time performance) as a function
of the time-phased information processing capabilities at nominal
dependability attribute levels. These value components are
aggregated into an overall time-phased value stream, which is
then composed with the time-phased costs (cost of IP capabilities
plus dependability investments) and normalized using present-
value formulas to produce a time-phased return on investment
profile.
The initial iDAVE VER’s involved simple relationships such as
the operational cost savings per delivered defect avoided, or the
loss in sales per pecent of the system downtime. Future
extensions are planned to involved more detailed dependability
VER’s for defect severity distributions and reliability/availability
levels, and additional VER’s for such dependability attributes as
security risk profiles and safety hazard profiles.

3. AN INITIAL iDAVE PROOF-OF-
PRINCIPLE ANALYSIS: DEPENDABLE
ORDER PROCESSING
The example below illustrates a simple initial use of iDAVE to
develop a rough dependability return on investment analysis,
using the Sierra Mountainbikes order processing system business
case analysis in [2]. It uses this business case analysis as the
baseline for assessing future investments in dependability over
and above the nominal investments usually made for business
data processing systems. Table 1 summarizes the business case
for an improved order processing system through its proposed
development in 2004-2005 and proposed operation in 2005-2008.
More specifically, the Initial Operational Capability (IOC) for the
order processing system will start development on January 1,
2004. It will be installed for beta-testing with the three key
distributors on September 30, 2004, and cut over as a replacement
for most of the old system on December 31, 2004, at a cumulative
investment cost of $4 million. An incremental release of the IOC
responding to the most cost-effective fixes and enhancements will
occur on March 31, 2005. Concurrently, work will start on the
enhancements for the Full Operational Capability (FOC), which
will also be beta-tested by the three key distributors, and then cut

over as a full replacement for the old system on December 31,
2005, at a cumulative cost of $6 million. Thereafter, six-month
increments and annual new releases will be installed at an annual
investment level of 500K.
Table 1 shows the corresponding expected benefits and return on
investment, ROI = (Benefits – Costs) / Costs, annually for the
years 2004-2008. For simplicity in this analysis, the costs and
benefits are shown in 2004 dollars to avoid the complications of
discounted cash flow calculations, and the 10% annual growth
rate in estimated market size is not compounded, both for
simplicity and conservatism.
As seen in columns 2-5 of Table 1, Sierra’s current market share
and profit margins are estimated to stay roughly constant over the
2004-2008 period, with annual profits growing from $7M to
$12M, if the new program is not executed. This is a conservative
estimate, as the problems with the current system would increase
with added sales volume, leading to decreased market share and
profitability.
The next columns in Table 1 up through ROI show the expected
improvements in market share and profit margins (due both to
economies of scale and decreased operational costs) achievable
with the new system, and the resulting ROI relative to continuing
with the current system. They show that the expected increase in
market share (from 20% to 30% by 2008) and profit margins have
produced a 45% ROI by the end of the second year of new-system
operation (2006):

45.0
5.6

5.64.9
=

−
=

−
=

Costs
CostsBenefitsROI

The expected ROI by the end of 2008 is 297%.
The final four columns in Table 1 show expected 2004-2008
improvement in overall customer satisfaction and three of its
critical components: percentage of late deliveries, ease of use, and
in-transit visibility. The latter capability was identified as both
important to distributors (if they know what is happening with a
delayed shipment, they can improvise workarounds), and one
which some of Sierra’s competitors were providing. Sierra’s
expected 2004-2008 improvements with the new system were to
improve their 0-5 satisfaction rate on in-transit visibility from a
low 1.0 to a high 4.6, and to increase their overall customer
satisfaction rate for order processing from 1.7 to 4.6.

4. iDAVE DEPENDABILITY ROI
ANALYSIS AND RESULTS
The iDAVE dependability ROI analysis begins by analyzing the
effect of increasing dependability investments from the normal
business levels to the next higher levels of investment in analysis
tool support ($260K), peer review practices ($210K), and test
thoroughness ($314K). These correspond to the Nominal and
High COQUALMO rating scale levels in Table 2. The resulting
total investment of $784K yields COQUALMO estimates of a
decrease in delivered defect density from 15 defects per thousand
lines of code (D/KSLOC) to 3 D/KSLOC, and an increase in
mean time between failures (MTBF) from 300 hours to 10,000
hours.

9

Table 1. Order Processing System: Expected Benefits and
Business Case

Assuming a mean time to repair of 3 hours yields an improvement
in availability = MTBF/(MTBF + MTTR) from 300/303 ~ .99 to
10,000/10,003 ~ .9997.
If we use availability as a proxy for dependability, and assume
that a 1% increase in downtime is roughly equivalent to a 1% loss
in sales, we can use the Sierra Mountainbikes business case to
determine a dependability Value Estimating Relationship (VER).
Applying the difference between a .01 loss in sales and a .0003
loss in sales to the 2005-2008 Sierra new system sales total of
$531M (adding up the 2005-2008 numbers in column 7 of Table
1) yields a net return on the dependability investment of (.01)
($531M) – (.0003) ($531M)= $5.31M – 0.16M = $5.15M. The
COCOMO II Cost Estimating Relationships (CER’s) for Tool
Support and Process Maturity also generate software rework
savings from the investments in early defect prevention and
removal of $0.45M, for a total savings of $5.59M. The resulting
dependability ROI is (5.59 – 0.784) / 0.784 ~ 6:1. A related
interesting result is that added dependability investments have
relatively little payoff, as there is only $0.16M left to be saved by
decreasing downtime.
This analysis makes a number of assumptions that will require
considerable added research to fully justify, but it provides a
proof of principle that the COCOMO II CER’s, the COQUALMO
DER’s, and business-case based VER’s can be used to produce
reasonable estimates of the high–payoff and lower-payoff regions
for investments in dependability.

Table 2. Defect Removal Investment Rating Scales

5. CASE STUDY IMPLICATIONS
More importantly, though, the case study’s ability to relate a
specific dependability analysis to specific human decisionmaking
issues opens the door to an entirely new set of speculations and
research directions about the nature of value-based
decisionmaking and its implications for dependability-oriented
software engineering. In the case study, because added
investments in availability have little payoff, does this mean that
the Sierra decisionmakers will lose interest in further

 Current System New System

Date

Market
Size
($M)

Market
Share

% Sales Profits

Market
Share

% Sales Profits

Cost
Savi
ngs

Change
in

Profits

Cum.
Change

in
Profits

Cum.
Cost ROI

Late
Deli
very
%

Cust.
Statis.

0-5

In-
Tran.
Visib.
0-5

Ease
of

Use
0-5

12/31/03 360 20 72 7 20 72 7 0 0 0 0 0 12.4 1.7 1.0 1.8

12/31/04 400 20 80 8 20 80 8 0 0 0 4 -1 11.4 3.0 2.5 3.0

12/31/05 440 20 88 9 22 97 10 2.2 3.2 3.2 6 -.47 7.0 4.0 3.5 4.0

12/31/06 480 20 96 10 25 120 13 3.2 6.2 9.4 6.5 .45 4.0 4.3 4.0 4.3

12/31/07 520 20 104 11 28 146 16 4.0 9.0 18.4 7 1.63 3.0 4.5 4.3 4.5

12/31/08 560 20 112 12 30 168 19 4.4 11.4 29.8 7.5 2.97 2.5 4.6 4.6 4.6

Rating Automated Analysis Peer Reviews Execution Testing and
Tools

Very
Low

Simple compiler syntax
checking.

No peer review. No testing.

Low Basic compiler
capabilities for static
module-level code
analysis, syntax, type-
checking.

Ad-hoc informal
walkthroughs
Minimal
preparation, no
follow-up.

Ad-hoc testing and
debugging.
Basic text-based debugger

Nom-
inal

Some compiler
extensions for static
module and inter-module
level code analysis,
syntax, type-checking.
Basic requirements and
design consistency,
traceability checking.

Well-defined
sequence of
preparation,
review, minimal
follow-up.
Informal review
roles and
procedures.

Basic unit test, integration
test, system test process.
Basic test data
management, problem
tracking support.
Test criteria based on
checklists.

High Intermediate-level module
and inter-module code
syntax and semantic
analysis.
Simple
requirements/design view
consistency checking.

Formal review
roles with all
participants well-
trained and
procedures
applied to all
products using
basic checklists,
follow up.

Well-defined test sequence
tailored to organization
(acceptance / alpha / beta /
flight / etc.) test.
Basic test coverage tools,
test support system.
Basic test process
management.

Very
High

More elaborate
requirements/design view
consistency checking.
Basic distributed-
processing and temporal
analysis, model checking,
symbolic execution.

Formal review
roles with all
participants well-
trained and
procedures
applied to all
product artifacts
& changes
(formal change
control boards).
Basic review
checklists, root
cause analysis.
Formal follow-
up.
Use of historical
data on
inspection rate,
preparation rate,
fault density.

More advanced test tools,
test data preparation, basic
test oracle support,
distributed monitoring and
analysis, assertion
checking.
Metrics-based test process
management.

Extra
High

Formalized* specification
and verification.
Advanced distributed
processing and temporal
analysis, model checking,
symbolic execution.

*Consistency-checkable
pre-conditions and post-
conditions, but not
mathematical theorems.

Formal review
roles and
procedures for
fixes, change
control.
Extensive review
checklists, root
cause analysis.
Continuous
review process
improvement.
User/Customer
involvement,
Statistical
Process Control.

Highly advanced tools for
test oracles, distributed
monitoring and analysis,
assertion checking
Integration of automated
analysis and test tools.
Model-based test process
management.

10

dependability investments? Probably not. More likely, they are
operating within a Maslow need hierarchy in which satisfied
availability needs are no longer motivators, but in which higher-
level needs such as reducing security risks may now become more
significant motivators.
This casts the analysis of dependability attributes in an entirely
new light. Previously, the problem of software attribute analysis
has been largely cast as an exercise in static multi-attribute
optimizing or satisficing, operating on some pre-weighted
combinations of dependability attribute satisfaction levels. The
practical decision making issue above indicates that achieving an
acceptable or preferred combination of dependability attributes is
generally not a pre-specifiable problem but rather a dynamic
process in which satisfaction of currently top-priority
dependability attributes leads to a new situation in which the
attribute priorities are likely to change.
In this situation, dependability attribute requirements become
more emergent than pre-specifiable. The process for achieving
acceptable dependability becomes no longer a single-pass
process, but an evolutionary process, subject to the need to
anticipate and develop architectural support for downstream
dependability needs. The types of dependability analyzers that
become important increasingly involve the types of dynamic and
adaptive value–oriented dependability mechanisms being
explored in papers such as [4, 6, 8].

6. CONCLUSIONS
The multidimensional nature of “dependability” decisionmaking
is compounded by the potentially very high levels of investment
required to achieve very high levels of dependability. This
creates a demand for methods of reasoning about the cost and
value of achieving various levels of dependability attributes in
particular project situations.
The iDAVE model presented here provides an overall framework
and an initial set of tools for reasoning about the value of
dependability. Application of an initial version of iDAVE to an
example project decisionmaking situation shows that the model
can produce reasonable estimates that distinguish higher-payoff
and lower-payoff regions of a project’s investment in
dependability.
Use of the iDAVE model in this decision situation provided
evidence that dependability attribute requirement levels tend to be
more emergent than pre-specifiable; that dependability analysis
and achievement processes tend to be more evolutionary then

single-pass; and that dynamic and adaptive value-based
dependability mechanisms will become increasingly important.

7. REFERENCES
[1] Abts, C., Boehm, B., and Clark, E., "COCOTS: A

Software COTS-Based System (CBS) Cost Model,"
Proceedings ESCOM, 2001.

[2] Boehm, B. and L. Huang, “Value-Based Software
Engineering: A Case Study,” to appear, IEEE
Software, March 2003.

[3] B.Boehm, C. Abts, A.W. Brown, S. Chulani, B. Clark,
E. Horowitz, R. Madachy, D. Riefer, and B. Steece,
Software Cost Estimation with COCOMO II, Prentice
Hall, 2000.

[4] David Garlan and Bradley Schmerl, "Model-based
Adaptation for Self-Healing Systems," ACM
SIGSOFT Workshop on Self-Healing Systems
(WOSS'02), November 18-19, 2002.

[5] Reifer, D., Boehm, B., and Gangadharan, M.,
"Estimating the Cost of Security for COTS Software,"
Proceedings Second Intl. Conf. COTS-Based Software
Systems, February 2003.

[6] Mary Shaw, “'Self-Healing': Softening Precision to
Avoid Brittleness,” Proceedings of the First ACM
SIGSOFT Workshop on Self-Healing Systems (WOSS
'02) Charleston, South Carolina, November 2002, pp.
111-113.

[7] Steece, B., Chulani, S., and Boehm, B., "Determining
Software Quality Using COQUALMO," in Case
Studies in Reliability and Maintenance, W. Blischke
and D. Murthy, Eds.: Wiley, 2002

[8] K. Sullivan and J. Knight, “Information Survivability
Control Systems,” Proceedings of the 21st International
Conference on Software Engineering, May, 1999, pp.
184—193.

11

Use of Real Options Theory to Value Software Trade Secrets
Donald J. Reifer

University of Southern California
Los Angeles, CA 90089

011-310-530-4493
dreifer@earthlink.net

Abstract: In this position paper, we discuss
use of real options theory to value software
trade secrets. We start by outlining current
valuation practices and problems. We next
outline a valuation framework that permits
software experts to value trade secrets when
involved in litigations. The framework
takes advantage of real options theory to
derive a fair value for use in valuing a trade
secret using either the currently accepted
cost, income or market approach. We
conclude by focusing on the barriers that
software experts will have to overcome
when presenting their findings within a
courtroom environment to non-software
participants (judges, attorneys, juries, etc.).

General Terms: Economics, Management

Keywords: Valuation framework, real
options theory, software trade secrets

1. Introduction
During the past decades, attorneys become
involved in software litigation especially as
license, patent, copyright and trade secret
terms and conditions have been violated.
While license breaches have proved
relatively easy to value [1], determining the
worth of patents, copyrights and trade
secrets has not [3]. Some of the many issues
that made valuation difficult include, but are
not limited to, the following:
! Traditional approaches to determine

value focus on market price and do not
include adequate allowances for
appreciation of assets, market growth or
technology, functional, physical and
economic obsolescence [2].

! The “fair value,” “fair market value,”
“market value,” “acquisition value,” or
“use value” of an intangible asset is
difficult to determine especially in light
of current economic conditions. Fair
value is defined as the amount in terms
of dollars that a willing and able buyer
would pay for these assets under current
market conditions [9].

! Determination of value under the
“highest and best use” principle is hard
to determine as legal, physical, financial
and maximum profitability conditions
vary depending on premises of value
(e.g., value in place, value in exchange,
value in continued use, etc.) [9].

! The range of use and profitability of the
use of the intangible assets are difficult
to determine in light of future
competition and market conditions [6].

! States treat valuation of intangible assets
like software trade secrets differently
and the case law is non-uniform [5].

! Few cases involving valuing intangible
assets like software trade secrets are
available to establish precedence in a
court of law [4].

In light of these issues, better frameworks
are needed to help experts develop a
reasonable value estimates for software
intangible assets, especially trade secrets,
which is the focus of this position paper.

2. Approach
Currently, valuation experts use cost, market
and income based approaches, the later of
which employs discounted cash flow
methods, to value intangible assets.

12

mailto:dreifer@earthlink.net

Valuation is done using cost and/or income
projections to develop a fair value estimate
to use as a standard for compensation. To
augment these approaches for valuing trade
secrets, we have enhanced the following

valuation framework developed by Pitkethly
[8] at Oxford for patents as follows in Figure
1 to include options that address changing
risk (e.g., due to market and other
conditions):

 Figure 1. Proposed Valuation Framework for Software Trade Secrets

i) Cost approach – estimate value by determining the cost to replace the asset
with a comparable asset

ii) Income approach – estimate value in terms of future cash flows to which the
owner of the asset is entitled.

iii) Market approach – estimate value by analyzing the characteristics of recent
sales of similar assets

iv) Time value of money – use discounted cash flows to take time value of
money into account

v) Uncertainty – use discounted cash flows to address risk of underlying
assumptions

vi) Flexibility – couple discounted cash flows with decision tree analysis
methods to increase flexibility

Legend: modification made to the original framework in [8] in

For the purpose of this paper, a trade secret
is defined as information, including
formulas, patterns, compilations, programs,
devices, methods, techniques or processes
that (1) derives independent economic value,
actual, or potential, from not being generally
known…and (2) is the subject of efforts that
are reasonable under the circumstances to
maintain its secrecy [8].

To illustrate the value of the framework,
let’s take the “wait and see” example shown
in Figure 2. This option assumes that
instead of plunging into a new market right,
we wait one year until economic conditions
and chances of success are better. Figure 3
shows the financial advantages of embracing
this “wait and see” option.

Figure 2. Real Option Opportunity Tree

Option 1 – enter
new market

Pursue real
option 1

Wait

Risk Diagram

Downside Upside

 0% 66%

Notes
Assumes that
interest rates
won’t go
down further,
but may go
up as much as
2 full points
during next
five years

Degree

Of

S
O
P
H
I
S
T
I
C
A
T
I
O
N

13

Figure 3. Financial Analysis (Net Present Value and Real Option Analysis)

To assess options completely, you really
need to assess the impact of risk. To
accomplish this, we propose using the
concept of risk vectors. As illustrated in
Table 1, risk vectors allow us to weight
available options by the forecasted
probability (Prob.) of their success. Such
probabilities can be determined using a
variety of means including statistical
analysis, game theory (assess alternatives
assuming economics are a game of chance)

and Monte Carlo simulations (assess range
of potential impacts).

Table 1. Real-Option Risk Vectors
Option NPV Prob. NPVW

Vector
1

Pursue option
right now

$296K 0.95 $281.2K

Vector
2

Wait and see $743K 0.86 $639K

….
Vector

n
Do nothing 0 0 0

The table shows using the figures from
Figure 3 that even though the “wait and see”
option is more risky than other alternatives;
it is still the preferred approach. It should be
noted that the “do nothing” option is always
an alternative. Although it costs nothing, it
also yields nothing. However, this option

can turn out to be the preferred alternative
when all other vectors have a negative
Weighted Net Present Value (NPVW).

3. Summary and Conclusions
The example presented is not fictitious.
While we changed the numbers and context

A. Discounted Cash Flow (Option 1)

T=1 T=2 T=3 T=4 T=5
 Discount Rate1 = 3% Time

 -$500K -$100K $100K $300K $600K

B. Sensitivity to Discount Rate Fluctuation (vary by 66%, up only)

T=1 T=2 T=3 T=4 T=5
 Discount Rate = 5% Time

 -$500K -$100K $100K $300K $600K

C. Real Option (Wait and See)(Option 1)

Wait
And See

Start
T = 0

Worst case – exit
and abandon

Best case - Discount
rate = 5%

NPV = $296K
ROI = 296K/3M

ROI = 2%/year
Note - $3M represents the
investment needed to pull
the option off

NPV = $236K
ROI = 236K/3M

ROI =
1.6%/year

T=1 T=2 T=3 T=4 T=5

 -500K -125K 250K 500K 900K
Discount Rate = 5%

NPV = $743K
Note – Waiting results in improved market conditions
and increased sales (20% increased revenue)

ROI = 743K/3M

ROI = 5%/year
Note - Market better, but cost of money rises to keep
inflation under control

14

somewhat, we are using the proposed real
options framework in a current litigation to
value trade secrets that were allegedly
divulged. Based upon a search, this is the
first case to use such a framework to value
software trade secrets. The few cases that
we have found rely on discounted case flows
almost entirely to come up with a value.
Hopefully, the framework we developed will
hold up as the case goes through its pre-trial
motions and goes to court.

Attorneys specializing in valuing Intangible
Assets and Intellectual Property tell us that
our approach is innovative. However, time
will tell if the approach holds up in a court
of law. If it does, the real options approach
will be used to create a benchmark that will
establish how software trade secrets are
valued now and into the future.

3. References
[1] Appraisal Standards Board, Uniform

Standards of Professional Appraisal
Practice, The Appraisal Foundation,
2002.

[2] Cole, Roland J. and Barnes &
Thornburg, “Valuing IP Assets: The
Legal Aspects,” ICLE Spring 2002, pp.
1-21, 2002.

[3] Damiano, Karen, “Valuing Intangible
Assets under SFAS 141,” Insights,
Winter 2002, Willamette Management
Associates, 2002, pp. 17-20.

[4] Goldenberg Norman S. and Tenen,
Peter, Legal Briefs: Intellectual Property,
Casenotes Publishing Company, 2001.

[5] Loud, Adrian and Reilly, Robert A.,
“What is a Trade Secret Worth?”
Insights, Willamette Management
Associates, Special Issue, 2000, pp. 15-
18.

[6] Mard, Michael J., “Intellectual Property
Valuation Challenges,” The Licensing
Journal, May 2001, pp. 26-30.

[7] Mun, Johnathan, Real Options Analysis,
John Wiley & Sons, 2002.

[8] Pitkethly, Robert, The Valuation of
Patents, Judge Institute Working Paper
21/97, The Judge Institute of
Management Studies, Cambridge,
England, 1997.

[9] Reilly, Robert F. and Schweihs, Robert
P., Valuing Intangible Assets, McGraw-
Hill, 1998.

15

Intentional Software Systems:
Engineering Intentionality in Processes of Software Development and Runtime Execution

Position Paper: 5th International Workshop on Economics-Driven Software Engineering Research

Kevin Sullivan
University of Virginia Department of Computer Science

Charlottesville, VA 22904 USA
sullivan@cs.virginia.edu

February 15, 2003

To satisfice their dynamic norms—that
is, to be good enough with respect to prevailing
process-oriented criteria such as survival, ethics,
maximizing utility, or creating economic value—
intentional systems must be organized to
perceive, represent, processes, and respond
appropriately, in the environment, to what really
matters. In this paper, I take the position that
software processes—both software design
processes and computerized runtime processes—
all too frequently behave badly today because
they are not conceived and implemented as
intentional systems governed by appropriately
selected dynamic norms. The lack of attention to
the issue of intentionality, in general, and to the
choice of norms, in particular, often leaves such
processes subject to wrong or inadequate norms,
thus “unaware” of and unresponsive to what
matters.

To make the notion of dynamic norms
clear, consider the example of a software start-
up. The developers want to restructure its code,
which, having evolved somewhat messily from a
prototype, is in pretty bad shape. Yet, the crucial
norm for the organization is business survival. If
satisficing this norm demands ongoing delivery
of functional increments on a tight schedule,
code restructuring might have to wait, no matter
how attractive it is by other norms, such as the
static (entity-oriented) norm, on source code
structure, of “being easy to change.”

Here is another example. Take the
(forthcoming) IEEE Software, March 2003
feature article [1], in which, Boehm and Huang
show that the widely used Earned Value
Management System for controlling
development processes actually has nothing do
with creating stakeholder value. Rather, the
norm governing this software development
process is that spending occur as planned. A
process can be successful by this norm and still
be an utter failure by what matters. A norm that
arguably would steer the process to perform

better with respect to stakeholder outcomes
(which, here, is what is deemed to matter) would
be “continuous satisficing of all stakeholder
value propositions.”

More importantly, the prevailing norm
fails to cause several crucial things to happen.
First and foremost, the norm doesn’t demand that
the process recognize, monitor, or represent
stakeholder value propositions. The wrong norm
thus leaves the process ontologically hobbled.
Second, as a result of being “unaware” of
stakeholder value propositions and of the goal of
satisficing them, the process is not driven to be
responsive to what matters.

My position is that we need to create
systems engineered for intentionality.1 The first
step is the choice of governing norms. The
second is to confront the technical challenges of
crafting perceptual, process-internal
representation and processing, and response
mechanisms necessary for norm-satisficing,
intentional behavior. Mechanisms will generally
be needed to perceive and represent material
states of both process and environment, and to
plan and execute normatively appropriate,
adaptive behaviors. The resulting processes will
seem aware of their environments, to have goals
(desires), and will behave accordingly, acting
and adapting appropriately over time.

Consider two examples. First, a
development process under a stakeholder-
satisfaction norm might represent stakeholder
value propositions as evolving business cases,
monitor competitors’ actions, use a software

1 Intentionality, in this sense, has a clearly
established meaning in the philosophy of mind.
The two big problems in that field are
consciousness—awareness of self and other—
and intentionality—to be about something, to
have beliefs and desires.

16

architecture supporting schedule control as an
independent variable, and drop features as
needed to beat competitors to market. Second, a
critical societal information system might
“perceive” when it is “under attack” and
reconfigure automatically to provide continuity
of services deemed essential.

I contend that the intentional
perspective holds promise for the design of
software processes of both program development
and execution. Of some interest is the
observation that the approach says little about
software artifacts, the traditional focus of most
software engineering attention and technology.
The concern is with process, behavior, and what
is ultimately sought.

This idea appears to have some merit in
at least three dimensions. First, it rests on
seminal contemporary work in the philosophy of
mind and computation—and intentionality, in
particular—namely the work of Brian Cantwell
Smith [3]. Second, it has potential not only to
rationalize, but to bring into computer science
proper—as an intentional science—a
consideration of value and values. Third, the
mechanisms needed for intentional behavior in
software development and runtime processes will
push the limits of existing technology in the
areas of system monitoring of self and
environment, internal representation including
reference to relevant externals, and appropriate
inference and planning techniques, based in part
on mappings relating available actions to norm-
denominated expected outcomes. The notion of
autonomic computing, self-healing systems, and
the like, clearly fall under the scope of the notion
proposed here.

There is an important homonymic line
of work with which the current proposal should
not be confused: namely, intentional software
[2], and the closely related areas of intentional
programming and aspect-oriented software
development. These important but quite
different ideas all revolve around a specific,
static, technical norm, pertaining to the
relationship between two software
representations: design structure and source
code. The norm is that the structure of the
source code should reflect the design intent of
the developer. “Using Intentional Software,
the actual software source code looks like
the design [1].” The norm is static in that it
applies to artifacts, not processes. It is logico-
technical, rather than, say ethical or financial,

insofar as it concerns structural relationships in
code, not values (although the motivation is non-
technical).

The idea presented here is
fundamentally different. First, it centers on
dynamic norms: that is, norms that apply to
processes rather than to static artifacts. Second,
it is a broader idea. To our view, it is the first
formulation promising to bring considerations as
diverse as ethics (such as the Rawlsian ethics of
fairness underlying Boehm’s Win-Win model),
business value, or values (such as having fun),
into software engineering in a general and
scientific way—rather than as interesting,
important, and useful, but ultimately awkward,
glue-ons. Third, our idea leads to an entirely
different set of issues than those addressed by
intentional software. Rather than focusing on
modularity, expressiveness, and structural
continuity across representations at various
levels of abstraction, attention turns to ontology,
perception, representation, reasoning, action,
and, ultimately, mattering: What material
“things” does a process recognize, represent,
reference, compute about, and, affect? What
does it care about? What matters to it?

Finally, by making the choice of norms
for synthetic processes explicit, the notion
presented here provides a link between process
design and human values. The question is, under
what other norms do we choose the norms to
impose on our designed processes? Why make
Rawls’s ethic of fairness the governing “law” of
a development approach such as Win-Win?
How about long-term shareholder value
maximization? Preservation of freedom? The
choice of dynamic norms fundamentally
determines many key parameters of a process.
Today, these considerations are most important
in relation to human processes of software
development. However, as our capabilities
develop to create more “aware” and “autonomic”
software-based systems, we might have to begin
to ask about their “intentions,” as well—that is,
to make sure that we pick “good” ones for
them. Ultimately, it’s a question of what
matters to us.

Bibliography

[1] Boehm, B. and L. Huang, “Value-Based
Software Engineering: A Case Study,”
forthcoming, IEEE Software, March, 1993.

17

[2] Intentional Software (corporation). Front
page of web site as of this writing.
http://intentsoft.com/

[3] Smith, B.C., “God, Approximately,”
presented at the MIT AI Lab, November 18,
1998.
http://www.ageofsig.org/people/bcsmith/pri
nt/smith-godapprox4.pdf

18

Time is Not Money
the case for multi-dimensional accounting in value-based software engineering

 Vahe Poladian, Shawn Butler, Mary Shaw, David Garlan
{vahe.poladian, shawn.butler, mary.shaw, david.garlan}@cs.cmu.edu

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT
"Time is money", or so goes the old saying. Perhaps influenced by
this aphorism, some strategies for incorporating costs in the
analysis of software design express all costs in currency units for
reasons of simplicity and tractability. Indeed, in theoretical
economics all costs can, in principle, be expressed in dollars.
Software engineering problems, however, often present situations
in which converting all costs to a common currency is
problematical. In this paper we pinpoint some of these situations
and the underlying causes of the problems, and we argue that it is
often better to treat costs as a multidimensional value, with
dimensions corresponding to distinct types of resources. We go on
to highlight the differences among cost dimensions that need to be
considered when developing cost-benefit analyses, and we suggest
mechanisms for mediating among heterogeneous cost dimensions.

Keywords
Cost analysis, multi-dimensional cost analysis, value-based
software engineering.

1. ACCOUNTING FOR COSTS IN
SOFTWARE ENGINEERING
Although engineers traditionally focus on the functionality of
their designs, they are becoming increasingly away of the need to
address total cost of developing and owning the software.. A
common approach to cost-benefit analysis is to express all costs
and benefits in terms of dollars. To a first approximation,
expressing all costs in a single dimension may seem like a
reasonable solution. In practice, however, simplistic conversions
of costs (or benefits) can be problematical.

Consider a military operations center, which is responsible for
managing and directing battlefield assets during times of conflict.
A typical operations center uses several applications that will
demand different amounts of computer resources (e.g., bandwidth
and CPU resources) depending on the military situation. For
example, satellite and air reconnaissance assets can provide real-
time video coverage of the operational area, but not all the time.
Simultaneously, communication channels stream important
intelligence and operational information to the center’s military
commander, but processing the messages is CPU intensive.
Unfortunately the amount of information available to the
commander can exceed his capacity to receive and process the
information and affect his ability to make informed decisions.

The value of each application, and thus the value of the
computing resources, will depend on the current military
situation. For example, at times the commander will need very
detailed videos of the battlefield to make operational decisions,

but at other times the commander will need to receive intelligence
over communication channels and a less detailed picture of the
battle will be adequate. Therefore, dynamic reconfiguration of the
computing resources may be essential to making timely military
decisions.

The quality of service that these applications provide can be fine-
tuned through computer resource adjustments to meet the
commander’s needs. For example, increasing frame rates and
bandwidth allocations can enhance video imagery, but the
resulting demand for CPU cycles to process video images can
cause delays in message processing.

At any given point in time, finding the optimal allocation of
computing resources depends on the value that each application
provides to the commander. Finding the optimal resource
allocation ultimately requires all the alternatives to be comparable
-- typically expressed in a common metric. However, there can be
serious drawbacks to making these conversions too early in the
analysis process.

First, it is difficult to associate cost or value with a resource
without complete information about the resource and the context
of its use. In the example above, the value of bandwidth was
highly dependent on the battlefield situation and weather. In some
cases the value of the resource may be in saving lives, but in other
situations the value of the resource may be tied to common
economic costs, such as fuel or energy costs, which are more
easily translated into dollars1.

Second, a conversion between metrics may adversely affect the
type of analysis that you can do. The value of the resource may be
non-linear with respect to the preferences of the user (or
commander in the example above). Converting the value of
computing resources, such as bandwidth and CPU, to dollars
implies that each of the resources is as finely divisible as dollars.
Increasing the resolution of video images requires a stepwise
increase in bandwidth before the user recognizes a difference in
the quality of the video. As a result, calculus-based solutions may
appear adequate to solve the problem in the abstract, when in fact
discrete algorithms are more appropriate for the problem at hand.

Third, conversions to a common currency can lose information
that should affect the types of feasible solutions. Some resources
are perishable: they are only valuable for short periods of time,
and after that they have no residual value. Converting such a
resource to one that is not perishable will cause important
information to get lost in the process. In fact, the obtained result
may not be feasible according to the original formulation of the

1 Despite studies that calculate the price of an individual’s life,

few decision makers are willing to make explicit comparisons.

19

 2

problem. For example, unused bandwidth is gone forever, and
allocating bandwidth to satellite imagery when the satellites are
not overhead is not a feasible solution.

These problems can be avoided by using methods that recognize
and respect the different properties of different resources. Here we
regard cost as a multidimensional quantity, with different
dimensions corresponding to different non-commensurable cost
metrics. Section 4 presents examples based on two such methods.
One of the examples focuses on the automatic run-time
configuration of software components based on preferences of the
user. The second example tackles the problem of choosing the
optimal set of countermeasures to minimize threats to a corporate
IT infrastructure.

In this paper, we contribute to understanding the problem on
incommensurable multidimensional costs and finding solutions
for particular projects by:

x Characterizing types of costs to show their differences. In
Section 2 we catalog resources that are commonly used in
analyzing costs in software development.

x Proposing a model for treating cost as a multidimensional
measure. In Section 3 we present a model that explains the
essential differences among these costs.

x Analyzing the problems of mapping among cost dimensions.
In Section 4 we discuss analysis techniques that carry through
multidimensional costs.

x Showing how to accommodate methods that require uni-
dimensional costs. In Section 5 we generalize from the
examples of Section 4 and discuss ways to balance the
information needs that require multiple dimensions with the
analysis needs that require a single dimension.

2. SOURCES OF SOFTWARE
DEVELOPMENT AND QUALITY COSTS
In software engineering and systems research, cost-benefit
analyses have been used to solve cost estimation and optimization
problems. SAEM [2], [3] is a cost benefit analysis model that
helps security managers choose the best set of countermeasures.
Odyssey [9] provides runtime middleware that helps adapt
application behavior to resource availability. The Nemesis [10]
operating system uses shadow prices and careful accounting to
determine optimal allocation of resources among competing
applications. Aura [8] aims to reduce user distraction in
interactive computing by accounting for human attention as a
resource. COCOMO II [1] is a software cost estimation model
that calculates the cost of a software project based on various
organizational and project parameters. The works cited consider
costs and benefits to estimate benefit, determine optimal
allocations, and estimate cost.

Table 1 catalogues some of the resources that are considered by
the analyses of the research described above. This list is
representative rather than complete; it provides the basis for the
examples we use in later sections.

Table 1. A Selection of Resources and their sources

Cost dimension Examples, citations

Purchase cost, currency
(dollars, for simplicity) Classical Economics

Staff time COCOMO [1]

Reputation SAEM [2]

Lives lost SAEM

Calendar time, days COCOMO

Bandwidth Odyssey [9], Nemesis [10]

Battery Capacity Remaining Odyssey, Nemesis

User attention Aura [8]

Software application, e.g.
Microsoft Word Aura

3. PROPERTIES of COSTS/RESOURCES
The introductory example motivates the need to consider separate
resource dimensions in cost-benefit analysis. But what are some
of the characteristics of different resources that need to be
considered during such analyses? Further, how would these
characteristics influence the choice of analysis technique? To help
answer these questions, we discuss the different properties of
some of the resources identified in Table 1, with particular focus
on understanding how these differences can be reconciled or
mediated. At the end of the discussion, we summarize our
findings in Table 2 for a sample of resources.

x Divisibility/granularity. This property describes how dense the
space of the resource is. Intuitively, this property indicates in
what increments the resource can be allocated. Possible values
are:

o Continuous: The resource can be allocated at a very fine
grain. Bandwidth and battery energy are resources that fit
in this group.

o Discrete but dense: The possible allocation points are
many, but allocation can not be made continuously.
Currency fits this group.

o Sparse discrete: There are very few possible points in the
resource space. Editing a document with a particular
application, e.g. Microsoft Word, falls in this category.

The granularity of a resource can influence the choice of the
solution method. With continuous resources and in some cases
discrete dense resources, calculus-based solutions work well,
especially if resource requirements can be described as closed
formulas. Sparse discrete resources are best analyzed with
discrete methods such as integer programming and knapsack
algorithms. Problems with continuous and dense discrete
resources can also be tackled using discrete solutions, at the
expense an approximate answer. This can be a justified trade-
off if no closed-form formulas exist to describe the functions.

x Fungibility. This property describes whether a particular
resource can be converted to another resource. This property
makes sense in the context of a specific problem, and with
respect to specific other resources. For example,

20

 3

o Complete fungibility: Common currency is fungible to
most other resource.

o Partial fungibility: Some interchange is possible between
bandwidth and CPU cycles in the software runtime
configuration problem. Consider different MPEG decoders
using different compression algorithms. One decoder may
be relatively bandwidth intensive, while the other may be
CPU intensive. Availability of multiple decoders makes it
possible to convert between bandwidth and CPU cycles. It
is important to realize that the tradeoff is limited a few
points.

o No fungibility: In software cost estimation problem, it is
well known that calendar days and staff months are not
interchangeable. Additional staff may even lengthen
development time.

x Measurement Scale. This property describes the kind of scale
that is appropriate for measuring a resource. For example, the
set of domestic animals (dog, cat, cow, etc) has nominal scale,
as there is no ordering relationship between elements in that
set. See the Appendix for a review of measurement scales.
Possible choices are:

o Nominal.

o Ordinal.

o Integer.

o Ratio.

Cost-benefit analysis can sometimes be tackled by converting
all resources to the same scale. However, conversion among

resources of different scales must be made only when
conversions are justified. See Section 4.2 for an example of
such conversion.

x Economies of scale. This property describes the extent to
which a percentage increment in a resource affects the
increment of the output of a product that uses the resource as
input. Possible values are:

o Superlinear Scale: (also known as positive economies of
scale). If a percentage increment in a resource results in
proportionately higher increase in output, then we say
resource has superlinear scale. Consider the problem of
searching for a given record by its unique key in a large
database. As a measure of output, consider the size of the
database (e.g., total number of records) we are able to
search in a fixed amount of time, and as a measure of
input, consider the size of hardware we need to have (e.g.,
CPU speed). Recall that the binary search algorithm runs
in time logarithmic with respect to number of items. Thus,
CPU size exhibits superlinear scale with respect to the
problem size in this case, because incremental increases in
the CPU performance dedicated to the search space result
in increasingly proportionally larger search space covered.

o Linear Scale: (also known as neutral economies of scale).
The benefit of additional quantities of the resource is
independent of the problem size.

Table 2. Properties of Sample Resource Dimensions

 Properties of Costs

Units Measurement
Scale Granularity Fungibility Perishability Economies

of Scale Rival

Purchase cost Dollars Ratio Dense Y N Linear Y

Staff time Months Ratio Sparse N Y Sublinear Y

Reputation Scale Ordinal Sparse N N N/A Y

Lives lost Number of
Humans Integer Sparse N N/A N/A N/A

Calendar time Days Ratio Sparse N Y Depends N

Bandwidth Mbps Ratio Continuous N Y Depends Y

Battery Joules Ratio Continuous N N Depends Y

Human
attention Seconds Ordinal Sparse N N N/A Y

C
os

t D
im

en
si

on

Software
application N/A Nominal Sparse Y N N/A N

21

 4

o Sublinear Scale: (also known as diseconomies of scale).
If a percentage increase in resource results in
proportionately smaller increase in output, then we say
the resource exhibits sublinear scale. Staff size, as input
to software projects, exhibits slight diseconomies of
scale (COCOMO II).

Notice that this property only applies to resources that are
measured on a ratio scale or that can safely be converted to
ratio scale.

� Perishability. This property describes whether the resource
will be forever lost, if not used by certain point in time.
Possible values are perishable and non-perishable.

o Perishable: Bandwidth is perishable.
o Non-perishable: Battery energy is not perishable.

Problems involving perishable and non-perishable resources
need to introduce time into the analysis and account for
intertemporal possibilities. Utility functions are one possible
solution.

� Rival. A rival resource is such that the consumption of a unit
or amount of a resource by one person or entity precludes the
consumption of the same unit by another person.

o Rival: Money, labor, bandwidth, CPU cycles.
o Non-rival: Software application, information goods,

calendar days.
Efficiently allocating rival resources among multiple
requestors is the heart of many optimization problems.
Aggregate demand for a rival resource can not exceed total
supply available. Allocation analysis can be complicated
when multiple sources of a resource are available. For
example, consider the problem of choosing where to run a
particular software application, given a choice of two servers.

4. MULTIDIMENSIONAL ANALYSIS
TECHNIQUES
In this section, we present two examples of techniques that
consider multiple dimensions of costs in solving cost-benefit
problems in practical software systems. The first analysis is
performed at run time and helps configure software applications
on a mobile computer. The second analysis is performed off-
line and optimizes the selection of security technologies to
counter threats against corporate IT infrastructure.

4.1 Value-based Software Runtime
Configuration
Let’ s revisit the scenario from the introduction and illustrate
some of the problems that can result from early conversions.
Tables 3 and 4 show hypothetical runtime operational profiles
of the two programs described in Section 1: Messaging and
Real-time Video. The quality level information in the first
column is provided by the application specification. The second
and third columns give resource usage (percentage-of-resource-
required/second) to achieve the specified quality level. The
resource data depends on the runtime characteristics of the
application and the data processed, which can be obtained using
profiler tools. The value information in the fourth column is
represents the value assessments of the battlefield commander,
which can be obtained through elicitation interviews.

The overall objective is to maximize the sum of the values:
Value(Messaging) + Value(real-time video). Notice that the
quality level is an ordinal scale: it does not make sense to say
how much more or by what factor the next level is better than

the previous one. A value function, which normalizes the
commander’ s value assessments, converts the quality levels into
a ratio scale on the basis of additional information elicited
about the application. Bandwidth and CPU are both perishable
resources and cannot be stored for future use.

Tables 3. The Operational Profiles of the Applications
Messaging Real-time Video

Q
uality

L
evel

C
PU

, %

B
W

, %

V
alue

Q
uality

L
evel

C
PU

, %

B
W

, %

V
alue

None 0 0 - � None 0 0 - �

Very Low 57 17 1 Bad 12 43 3

Low 61 23 12 Acceptable 19 52 30

Medium 72 27 55 Good 23 69 45

High 79 29 68 Very Good 27 78 57

Very High 98 32 75 Excellent 34 93 89

One approach to solving this problem is to take as given the
external prices of CPU and Bandwidth, and convert these to a
common currency. Assume the cost of one percent of available
CPU is 2 units, and that of one percent of the available
Bandwidth is 3 units. A total of 2 * 100 + 3 * 100 = 500 units
of total resource are available. Table 4 present the resource
requirements in terms of the single currency. Column 2 shows
the cost in common currency of providing that level of quality,
and column 3 shows the percentage of that cost.

Tables 4. The Operational Profiles Using Common
Currency, 500 Units Available

Messaging Real-time Video

Q
uality

L
evel

C
ost

C
ost, %

Q
uality

L
evel

C
ost

C
ost, %

None 0 0 None 0 0

Very Low 165 0.33 Bad 153 0.31

Low 191 0.38 Acceptable 194 0.39

Medium 225 0.45 Good 253 0.51

High 245 0.49 Very Good 288 0.58

Very High 292 0.58 Excellent 347 0.69

Notice that according to Table 2, the best combination that can
be achieved is High quality of Messaging and Good quality of
Real-time Video, which costs 498 units, or just under 100%,
and is valued at 113. However, after consulting Table 3, we
notice that CPU would be utilized at 101 percent, making that
combination unattainable. The problem is that we have allowed
conversion of unused Bandwidth into CPU, despite the
inappropriateness of this conversion. Indeed, each quality point
for either application can be obtained using only a unique CPU
and bandwidth vector. The root of the problem is that CPU and
bandwidth are not fungible, and our assumption of fungibility
leads to an incorrect solution.

Another approach to this problem is to use derivatives, e.g. a
calculus method called Lagrange Multipliers. However, since
the space of quality points is sparse, any kind of continuous

22

 5

approximation is likely to yield a solution that is also not in the
space of available quality points.
Currently, we are investigating the use of a Multidimensional,
Multiple-Choice 0-1 Knapsack algorithm for handling this type
of problem [11]. The solution to that problem is similar to the
uni-dimensional version, except that it uses a parameterized
vector for resource prices, and it iteratively refines the value of
the parameters to eventually determine accurate conversion
prices.
This technique can be extended to handle perishable resources,
such as battery energy. In this case, intertemporal choices must
also be considered, and an explicit function must be introduced
to measure the value of saving energy for future use.

4.2 Security Attribute Evaluation Method
Traditional security risk management techniques advocate that
security managers determine an organization’ s risk of an attack
(a) by calculating the probable cost of the attack, i.e. riska =
cost * p(a), where p is the probability of the attack. For example
if a virus attack results in x hours of lost productivity, then the
risk of the attack is typically determined as Riskvirus = x *
average hourly wage rate * p(virus). Converting lost
productivity to dollars appears relatively straightforward, but
other types of attack consequences such as damaged public
reputation or impaired quality of patient care are not as easily
converted to dollars.
Unfortunately, simplistic risk calculations such as the one just
described do not capture the value that organizations place on
different types of costs. First, security managers find it difficult
to attach explicit financial value to intangibles, such as public
reputation or quality of patient care. Second, even when explicit
economic value can be assessed, business executives are often
skeptical about the underlying assumptions and lack confidence
in the results. For example, organizations are usually less
concerned about lost productivity from an attack than direct
financial loss. Therefore, techniques that preserve the value of
the outcome may produce more convincing results.
The Security Attribute Evaluation Method (SAEM) [2] uses
multi-attribute decision analysis techniques to help security
managers choose the best set of countermeasures against
possible attacks. Although the SAEM risk assessment process
reduces costs to a common threat index, the organization’ s
value of each type of cost is captured as part of the threat index.
The risk assessment cost dimensions are the most-likely types of
consequences of a successful attack, e.g., revenue lost, staff
hours lost, reputation damage suffered. Security managers
determine these cost dimensions. In order to determine the best
set of counter-measures, SAEM calculates the relative
importance of each consequence. The method introduces value
functions to assess the incremental importance and normalize
consequences, and uses the SWING-weight method [5] to elicit
the importance of each consequence. Finally, SAEM computes
the threat index, which is essentially a common, but neutral,
cost measure that indicates the relative costs of an attack to
other attacks.

5. RECONCILING
MULTIDIMENSIONAL ANALYSIS WITH
ONE-DIMENSIONAL TECHNIQUES
We have argued that cost-benefit analyses often need to
maintain multidimensional representations of costs in order to
preserve information about qualitative differences among
distinct types of costs. We identified some of the principal

characteristics of costs that impede conversion to common
units, and we showed the consequences of failing to preserve
the distinguishing information.
Eventually, though, we need to make decisions. To do so, we
must be able to compare multidimensional costs. Further, some
analysis techniques require scalar costs; the value of the
analysis, even with loss of information, may be large enough to
offset the information loss.
We believe that an appropriate strategy is to preserve the
distinctions among different costs as long as practical and to
reduce the cost vector to a scalar when circumstances force the
conversion.
Consider, then that a system with N cost dimensions is being
evaluated in an N-dimensional space, and assume for simplicity
that the dimensions are orthogonal. Then each cost point is
described by its cost in all the dimensions and corresponds to a
point in space. The vector from the origin to that point
represents that cost, and the length of that vector is one-
dimensional. The problem is, how can we establish a value for
the length of the vector? It is clearly inappropriate to treat the
indices for the various dimensions as if their units were
equivalent. Instead, we believe the proper approach is to
preserve the N-dimensional analysis as long as possible, then
perform late binding on the conversion by assigning a
conversion function from each dimension into some common
units. This makes it possible to compute the vector length and
reduce the cost vector to a scalar. Vectors in each dimension
can be scaled using parameterized weights, and then a common
cost can be computed using root-mean-square as if it were
Cartesian. This process can be iterated several times in order to
achieve more accurate weights. Other approaches may be
possible as well.

6. ACKNOWLEDGMENTS
This research is supported by the National Science Foundation under
Grants ITR-0086003 and CCR-0113810, by the Sloan Software
Industry Center at Carnegie Mellon, by DARPA under contract
F30602-00-2-0616, and by the High Dependability Computing
Program from NASA Ames cooperative agreement NCC-2-1298.
Authors would like to thank the members of the CMU Software
Research Seminar for their critical feedback.

7. REFERENCES
[1] Barry Boehm. Software Cost Estimation with COCOMO II.

Prentice Hall PTR, New Jersey: 2000.

[2] Shawn A. Butler. Security Attribute Evaluation Method. A Cost-
Benefit Approach. Proc ICSE 2002 - Int’l Conf on Software
Engineering, 2002

[3] Shawn A. Butler and Paul Fishbeck. Multi-Attribute Risk
Assessment. Symposium on Requirements Engineering for
Information Security, 2002.

[4] Shawn A. Butler and Mary Shaw. Incorporating Nontechnical
Attributes in Multi-Attribute Analysis for Security. Proc EDSER-
4: Workshop on Economics-Driven Software Engineering
Research, 2002.

[5] Proceedings of the Workshops on Economics-Driven Software
Engineering Research, EDSER-1, -2, -3, and -4. Workshops held
in conjunction with the 21st through 24th ICSE’s: International
Conference on Software Engineering, 1999 to 2002.

[6] L. Briand, K. El-Emam, and S. Morasca. On the Application of
Measurement Theory in Software Engineering. Empirical
Software Engineering. 1(1), 1996.

23

 6

[7] Norman E. Fenton and Shari Lawrence Pfleeger. Software
Metrics: A Rigorous & Practical Approach, International
Thomson Computer Press, 1997.

[8] D. Garlan, D.P. Siewiorek, A. Smailagic, P. Steenkiste.. Project
Aura: Toward Distraction-Free Pervasive Computing. IEEE
Pervasive Computing 1(2), April-June, 2002.

[9] J. Flinn, M. Satyanarayanan. Energy-aware Adaptation for Mobile
Applications. Proc 17th SOSP - ACM Symposium on Operating
Systems and Principles, 1999.

[10] R. Neugebauer and D. McAuley. Congestion Prices as Feedback
Signals: An Approach to QoS Management. Proc 9th ACM
SIGOPS European Workshop, 2000.

[11] Vahe Poladian, David Garlan, and Mary Shaw. Software
Selection and Configuration in Mobile Environments: A Utility-
Based Approach. Proc EDSER-4 - Workshop on Economics-
Driven Software Engineering Research, 2002.

Appendix:
Quick Review of Measurement Theory

Not all measurements are created equal. More precise initial
measurements enable more precise analyses and conclusions.
Measure theory provides models that explain the differences
and limitations.

Most members of this community are already familiar with this
material, but many have forgotten the terminology. As a

reminder, measure theory recognizes a number of scales for
classification or measurement, ordered from less to more
powerful [[6],[7]] The table summarizes the characteristics of
the major scales.
Some examples of ways these scales can be abused help to
show how the character of our data constrains the way we
should use it:
“The temperature in Miami is 20 degrees Celsius, the
temperature in Pittsburgh is 10 degrees, so it’ s twice as hot in
Miami.” Wrong. Celsius is an interval scale, and this kind of
comparison is only valid in ratio or absolute scales. The Kelvin
temperature scale is a ratio scale, so it’ s ok to convert to Kelvin
and compare: “The temperature in Miami is 293 degrees
Kelvin, the temperature in Pittsburgh is 283 degrees Kelvin, so
it’ s 7% warmer in Miami.”

“We surveyed the population for preferences on a scale of
Strong Yes / Yes / OK / No / Strong No and coded the results
on a 5-point scale with Strong Yes as 5 and Strong No as 1.
Option A averaged 4.0, option B averaged 3.0, and option C
averaged 2.0. Therefore option A dominated option B by as
much as option B dominated option C.” Wrong. The
preferences are measured on an ordinal scale, and the
comparison requires at least an interval scale. This sort of
comparison is especially noxious when coupled with
comparisons of the costs of the options. This is the kind of
problem we’ re addressing in this paper.

Scale Intuition Preserves Example Legitimate transformations

Nominal Simple classifica-
tion, no order

Differences Horse, dog, cat Any one-to-one remapping

Ordinal Ranking according
to criterion

Order Tiny, small, medium, big, huge Any monotonic increasing
remapping

Interval Differences are
meaningful

Size of difference Temperature in Celsius or
Fahrenheit

Linear remappings with offset
(ax+b)

Ratio Has a zero point Ratios of values are
meaningful

Absolute temperature (Kelvin),
values in currency units

Linear remappings without
offset (ax)

24

25

About the Return on Investment of Test-Driven Development

Matthias M. Müller

Fakultät für Informatik

Universität Karlsruhe, Germany

muellerm@ ira.uka.de

Frank Padberg

Fakultät für Informatik

Universität Karlsruhe, Germany

padberg@ ira.uka.de

Abstract

Test-driven development is one of the central tech-

niques of Extreme Programming. However, the im-

pact of test-driven development on the business value

of a project has not been studied so far. We present

an economic model for the return on investment when

using test-driven development instead of the conven-

tional development process. Two factors contribute to

the return on investment of test-driven development:

the productivity difference between test-driven develop-

ment, and the conventional process and the ability of

test-driven development to deliver higher quality code.

Furthermore, we can identify when TDD breaks even

with conventional development.

1 Introduction

Test-driven development (TDD) is the only way of cod-
ing in Extreme Programming (XP). TDD is also known
as test-first programming: write down a simple test for
each small piece of functionality before you start coding
the functionality. TDD guides you through the whole
life-cycle of an XP project. There is no design and
no explicit testing phase. Both are replaced by auto-
mated tests which are executed continuously to ensure
high program quality.
Proponents of TDD claim that it leads to faster de-
velopment and to more reliable code. Both properties
would make TDD superior to the conventional devel-
opment style which is comprised of a detailed design, a
coding phase, and test. First empirical evidence shows
[2] though that the claim of faster development might
not hold in general; even worse, the opposite seems to
be true. Therefore, in order to assess TDD we must
study the tradeoff between a (possibly) increased de-
velopment cost for TDD versus a corresponding gain
in code quality.
In this paper, we present an economic model for the

return on investment of TDD based on the following
two assumptions.

• The development with TDD is slower.

• TDD leads to higher quality code.

Other aspects of TDD, e.g. the cost of continuous test-
ing, are not captured explicitly by our model as their
impact on the monetary value of the project can not
be easily separated. Thus, we consider our model as a
first major step towards a full economic assessment of
TDD, and it adds to the description of the economic
benefit of XP projects [3].
The model compares the development cost for a con-
ventional project with the development cost for a
project that uses TDD. The investment cost is the ad-
ditional effort necessary to complete the TDD project
as compared to the conventional project. The life cy-
cle benefit is captured by the difference in quality mea-
sured by the number of defects that the TDD team
finds and fixes, but the conventional project does not.
This defect difference is transformed into a monetary
value using the additional developer effort correspond-
ing to finding and fixing these defects in the conven-
tional project. The concepts of the life cycle benefit
and the investment cost in our context are depicted in
figure 1. The upper horizontal line corresponds to the
conventional project with additional quality assurance
phase ! The lower horizontal line corresponds to the
TDD project.
Our model captures the return on investment for an
experienced TDD team. Additional cost for training
necessary when introducing TDD is not considered.
With this model, we can identify tradeoff lines where
TDD becomes beneficial over conventional develop-
ment. Interestingly, the break-even point is indepen-
dent of the actual project size, the number of devel-
opers per team, and the actual developer salary; the
decisive data are productivity difference, quality differ-
ence, defect removal time for one defect, working time
per developer per month, and the initial defect density.

26

LifeCycleBenefit

Investment

NetReturn

Quality Assurance

TDD

Conventional

Development

Development

Figure 1. Overview of benefit cost ratio calculation.

2 Model

This section describes those formulas of our model
which are necessary to understand the break-even anal-
ysis in Section 3. Appendix A contains a comprehen-
sive description of the model formulas.

2.1 Return on Investment

Calculating the return on investment ROImeans to add
up all the benefits of the investment, subtract the cost,
and then compute the ratio of the cost:

ROI =
LifeCycleBenefit − Investment

Investment

If the investment pays off, the ROI is positive, otherwise
negative. In our evaluation of TDD we focus on the
benefit cost ratio BCR which is easily derived from the
return on investment.

BCR =
LifeCycleBenefit

Investment
= ROI + 1

Studying the BCR instead of the ROI makes the break-
even analysis much simpler, see below.

2.2 Investment Cost

We first look at the investment cost. For the conven-
tional project, the development phase includes design,
implementation and test. The development phase of
the TDD project is comprised only of test-driven de-
velopment.
As first empirical evidence suggests, we assume that
the TDD project lasts longer than the conventional
project. We call the ratio of the project durations the
test-speed-disadvantage (TSD).

TSD =
TimeConv

TimeTDD

.

Since we assume that the development phase is
shorter for the conventional project, the test-speed-
disadvantage ranges between 0 and 1:

0 < TSD < 1.

Using productivity figures to explain the difference in
elapsed development time between the two kinds of
project, the TDD development is (1 − TSD) × 100%
less productive than the conventional project.

Finally, the investment is the difference between the
development cost of the TDD project and the conven-
tional project.

2.3 Life Cycle Benefit

Now, we consider the benefit. Each development
process is characterized by a distinct defect-removal-
efficiency (DRE). The defect-removal-efficiency de-
notes the percentage of defects a developer elimi-
nates during development. Initially, a developer in-
serts a fixed amount of defects per thousands lines
of code (initial-defect-density, IDD), but he eliminates
DRE×100% of the defects during the development pro-
cess. From the increased reliability assumed for TDD,
we have

0 < DREConv < DRETDD < 1.

The additional quality assurance (QA) phase of the
conventional project compensates for the reduced
defect-removal-efficiency of the conventional process.
The only purpose of the QA phase is to remove all
those defects found by TDD but not by the conven-
tional process. The amount of defects to be removed
in the QA phase is mainly characterized by

4DRE = DRETDD − DREConv.

The benefit of TDD is equal to the cost of the QA phase
for the conventional project. The benefit depends on

2

27

the effort (measured in developer months) for repairing
one line of code during QA, which is characterized by

QAEffort =
DRT× IDD

WT

QAEffort depends on the following:

• The defect removal time DRT. It describes the
developer effort in hours for finding and removing
one defect.

• The inital defect density IDD. The number of de-
fects per line of code inserted during development.

• The working time WT. The working hours per
month of a developer.

The reciprocal of QAEffort is a measure for the produc-
tivity during the QA phase.

2.4 Benefit Cost Ratio

The benefit cost ratio is the ratio of the benefit and
the investment. Substituting the detailed formulas of
our model given in Appendix A, the benefit cost ratio
becomes

BCR = QAEffort× Prod×
4DRE× TSD

(1 − TSD)
, (1)

where Prod is the productivity of the conventional
project during the development phase measured in lines
of code per month. Values larger than 1 for the BCR
mean a monetary gain from TDD, values smaller than
1 a loss.

2.5 Break Even

Setting the benefit cost ratio equal to 1, we get a rela-
tion between the test-speed-disadvantage of TDD and
the reliability gain of TDD:

TSD =
1

c × 4DRE + 1
, or

4DRE =
1− TSD

c × TSD

c =QAEffort× Prod

This relation characterizes the break-even point for
TDD. If the difference between the defect-removal-
efficiencies is known, a lower bound for the test-speed-
disadvantage can be calculated from which on the TDD
project starts to be beneficial.

3 Results

3.1 Exploring the Benefit Cost Ratio

As an example, we examine the benefit cost ratio of
the following scenario.

Factor Value

DRT 10 h/defect

IDD 0.1 defects/LOC

WT 135 h/month

Prod 350 LOC/month

Let TSD and 4DRE vary. Figure 2 shows the
benefit cost ratio plane spanned by the test-speed-
disadvantage TSD and the defect-removal-efficiency
difference 4DRE. Values larger than 4 are cut off.

0.2 0.4 0.6 0.8 1.0

0.2
0.4

0.6
0.8
1.0

1

2

3

4
D

R
E

TSD
0.0

B
C

R

∆

Figure 2. Benefit cost ratio dependent on TSD
and 4Eff

For large values of the test-speed-disadvantage (TSD >

0.9) the TDD project performs almost always better
than the conventional project, even for a small defect-
removal-efficiency difference. On the other hand, if
the test-speed-disadvantage is very small (TSD < 0.2),
TDD does not produce any benefit regardless how large
the defect-removal-efficiency difference is.
The following table shows some benefit cost ratios for
selected values of TSD and 4DRE.

TSD = 0.9

4DRE BCR

0.01 1.0 : 4.3

0.05 1.7 : 1

0.1 2.3 : 1

TSD = 0.3

4DRE BCR

0.2 1 : 4.5

0.4 1 : 2.3

0.6 1 : 1.5

0.8 1 : 1.1

0.9 1 : 1

3

28

If the productivity of TDD is 10% smaller than
the productivity of the conventional project (left ta-
ble), a 5% better defect-reduction-efficiency suffices
for TDD to break-even with the conventional process
(1.7 : 1). If the productivity of TDD is much worse, say,
70% smaller (right table), even a 80% better defect-
reduction-efficiency does not lead to a gain as compared
to the conventional process (BCR is 1 : 1.1).

3.2 Break Even Analysis

With break even analysis, the ranges for TSD and
4DRE can be identified where TDD is more beneficial
than the conventional process. Figure 3 shows the in-
tersection of the surface in figure 2 with the horizontal
plane BCR = 1.

0 20 40 60 80

0
20

40
60

80
10

0

100

D
el

ta
 E

ffi
ci

en
cy

 [%
]

TestSpeedDisadvantage [%]

BCR < 1

BCR > 1

Figure 3. TSD and 4Eff plane for BCR = 1

The right half of the plane (BCR > 1) corresponds to
the parameter range of TSD and 4DRE where TDD
is superior over conventional development. Two obser-
vations can be made. First, assuming that practical
values for 4DRE can not be larger than 20%, the TSD
may not drop below 66% for TDD, otherwise the TDD
cost exceeds its benefit. Second, if the TSD drops be-
low 27%, TDD does not have a chance to provide any
financial return, regardless of how large the improved
defect-removal-efficiency may be.

3.3 Varying other project parameters

Figure 4 shows the different cost benefit break-even
lines for varying values of the programmer productivity
Prod. All other parameters are kept constant.

0 20 40 60 80 100

0
20

40
60

80
10

0

Prod=350

Prod=250

Prod=450

TestSpeedDisadvantage [%]

D
el

ta
 E

ffi
ci

en
cy

 [%
]

Figure 4. Break even analysis for varying values

for Prod

The higher the initial productivity, the higher the
chance for TDD to get a financial return over conven-
tional development. This result is not intuitively obvi-
ous but, it can easily be derived from (1) and explained
with figure 1 as follows. The higher the productiv-
ity the shorter the elapsed development time for both
TDD and the conventional project. If the elapsed time
for the development phase decreases, the investment
(difference between both development phases) also de-
creases, and thus the benefit cost ratio becomes larger.

4 Conclusions

We propose an economic model for the return on in-
vestment of test-driven development. Our analysis of
the break-even leads, all other parameters are kept con-
stant, to the following conclusions:

• The return on investment of TDD depends to a
large extend on the slower development of TDD
and the higher quality code of TDD.

• Other factors like the effort for fixing a faulty line
of code, or, the productivity of a developer using
the conventional development process, have only
minor impact on the return on investment of TDD.

• The calculation of the return on investment is in-
dependent of the project size, the number of de-
velopers, and the developer salary.

Our model assumes an experienced TDD team. The
additional cost for training which is necessary when
first introducing TDD is ignored so far.

4

29

Finally, our model strengthens the need for actual em-
pirical figures (or ranges) for the quality advantage and
the loss of productivity of TDD, in order to get a com-
prehensive evaluation of the cost and benefit of TDD.

References

[1] W. Humphrey. A discipline for software engineering.
Addison-Wesley, 1997.

[2] M. Müller and O. Hagner. Experiment about test-first
programming. IEE Proceedings Software, 149(5):131–
136, Oct. 2002.

[3] M. Müller and F. Padberg. Extreme programming from
an engineering economics point of view. In International
Workshop on Economics-Driven Software Engineering
Research (EDSER), Orlando, Florida, May 2002.

[4] I. Sommerville. Software Engineering. Addison-Wesley,
1995.

A Appendix

A.1 Factors in the Economic Model

The following list explains the factors and their abbre-
viations used throughout the model.

ProductSize Size of the project in lines of code.

Prod The developer productivity measured in lines of
code written per month. This figure includes de-
sign, coding, and testing. We assume that the pro-
ductivity remains constant for all developers dur-
ing the project. The average productivity ranges
between 250 and 550 lines of code per month [4].

Salary Salary for the whole team per year. This factor
is not further broken down as it turns out that our
model is independent from the actual value for the
salary.

NumOfDev The number of developers working in the
project. We assume that this number is fixed
throughout the whole project.

DRETDD/ DREConv The defect removal efficiency de-
scribes the percentage of defects a team removes
during development. We assume that TDD has a
higher defect removal efficiency than the conven-
tional process.

TSD The test-speed-disadvantage accounts for the ad-
ditional effort for using TDD during development
as compared to the conventional process.

DRT The defect removal time denotes the effort for
finding and removing one defect during the QA
phase measured in hours per defect.

IDD The number of defects per thousand lines of code
inserted during development is described by the
initial defect density. A typical number is 100 de-
fects per thousands lines of code [1]. A developer
reduces this number of defects according to his de-
fect removal efficiency.

WT The working hours of a developer each month.

A.2 Model Formulas

For the conventional project, the development time is

TimeConv =
1

12
×

ProductSize

Prod × NumOfDev
.

For the TDD project, the decreased productivity has
to be taken into account:

TimeTDD =
TimeConv

TSD

During the QA phase, the conventional project has to
compensate for the lower defect removal efficiency as
compared to TDD:

4DRE = DRETDD − DREConv

There have to be

4Defect = ProductSize× IDD×4DRE

defects removed during QA to get the same defect den-
sity as the TDD project. Thus, the time spent in the
QA phase is

TimeQA =
1

12
×

DRT×4Defect

WT× NumOfDev

The cost for both the TDD and the conventional
project and the QA phase is

Cost p = Time p × Salary

where p ∈ {TDD, Conv, QA }.

A.3 Calculating the BCR

The benefit cost ratio is defined as the ratio between
the life cycle benefit and the investment (cost):

BCR =
LifeCycleBenefit

Investment

Recall that the life cycle benefit equals the cost for the
additional QA phase in the conventional process.

BCR =
CostQA

CostTDD − CostConv

5

30

The factor Salary can be canceled out. Hence,

BCR =
TimeQA

TimeTDD − TimeConv

=
TimeQA

TimeConv × (
1

TSD

− 1)
.

Further canceling of the factors 12, NumOfDev, and
ProductSize leads to

BCR =
DRT× IDD× Prod×4DRE

WT× (
1

TSD

− 1)

=
DRT× IDD× Prod×4DRE× TSD

WT× (1 − TSD)

=
DRT× IDD

WT
× Prod×

4DRE× TSD

(1 − TSD)

=QAEffort× Prod×
4DRE× TSD

(1 − TSD)
.

6

31

 Selecting a defect prediction model for maintenance
resource planning and software insurance

Paul Luo Li
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh PA 15213

1-412-268-3043

Paul.Li@cs.cmu.edu

Mary Shaw

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh PA 15213
1-412-268-2589

Mary.Shaw@cs.cmu.edu

Jim Herbsleb

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh PA 15213
1-412-268-8933

jherbsleb@acm.org

ABSTRACT
Better post-release defect prediction models could lead to better
maintenance resource allocation and potentially a software
insurance system. We examine a special class of software systems
and analyze the ability of currently-available defect prediction
models to estimate user-reported defects for this class of software,
widely-used and multi-release commercial software systems. We
survey currently available models and analyze their applicability
to an example system. We identify the ways in which current
models fall short of addressing the needs for maintenance effort
planning and software insurance.

General Terms
Management, measurement, economics, reliability, software
maintenance.

Keywords
User-reported defect estimation, empirical maintenance models,
software defect models.

1. INTRODUCTION
Hedging the risks associated with owning software is an important
economic issue for both producers and consumers of software
products. Risk aversion on the part of software consumers has
created a market for software maintenance contracts and has
opened the opportunity for software insurance. Software
producers must manage the uncertainties of providing and
marketing support that balance the risks and benefits they present
to their customers. A good defect estimation model is an
important first step toward pricing maintenance contracts and
insurance and toward predicting support costs such as
maintenance staffing. We compare models for estimating user-
reported defects in the particular setting of widely-used, multi-
release commercial software systems. For a defect prediction
model to be useful in this setting the model has to account for
aspects of the software system and its operating environment that

could cause large variances in predictions.

Widely-used and multi-release commercial software systems
include, for example, operating systems, servers, web-browsers,
and office suites. These software systems are not intended to be
mission critical, and it is generally recognized that they contain
defects. However, they are used in situations where they are
essential to the business interests of the user. The risk aversion
characteristics of these users create a market for software
maintenance support and software insurance.

Maintenance contracts provide assurance that a reported defect
will be resolved within a contracted time and/or in a certain
manner, while software insurance would compensate the user for
the losses associated with a defect [8]. Although maintenance
planners are interested in the costs associated with repairing a
defect and insurers are interested in the damages that a defect can
cause, both are interested in the number of defects that are likely
to occur.

Currently, planning for maintenance activities is mostly ad-hoc,
and business insurance does not separately consider software
failures. Defect estimation models would improve the quality of
information available for these decisions. Widely-used multi
release commercial systems are usually developed and tracked
with processes that gather historical information that can be used
by a defect estimation model. A good defect prediction model
should use this information to accurately model defect
occurrences in the field and to account for aspects of the system
that cause variation in defect rates between releases.

This paper differs from papers that evaluate the effectiveness of
reliability models, e.g. [9] in that we focus on user-reported
defects, which are defect occurrences in the field, for widely-used
multi-release commercial software systems. Papers evaluating
reliability models focused on defects found during testing. In
addition, they concentrated on custom developed and one-off
systems.

While we can only speculate on the value of a software insurance
system, the motivation for better maintenance resource planning is
clear. A market for software maintenance already exists.
Allocating the right amount of resource can provide a competitive
advantage for software producing organizations such as making
better pricing decisions and lowering staffing costs, while
maintaining the level of service.

Section 2 presents an example system and Section 3 describes the
complexities associated with estimating defects for such a system.
Section 4 surveys the currently-available defect estimation
models. Section 5 analyzes how well the models address concerns

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EDSER ’03,

32

raised in Section 3. Section 6 make presents suggestions for
further research and conclusions

2. EXAMPLE SYSTEM
We will use a concrete example to help us reason about the defect
estimation problem. Consider a software system, SystemX.

SystemX is an operating system with the usual functionalities
associated with such a system. Specification of these
functionalities does not come from one customer, but rather has
evolved through time by adding capability, in response to market
demands. Customers of SystemX vary, from application
development organizations that develop software for SystemX, to
small businesses that depend on SystemX to run applications
coordinating suppliers, and private users that use SystemX for
leisure.

SystemX is developed by an organization whose business goal is
to maximize profit. This organization has a clearly defined,
repeatable development process. The organization's profit
maximizing strategy is to keep customers happy and loyal by
implementing advanced features and by providing customer
service, all at minimum costs. In addition to developing SystemX
this organization also provides customer service support. This
customer service division answers and tracks user/customer
questions that arrive through various channels. Incoming inquiries
include a combination of questions that reflect defects in the
software and questions that are requests for information or
symptoms of user confusion. The support organization records a
defect when it determines that a customer question is a code
related problem. The recorded defects then become the
responsibility of the maintenance organization, which could be
the same as the development organization, to resolve.

We will use SystemX to compare and evaluate defect estimation
models.

3. THE OPERATIONAL SETTING
SystemX is a widely-used multi-release commercial system. This
means that successive releases of SystemX implement changes as
dictated by the market. Each release will have many instances,
installed with different configurations. A new release of SystemX
repairs some defects and, as history indicates, introduces new
defects. The decisions to adopt a new release and to report defects
are made by the customer. This section examines the implications
of these conditions. Each condition introduces variation in defect
occurrence characteristics, which includes both the number of
defects and the occurrence rates. Effects of these variations must
be understood in order to predict defect rates accurately.

3.1 User-reported defects
This section addresses user-reported defects, the occurrence of
interest. We follow the definition set forth in [6] and [7]: a user-
reported defect is a mistake at the coding level, which manifests
in a deviation from the expected behavior that is reported by a
user. We take defects to mean user-reported defects in this paper.

After SystemX is released, the meaningful measure of perceived
quality in the commercial setting is defects as reported by the user
[6]. The number of users using the system directly causes
variations in user-reported defect occurrence characteristics.

We count the number of defects associated with actual code
defects. Many users might report the same defect or different
symptoms of the same defect. For our purposes, a defect is
recorded the first time it is reported, and subsequent reports of the
same defect are ignored or attached to the prior defect report. In
addition, not all calls to a call center reflect defects; some, for
example, reflect misunderstanding by the user. Defects are
recorded only when the support organization can associate them
with code defects.

3.2 Widely-used systems
This section addresses characteristics of a system that is used in
different configurations and for different purposes. Widely-used
systems have many instances in operation running with different
hardware and software configurations, as is often the case, for
example when a system is sold to many different customers.

Differences in configuration for SystemX include other systems,
such as databases, middleware, and applications, hardware
components, such as processors and storage devices, and/or in
purpose of use, such as for business critical infrastructure or for
leisure.

Our description of "widely-used" is not to be confused with
"widely-distributed", which refers to systems that are implemented
with many distributed communicating components. It is also not
to be confused with a system that has simply many users.
Although System X could have many users, we are concerned
here with systems that have multiple instances.

Widely-used characteristic causes variation between defect
occurrences characteristics during testing and in the field. The
number of different possible configurations of System X makes it
infeasible to consider and test all possible configurations during
development. Moreover, the large number of different types of
uses makes it impractical to discover all usage scenarios.

3.3 Multi-release systems
This section discusses the characteristics of an evolving software
system that changes to meet developing trends by incorporating
the latest innovations. We characterize multi-release systems as
having successive releases that incorporate incremental changes
and improvements.

Depending on the features introduced in a release and a
customer’s usage characteristics, some customers might choose to
adopt the latest release of SystemX right away, other might delay
adoption, and others might choose to stay with older releases. The
development process is also undergoing constant improvement.

Different user adoption strategies cause variation in defect
occurrence rates. A development organization might always adopt
the latest release of SystemX to assure continued compatibility
with its own products. A small business might delay adoption.
Leisurely users might never adopt the latest release of SystemX
unless they wish to utilize an important feature. Defects associated
with particular hardware and software configurations might or
might not be discovered for a given release.

Differences in the complexity and extent of the changes
introduced by a release can cause variations in defect occurrence
characteristics. Releases that introduce major modifications or
new technologies, which due to their critical nature and/or
complexity might have significant impacts on the development

33

process, the resulting software system, and user adoption and
usage characteristics.

Multi-release systems could also experience variations in defect
occurrence characteristics resulting from changes in the
development process. Development organizations are constantly
trying to improve their processes. The improvements are
incremental, but these process changes can affect the number of
residual defects in software system.

3.4 Commercial systems
This section presents characteristics of a software system
developed by an organization in which the release schedule is
driven by market forces.

SystemX’s quality is one among many forces guiding
development and release decisions. Other considerations include
demands of the market, timetables set forth by management, and
resource constraints of the organization. Business objectives
might make it necessary to make trade offs between time to
market and quality. Commercial systems will have variations in
defect occurrence characteristics, since the software must
sometimes be release with substantial number of defects still in
the system.

3.5 Summary
The problem is multi-dimensional. Table 1 presents a summary of
the concerns that the defect model must address. This serves as a
reference when thinking about possible solutions

Table 1. Summary of concerns.

4. EXISTING MODELS
For simplicity, we focus only on the defect occurrence rates and
treat all defects equally. We recognize that different defects will
have different associated costs, such as their damage to the
customer associated or cost of their repair to the development
organization. We hope to address these concerns in later works.
This section examines currently available prediction models
focusing on aspects of the models that we will use for our analysis
in section 5.

4.1 Parameterized mathematical models
Parameterized mathematical models have a fixed form with
parameters that are tuned using data from the current release.
Since this class of models was originally developed for
customized one-off systems, they assumed that the intended usage
environment could be simulated accurately, thus they were able to
extend defect occurrence rates found during testing into the field

[10]. These models fit their parameters using defect counts and
defect occurrence times starting from time zero up to time t. From
the tuned model, the defect occurrence rates and in some cases,
the numbers of remaining defects after time t are estimated.

�
 and � are model parameters, which have different meaning and

values for each model. The total number of defects, N, is assumed
to be given in some models, like the Weibull [6] and variants of
the exponential [11]. Since N cannot always be accurately
estimated, other models include the total number of defects as a
model parameter to be estimated. The model parameters are tuned
using data from the current release up to some time t, through
mathematical methods like maximum likelihood or least squares.
Due to the different model forms, each model will produce a
different prediction for the number of defect and the rate of defect
occurrences after time t. A summary of commonly applied
models is in Table 2.

Table 2. Summary of parameterized mathematical models.

Table 3 gives a summary of implied assumption and research and
applications. Due to the different model forms and
parameterizations, each model in Table 2 has a different implied
assumption regarding the hazard rate, the rate at which the defects
remaining in the system are uncovered at time t. The hazard rate
will be important when we analyze and compare the ability of
parameterized models to predict defect for SystemX in Section
5.1. Detailed explanations of the concepts presented in this
section can be found in [8].

Table 3. Summary of assumptions

Characteristics
Sources of variation in user-reported

defects
User-reported
defects

-Number of users

Widely-used
system

-Software configurations
-Hardware configurations
-Usage characteristics

Multi-release
system

-Adoption characteristics
-Changes introduced
-Development process changes

Commercial
system

-Number of residual defects at time of release

Model
Group

Model Form Input Output

Finite
Exponential

µ(t)= � (1–exp(-
�
 t))

Defect
occurrence
counts and
times, up to
time t

Defect rates
and defect
counts after
time t

Infinite
Geometric

µ(t)=(1/
�
)ln((�

�
exp(

�
))t

+ 1)

Defect
occurrence
counts and
times, up to
time t

Defects rates
and defect
counts after
time t

Infinite
Logarithmic

µ(t)=ln(�
�
t+1)/

�

Defect
occurrence
counts and
times, up to
time t

Defect rates
and defect
counts after
time t

Finite
Weibull

µ(t)=N(1–exp(-
�
ta))

Defect
occurrence
counts and
times, up to
time t

Defects rates
and defect
counts after
time t

Finite
Gamma

µ(t)= � (1–(1+
�
t)exp(-

�
t))

Defect
occurrence
counts and
times, up to
time t

Defect rates
and defect
counts after
time t

34

4.2 Bayesian methods
In contrast to parameterized mathematical models, which require
data from the current release up to time t to estimate defects after
time t, Bayesian models can take prior information, such as
information from previous releases, to estimate defects before the
release of the current release. An important feature of the
Bayesian framework is its ability to use information as it become
available to improve and adjust estimates. The Bayesian model is
the same as its non-Bayesian cousin. The difference is that the
parameters in the Bayesian models are treated as variables as well.

Bayesian model need prior distributions for each parameter in the
model [10]. There are various ways to construct the prior such as
creating a distribution of possible parameter values using fitted
model parameters of previous releases or eliciting possible values
from experts, and in the worst case where there no prior
information is available, it is possible to mathematically construct
a non-informative prior that offers no insight into the system but
which makes it possible to generate a prediction. Once data
becomes available from the field, the model parameters can be
adjusted from the prior to better fit the data. At any time t it is
possible to have modified predictions as result of re-estimating
model parameters using field defect information.

Table 4 gives a summary of the inputs, outputs, and research on
Bayesian models. We analyze the ability of Bayesian models to
model defects for SystemX in Section 5.2.

Table 4. Summary of Bayesian models.

4.3 Product/process models
Process and product models estimate the number of defects in the
current release using estimates of the size of the product or
deviation from the previous release and known organizational
information.

Research in this area traces back to Belady and Lehman’s work on
system growth and system structure degradation in successive
system releases [7]. Their research serves as the basis for several
methods, which measure the amount of change in a system and
predict the number of defects that result from the changes. Some
notable results are summarized in Table 5. We analyze the ability
of product/process models to predict defects for SystemX in
Section 5.3.

Table 5. Product/process models.

5. ANALYSIS OF EXISTING SOLUTIONS
Given the various models available we now examine how well
they address the concerns involved with modeling user-reported
defect for SystemX.

5.1 Ability of the model to fit the data
The first step is to choose a model that accurately describes defect
occurrence data. This will also involve picking a model from
Table 3 that fits the conditions of SystemX.

Section 4.1's survey of parameterized mathematical models in
practice shows that three categories of models are widely applied:
finite exponential, infinite, and finite Weibull and Gamma.

Finite exponential models like those that used by Jelinski and
Moranda [11]and Musa [14], (First row in Table 3.) assumes that
the number of defects in the system is finite and that the hazard
rate, the rate at which defects are uncovered at time t, is constant.
These assumptions do not fit SystemX since the repair process can
introduce defects, and the rate at which the varying numbers of
customers are uncovering defects is non-constant

Infinite models like those used by Musa-Okumoto [15] and
Moranda [12], (The third and forth rows in Table 3.) assumes that
the number of defects in the system is infinite due to a decreasing
hazard rate. Although this class of models correctly assumes that
defects are being re-introduced into the system. It also assumes
that the rate at which defects are being uncovered is always
decreasing, but since the number of users of SystemX increase
over time, the rate at which defects in the system is uncovered
should be increasing.

The final class of parameterized mathematical models we examine
is Weibull and Gamma models like those used by Kenny [6],

Model
Group

Hazard
Rate

Defect
Total

Research

Finite
Exponential

Constant Finite
Jelinski and Moranda,
1972 Musa, 1979

Infinite
Geometric

Decreasing Infinite Moranda, 1979

Infinite
Logarithmic

Decreasing Infinite Musa-Okumoto, 1984

Finite Weibull Increasing Finite Kenny, 1993

Finite Gamma Increasing Finite
Yamada, Ohba, and Osaki
1983

Model
Group

Research Input Output

Bayesian
Exponential

Littlewood 1987

Historical defect
occurrence
information and
available defect
occurrence
information

Defects
occurrence
rates and
counts

Bayesian
Gamma

Littlewood-
Verrall 1980

Historical defect
occurrence
information and
available defect
occurrence
information

Defect
occurrence
rates and
counts

Bayesian
Geometric

Liu 1987

Historical defect
occurrence
information and
available defect
occurrence
information

Defect
occurrence
rates and
counts

Model
Group

Research Input Output

Using lines of
code with
organizational
adjustments

Rome Laboratory,
1992
COQUALMO,
1999

Lines of code
estimate and
process
effectiveness
estimates

Total
number of
residual
defects

Using software
change
information

Mockus et al.
2003,
Graves et al. 2000

Change
management
information

Number of
residual
defects
(effort)

35

Yamada and Ohba [17]. (Row five and six in Table 3) Like
exponential models, the number of defects is assumed finite.
However, unlike both exponential and infinite models, this class
accurately describes the migration characteristic. This class of
models can describe the ramping up process due to migration seen
in commercial systems, using the expressive power offered by the
models’ parameters.

The Weibull model has been shown to be able to describe the
defect occurrence patterns seen in widely–used commercial
systems[6]. We not aware of any other papers that attempts to fit
other model to defect occurrence data from a system with our
characteristics.

5.2 Ability to incorporate prior information
The main drawback of parameterized mathematical models is the
need to wait until defect data from the current release is available.
However, if we want to plan for maintenance, we need to make
defect predictions before release to the field. We cannot use
defects occurrences during testing to tune the model before
release, because due to the widely-used condition of SystemX
defect rates seen during testing will not reflect occurrence
characteristics seen in the field. However, we can use the multi-
release characteristic of SystemX to help us to over come this
difficulty.

Defect information from previous releases can be used by
Bayesian models in Table 4 to construct prior distribution for
their model parameters before field defect information from the
current release is available. The resulting model will be able to
estimate defect occurrence rates and defect occurrence counts for
the current release before release to the field. The Bayesian
process also uses defect information as it becomes available to
update the parameter estimates. At any stage during the Bayesian
process, the data collected up to that point can be assumed to be
prior information and all the parameters can be re-estimated.
Intuitively this means that whenever defects are reported and
repaired for SystemX, a Bayesian model can re-computed the
number of defects in the system to reflect the fact that repairs
could introduce new defect into the system.

The Bayesian Gamma model used by Littlewood should be able to
describe the characteristics of a commercial system, but the total
number of defects for the current release is a model parameter that
is estimated using defect occurrence data from previous release.
Intuitively this does not make sense because the number of defects
seen in any given release of SystemX is a result of the amount
change in the current release and the status of development
organization, not a result of the field defect occurrence
characteristics of previous releases.

There is not at present a Bayesian Weibull model. However, we
feel that the machinery available through Bayesian methods and
the ability of the Bayesian framework to update estimates be
combined with the Weibull model.

5.3 Ability to account for product/production
differences
Up to this point, we have not considered variations due to the
product or the organization that developed the product. Since
information about the changes a release implements and the
development effort is available before release, product/process
models use this information to estimate defect occurences.

COQUALMO, the extension into the software quality domain of
Bohem’s work with COCOMO estimates the number of residual
defects in a system using lines of code and process drivers related
to the characteristics of the particular organization concerning
various defect introduction stages and defect removal methods.
These drivers are derived from expert estimates at first, then tuned
to match actual defect counts.[3] COQUALMO assumes that the
number of defects at release time is the result of two processes
during development, defect introduction and defect removal. The
drawbacks of COQUALMO are that it estimates only the total
number of defects and lines of code. Lines of code alone are not
very good estimators of complexity. In addition, maintenance
planning and software insurance for SystemX require defect
occurrence estimations at any time t, not merely the total number
of defect.

A promising alternative is to use change data as captured by
change management systems. In addition to lines of change data,
this data includes number of changes, feature requests, and
developer who made the change. Mockus uses the non-intrusively
recorded feature/fix requests, which can be seen as a change at a
high level, along with lines of code and number of changes to
estimate efforts [13]. The method uses a delay factor to determine
when the estimated effort will occur and a ratio to describe the
defect repair effort relative to development effort. However, this
method does not adoption characteristics, which could vary
between releases depending on the features implemented. In
addition, this method does not take in to consideration process
changes.

Currently, there does not exist a model that incorporates research
in parameterized mathematical models, Bayesian models, and
process and product models.

6. CONCLUSION AND THE ROAD AHEAD
Widely used and multi-release commercial software systems are
an important class of software systems. Reliance on these systems
has created a need for maintenance contracts to assure defect
resolution and for software insurance to provide compensation in
the event of a defect. Both techniques require a defect occurrence
model, but no model is currently available that can account for all
possible causes of variation. We find existing solutions lacking in
their considerations of organizational changes and user adoption
characteristics.

Current modeling techniques do not adequately consider
organizational changes. Process changes and tool changes can
affect defect occurrence characteristics as well as influential
personnel changes, such as a lead designer [4]. We think
evaluations of the development process from developers who have
worked on a release and can better evaluate the process and
product variations as shown by postmortems and experience
reports. However, currently no model attempts to quickly capture
and use this information.

Current approaches to defect modeling do not account for
differences in customer adoption characteristics. We feel these
differences are important because in the commercial setting the
customers are the ones who exercise the code to detect defects.
The number of customers and the configurations they use has a
direct effect on the number of defects found. Customer support
divisions and sales departments could provide the needed
information.

36

Research in customer adoption is not to be confused with
customer usage profiles and defect profiles as researched by
Wyuker [16] and Bassin and Santhanam [1]. Customer usage
profiles describe the frequency with which a piece of code is
exercised. Defect profiles describe the type and order in which
defects occur. While both are interesting, we are interested in rates
of adoption: the number and type of customers who adopt a
release and the time when they adopt.

Improved defect estimation model in our setting needs to be
validated by showing that it is generally applicable to a wide
range of commercial software systems like operating system,
servers, office suites, or web browsers. In addition, it has be an
improvement over existing solutions such as ones listed in Table
6.

Table 6. Summary of existing solutions

Once a defect occurrence estimation model is available, can we
move towards structured maintenance planning and begin to
evaluate the possibility of software insurance.

7. ACKNOWLEDGMENTS
This research was supported by the National Science Foundation
under Grand CCR-0086003, by the Carnegie Mellon Sloan
Software Center, by the High Dependability Computing Program
from NASA Ames cooperative agreement NCC-2-1298.

The authors would like to thank Peter Santhanam and Bonnie Ray
of IBM Research for their contribution to this work.

The authors would like to thank Audris Mockus for his insights,
and Vahe Poladian for his valuable input.

8. REFERENCES
[1] Kathryn Bassin, Peter Santhanam. “Use of Software Triggers to

Evaluate Software Process Effectiveness and Capture Customer
Usage Profile.” Symposium on Software Reliability Engineering,
1997.

[2] Ram Chillarage, Shriram Biyani, Jeanette Rosenthal. “Measurement
of Failure Rate in Widely Distributed Software.”

[3] Sunita Chulani. “COQUALMO9 COnstructive QUAlity MOdel) A
Software Defect Density Prediction Model.” Project Control for
Software Quality. Editors: Kusters, Cowderoy, Heemstra, and van
Veenendaal. Shaker Publishing, 1999.

[4] B, Curtis. H. Krasner, et al. "A field study of the software design
process for large systems." Communications of the ACM. 31(11):
1268-1287. 1988.

[5] A.L. Goel, K. Okumoto “Time-Dependent Error –Detection Rate
Model for Software and Other Performance Measures.” IEEE
Transaction on Reliability,

[6] Garrison Q. Kenny. “Estimating defects in commercial software
during operational use.” IEEE 1993.

[7] M.M. Lehman, L.A. Belady. Program Evolution: Process of
Evolution Change. Academic Press Inc. 1985.

[8] Paul Luo Li, Mary Shaw, Kevin Stolarick, and Kurt Wallnau. “The
Potential for Synergy Between Certification and Insurance” Special
edition of ACM SIGSOFT from the IWRE in conjunction (ICSR7),
April 2002.

[9] Yahswant Malaiya, Nachimuthu Karunanithi, Pradeep Verma.
“Predictability of Software-Reliability Models.” IEEE Transaction
on Reliability Vol 41. No 4. 1992.

[10] Michael Lyu. Software Reliability Engineering. McGraw-Hill, 1996.

[11] P.L Moranda, Z. Jelinski. Final Report on Software Reliability
Study. McDonnell Douglas Astronautics Company, MADC Report
Number 62921. 1972.

[12] P.L. Moranda. “Event-Altered Rate Models for General Reliability
Analysis.” IEEE Transaction on Reliability. Vol R-28,1979 pp376-
381.

[13] Audris Mockus, David M. Weiss, Ping Zhang "Understanding and
Predicting Effort in Software Projects." ICSE 2003 Proceedings

[14] J.D. Musa. “Validity of Execution-Time Theory of Software
Reliability.” IEEE Transactions of Reliability, Vol R-28, 1979.
pp181-191.

[15] J.D. Musa, K. Okumoto. “A Logarithmic Poisson Execution Time
Model for Software Reliability Measurement.” Proceedings Seventh
International Conference on Software Engineering, 1984.pp 230-
238.

[16] Elaine Weyuker, S. Rapps. "Data Flow Analysis Techniques For
Test Data Selection." Proceedings of the 6th International
Conference on Software Engineering (ICSE), Tokyo, Japan,
September 1982, pp.272-278.

[17] S. Yamanda, M. Ohba, S. Osaki. “S-Shaped Reliability Growth
Modeling for Software Error Detection.” IEEE Transaction on
Reliability, Vol R-32. 1983. pp 475-478.

Model
Grouping

Best solution
Desirable
features

Main
Drawbacks

Parameterized
mathematical
models

Weibull model

-Describes the
ramping up
pattern

-Assumes no
defects are
introduced into
the system
-Descriptive,
not predictive
thus cannot be
used for predict
before release.

Bayesian
models

Bayesian
Gamma model

-Predictive by
using priors
-Parameters
(like defect
totals) can
change after
release

-Does not
consider release
differences

Process/
Product
models

Product change
model

-Describes
release
differences
though change
data

-Does not
consider
organizational
changes
-Does not
consider
adoption
characteristics

37

ArchOptions: A Real Options-Based Model for Predicting the Stability of

Software Architectures

Rami Bahsoon and Wolfgang Emmerich
Dept. of Computer Science
University College London

Gower Street, WC1E 6BT, London, UK
{r.bahsoon, w.emmerich}@cs.ucl.ac.uk

Abstract

Architectural stability refers to the extent an
architecture is flexible to endure evolutionary changes in
stakeholders’ requirements and the environment, while
leaving the architecture intact. We assume that the
primary goal of a software architecture is to guide the
system’s evolution. We contribute to a novel model that
exploits options theory to predict architectural stability.
The model is predictive: it provides “insights” on the
evolution of the software system based on valuing the
extent an architecture can endure a set of likely
evolutionary changes. The model builds on Black and
Scholes financial options theory (Noble Prize winning) to
value such extent. We show how we have derived the
model: the analogy and assumptions made to reach the
model, its formulation, and possible interpretations. We
refer to this model as ArchOptions.

Keywords. Architectural economics; economic-driven
software engineering research; relationship between
requirements and software architecture; real options
theory; requirements evolution.

1. Introduction

Architectural stability is a concept that bridges the
gaps between research in requirements engineering,
software architecture, and software economics of
complex evolutionary systems. The informal concept of
architectural stability refers to the extent an architecture is
flexible to endure evolutionary changes in stakeholders’
requirements and the environment, while leaving the
architecture intact.
 In an evolutionary context, there is a pressing need
for stable software architectures. In this context,
requirements are generally volatile; they are likely to
change and evolve over time. The change is inevitable as
it reflects changes in stakeholders’ needs and the

environment in which the software system works. The
tension between an unstable architecture and the volatile
requirements may entail large and disruptive changes for
the requirements to be accommodated. The change may
“break” the architecture necessitating changes to the
architectural structure (e.g. changes to components and
interfaces), architectural topology (e.g. architectural style,
where a style is a generic description of a software
architecture), or even changes to the underlying
architectural infrastructure (e.g. middleware). It may be
expensive and difficult to change the architecture as
requirements evolve [11]. Consequently, failing to
accommodate the change leads ultimately to the
degradation of the usefulness of the system.

From an economic perspective, the volatility of
requirements may be regarded as a major source of
uncertainty that confront an architecture during its
evolution. It places the investment in a particular
architecture at risk, where a risk is an event with
potentially undesirable outcome whose occurrence has
some known probability distribution. To cope with
uncertainties, incomplete knowledge in an evolutionary
context, and mitigate risks in the investment, there is a
critical need for predicting the stability of software
architectures. Such prediction is necessary for valuing the
long-term investment in a particular architecture;
analysing trade-offs between two or more candidate
software architectures for stability; analysing the strategic
position of the enterprise- if the enterprise is highly
centred on the software architecture (as it is the case in
web-based service providers companies e.g. amzon.com);
and validating the architecture for evolution.

A stable software architecture adds to the software
system and to the enterprise owing the architecture a
value. The added value is attributed to flexibility and the
options that flexibility creates over the evolutionary
periods of the software system. An option provides the
right to make an investment in the future, without a
symmetric obligation to make that investment [6, 19]. The
added value under the stability context is strategic in

38

essence and may not be immediate. It takes the form of (i)
accumulated savings through enduring the change
without “breaking” the architecture; (ii) supporting reuse;
(iii) enhancing the opportunities for strategic “growth”
(e.g. regarding an architecture as an asset and
instantiating the asset to support new market products);
and (iv) giving the enterprise a competitive advantage by
banking the stable architecture like any other capitalized
asset.

The major idea of this work is that the flexibility of an
architecture to endure changes in stakeholders’
requirements and the environment has a value that can
assist in predicting the stability of software architectures.
More specifically, flexibility adds to the architecture
values in the form of real option [15, 16]- that give the
right but not a symmetric obligation- to evolve the
software system and enhance the opportunities for
strategic growth by making future follow-on investments
(e.g. case of reuse, exploring new markets, expanding the
range of services while leaving the architecture intact). As
flexibility has a value under uncertainty [1, 8, 9, 17]; the
value of these options lies in the enhanced flexibility to
cope with uncertainty (i.e. the evolutionary changes). The
importance of the idea cannot be overemphasized: it gives
the architects/stakeholders an ability to reason about a
crucial but previously intangible source of value and to
factor it in the prediction of an architecture for stability.

This paper contributes to a novel model for predicting
the stability of software architectures using real options
theory [15, 16]. We assume that the software
architecture’s primary goal is to guide the system’s
evolution. The model is predictive: it provides “insights”
on the evolution of the software system based on valuing
the extent an architecture can endure a set of likely
evolutionary changes. It uses value-based reasoning to
prediction and builds on Black and Scholes [5] financial
options theory (Noble Prize winning) to value such
extent. We refer to this model as ArchOptions.

The paper is further structured as follows. Section 2
briefly discusses why we have taken a real options
approach to prediction. Section 3 supplies background on
Black & Scholes options pricing technique. Section 4
shows how we have derived the model to predict the
stability of software architectures: it presents the analogy,
assumptions, approach, and interpretation. Section 5
reviews related work. Section 6 concludes.

2. Why real options?

We view stability as a strategic architectural quality
that adds to the architecture values in the form of growth
options. A growth option is a real option to expand with
strategic importance [16]. Growth options are common in
all infrastructure-based (as it is the case of software

architectures) or strategic industries, and especially in
industries with multiple-product generations or
applications [18, 22]. As many early investments can be
seen as prerequisites or links in chain of interrelated
projects [16], growth options set the path for the future
opportunities [18, 22]. In the architectural context, future
growth opportunities are very much linked to the
flexibility of the architecture to endure the likely future
changes while leaving the architecture intact, and
henceforth to the stability of software architecture. Hence,
architectural stability enhances the upside potentials of
the architecture, for flexibility sets the path for future
follow-on investments and strategic growth (e.g. case of
reuse, exploring new markets, expanding the range of
services while leaving the architecture intact). The
follow-up investments are generally triggered by the
inevitable future changes in stakeholders’ requirements
and the environment. Since the future changes are
generally unanticipated, the value of the growth options
lies in the enhanced flexibility of the architecture to cope
with uncertainty; otherwise, the change may be too
expensive to pursue and opportunities may be lost.

Hence, to predict the stability of software
architectures taking a value-based reasoning approach, we
need a technique that is suitable for strategic and long-
term valuation, counts for flexibility, and makes the value
of the options created by flexibility tangible (as a way to
make the value of stability tangible).

Classical financial techniques, such as Discounted
Cash Flow (DCF) analysis and Net Present Value (NPV),
fall short in dealing with flexibility and uncertainty [18,
22]. The main problem with these techniques is that they
are best valid when valuing an ongoing business or an
immediate investment. However, in the case of valuing
the stability of software architectures in the face of
evolutionary changes, the nature of the investment is
long-term and strategic. For example, assume that an
investment in an architecture appears to be unattractive
(e.g. case of negative NPV) at the first instance: unless
the enterprise makes the initial investment, subsequent
generations or other applications will not even be
feasible. The value of the investment, thus, may derive
not only from the direct measurable cash flows of the
investment, but also from the ability of an architecture to
unlock future growth opportunities (e.g. case of reuse,
exploring new markets, expanding the range of services
while leaving the architecture intact).

Among alternative techniques that are available to
make the value of flexibility tangible is real options
theory. Real options theory [15, 16] was developed to
address the inability of these traditional budgeting
techniques to address strategic value. An option is an
asset that provides it owner the right without a symmetric
obligation to make an investment decision under given
terms for a period of time into the future ending with an

39

expiration date [18, 22]. If conditions favourable to
investing arise, the owner can exercise the option by
investing the strike price defined by an option. A call
option gives the right to acquire an asset of uncertain
future value for the strike price. A put option provides the
right to sell an asset at that price. A European option can
be only exercised on the expiration date of the option. A
real option is an option on non-financial (real) asset, such
as a parcel of land or a new product design.

3. Options pricing using Black & Scholes:
background

The best-known financial option pricing method (the

seminal work in the field) is that of Black and Scholes
[5], which is a solution to a stochastic calculus problem.
Any variable whose value changes over time in an
uncertain way is said to follow a stochastic process.

Under the Black and Scholes model, five parameters
are needed to determine the option price. These are the
current stock price (S), the strike price (X), the time to
expiration (T), the volatility of the stock price (σ), and the
free-risk interest rate(r).

The price of the stock option is a function of the
stochastic variables underlying stock’s price and time.
The strike price (X) is the price for which the holder may
exercise a contract for the purchase/sale of the underlying
stock; also referred to as the exercise price. The current
stock price (S) if exercised at some time in the future, the
payoff from a call option will be the amount by which the
stock price exceeds the strike price. Call options,
therefore, become more valuable as the stock price
increase and less valuable as the strike price increases.
The volatility of the stock price (σ) is a statistical measure
of the stock price fluctuation over a specific period of
time; it is a measure of how uncertain we are about the
future of the stock price movements. The value of a call
option on an asset depends on the value of the asset itself
and the cost of exercising the option.

The expected value of a European call option is given
by E [max (St- X, 0)], where E denotes the expected value
of a European call option and St denotes the stock price
at time t.

The European call option price, C, is the value
discounted at the risk-free rate of interest. It calculates to
equation (1).

C = e –r (T-t) E [max (St- X, 0)] (1)

In a risk-neutral world, ln St has the following

probability distribution given by (2),

ln St ~ φ [ln S + (r-σ2/2)(T-t), σ(T-t)1/2] (2)

Where φ [m, s] denotes a normal distribution with
mean m, and standard deviation S. Evaluating the right-
hand side of (1)- in application of integral calculus-
results in Black and Scholes valuation of a call option.

C = S N (d1) – Xe –r (T-t) N (d2) (3)

Where,

 d1 = ln(S/X) + (r +σ2/2)(T-t)
 σ(T-t) ½

 d2 = ln(S/X) + (r -σ2/2)(T-t) = d1 -σ(T-t)1/2
 σ(T-t) ½

N (x) is the cumulative probability distribution function
for a standardized normal variable (i.e., it is the
probability that such a variable will be less than x).
Interested reader may refer to [12] for a more detailed
derivation.

4. Exploiting options theory to predict
architectural stability

We derive a model to predict the stability of software
architectures from equation (1). We draw the analogy and
make assumptions. For every likely evolutionary change,
we construct a call option to value the flexibility of the
architecture to accommodate the likely change(s)- as a
way to make the value of stability tangible. We provide
an interpretation of the model in the context of stability.

4.1. Analogy and assumptions

A major insight behind real options theory is that
flexibility in real asset is analogous to financial options:
investing in flexibility is seen as buying options and
exploiting flexibility is seen as exercising them [20].
Having set flexibility as an option problem, the challenge
becomes valuing flexibility: we derive a model from (1)
and exploit [5] to valuation. We map the economic
characteristics of the architecture (under development or
evolution) onto the parameters of the option model (1)- as
shown in Table 1. The economic characteristics include
the development (evolution) effort, schedule, and budget.

40

Table 1. Financial/real options/software architecture
analogy

Option on
stock

Real option
on a project

Case of valuing
architectural

stability
Stock Price Value of the

expected
cash flows

Value of the likely
change

Exercise
Price

Investment
cost

Estimate of the likely
cost to accommodate
the change

Time-to-
expiration

Time until
opportunity
disappears

Time-to-release (and
deploy) the software
generation

Volatility Uncertainty of
the project
value

“Fluctuation” in the
value of the
requirement as
deemed by the
stakeholders; or
changes in market-
value of the
requirements over a
specified period of
time

Risk-free
interest rate

Risk-free
interest rate

Interest rate relative to
budget and schedule

Black and Scholes is an arbitrage-based technique.

The technique requires knowledge of the value of the
asset in question in span of the market. Software
architectures, however, are (non-traded) real assets. Real
options may be valued similarly to financial options,
though they are not traded [18]. Real options valuation
based on arbitrage-based pricing techniques determines
the value of an asset in question in span of the market
value using a correlated twin asset [18]. The twin asset is
an asset that has the same risks the asset in question will
have when the investment has been completed [18, 22].

To facilitate valuation using the principle of a twin
asset, we consider the architecture as a portfolio of assets
(rather than a single asset). More specifically, we view
the architecture as a portfolio of requirements. In this
context, we argue that the value of the architecture is in
the value of the requirements it supports during the
software system operation or tend to support as it evolves.
This assumption facilitates calibrating requirements or
changes in requirements with their market value.

The application of [5] assumes that the stock option is
a function of the stochastic variables underlying stock’s
price and time. We assume that value of an evolvable
architecture changes with time. It tends to change in
uncertain ways and stochastically with the cost/value
arising from changes in requirements.

4.2. Constructing call options to make the value
of flexibility/stability tangible

Generally speaking, evolutionary changes are
unanticipated. We assume that we can elicit a set of
representative changes in requirements {i1, i2,…, in} that
are likely to occur. Let us assume that the value of the
architecture is V, where V corresponds to current stock
price St. As the architecture evolves, the change in ii is
assumed to enhance the architecture value by xi % with a
follow-up investment of Iei, where Iei corresponds to an
estimate of the likely cost to accommodate the change.
This is similar to a call option to buy (xi %) of the base
project, paying Iei as exercise price. Thus, the investment
opportunity in an architecture can be viewed as a base-
scale investment in the architecture plus call options on
the future opportunities, where a future opportunity
corresponds to the investment to accommodate the
evolving requirement. The value of the constructed call
options give an indication of the flexibility of the
architecture to endure the likely changes in requirements
{i1, i2,…, in}. Thus, the value of the architecture
materializes to equation (4) accounting for V and both the
expected value and exercise cost to accommodate ii for i ≤
n. We assume that the interest rate is equal to zero for the
simplicity of exposition.

(4)

4.3. Interpretation

We give an interpretation of (4) in the context of the
evaluation for architectural stability.

For a likely change in requirement ik,

(a) The option is in the money: if xkV exceeds the

exercise cost (i.e. max (xkV - Iek, 0) >0), then the
architecture is said to be potentially stable with
respect to ik. Generally speaking, the higher the
value xkV, the better the chances to exceed the
exercise price of the option.

(b) The option is out of money: if the value of the

call option sinks to zero (i.e. max (xkV - Iek, 0)
=0), then there is no chance that the option will
ever worth something in the future. The change
is said to exhibit future threats on the stability of
the architecture; the architecture is unlikely to be
stable for this change.

 n

 V+ ∑ E [max (xiV - Iei, 0)]
 i=0

41

Accounting for all the n likely changes in {i1, i2, …,
in},

We interpret the strategic value of the investment in
an architecture as the acquisition of a base asset that
embeds growth opportunities. The values of the call
options indicate the ability of an architecture to unlock
future growth opportunities and enhance the upside
potentials of the architecture (i.e. growth options). If the
cumulative expected value of the future investments in all
the changes tends to zero, it is very unlikely for the
architecture to be stable with respect to the likely changes.
In case of trade-offs, we interpret the strategic value
relative to other candidate architectures. The more an
architecture is able to unlock future opportunities, the
more stable and “evolution friendly” it is likely to be.

5. Related work

Economic approaches to software design appeal to the
concept of static NPV as a mechanism for estimating
value [7, 10]. These techniques, however, are not readily
suitable for strategic reasoning of software development
as they fail to factor flexibility [6]. Real options theory
has been adopted to address this problem: Baldwin and
Clark [2, 3, 4] studied the flexibility created by
modularity in design of components (of computer
systems) connected through standard interfaces. They
appear to be the first to observe that the value of
modularity in design (of computer systems) can be
modeled as real options. Sullivan [21] suggested that real
options analysis can provide insights concerning
modularity, phased projects structures, delaying of
decisions and other dynamic software design strategies.
Sullivan et al. [20] formalized that option-based analysis,
focusing in particular on the flexibility to delay decisions
making. Favaro et al. [10] developed an options-based
approach to investment analysis for software reuse
infrastructures. The options approach was used to value
the flexibility provided by reuse to adapt in the face of
uncertain conditions. Sullivan et al. [19] extended
Baldwin and Clark’s theory [2] that is developed to
account for the influence of modularity on the evolution
of the computer industry. Sullivan et al. [19] argued that
the structure and value of modularity in software design
creates value in the form of real options. A module
creates an option to invest in a search for a superior
replacement and to replace the currently selected module
with the best alternative discovered, or to keep the current
one if it is still the best choice. The value of such an
option is the value that could be realized by the optimal
experiment-and-replace policy. Knowing this value can
help a designer to reason about both investment in

modularity and how much to spend searching for
alternatives.

Our use of real options theory appears to be novel. We
use real options to predict the stability of software
architectures in the face of the likely evolutionary
changes. We value flexibility of the architecture to
expand in the face of these changes; henceforth, what we
value are the created growth options. For every likely
evolutionary change, we construct a call option to value
the flexibility of the architecture to accommodate the
change(s). Knowing this value can assist in predicting the
stability of the architecture for the likely evolutionary
change(s). We interpret the strategic value of investment
in the architecture as the acquisition of a base asset that
embeds growth opportunities. The value(s) of the
constructed call options are indicators of the ability of an
architecture to unlock future growth opportunities and
enhance the upside potentials of the architecture. We
exploit [5] to valuation.

6. Conclusions and further work

Real options appears to be well suited to assist in
predicting the stability of software architectures: it
focuses explicitly on flexibility under uncertainty and
makes it feasible to link likely changes to be
accommodated by the architecture to value creation.
Valuing flexibility- as a way to make the value of
architectural stability tangible- appears to be achievable
through constructing call option(s). The values of the
options become assessing the payoff at exercise time. Our
investigation has shown that adopting [5] to valuation
seems to be promising. The analogy tends to hold under
some assumptions.

The valuation requires the estimation of the behaviour
of several parameters of the option model. For financial
options, there are several proxies available to predict this
behaviour- the most obvious proxy is simply the historical
values of the financial asset. In real options such proxies
rarely exist and the analyst may need to rely on
experience and judgment in his estimations [10]. Our
future work entails finding reasonable ways to estimate
these parameters.

We will empirically evaluate the approach in an
industrial setting with SearchSpace, one of UCL
industrial partners. SearchSpace is investigating changing
one of its products architectural infrastructure from
CORBA to EJB. The investment in the change will
increasingly be made on the basis of the stability that the
architectural infrastructure creates with respect to the
forward-looking strategic benefits. Roughly speaking,
changing the product infrastructure from CORBA to EJB
may (or may not) create growth options. These options

42

may be exercised at a point in the future to realize certain
gains. Evaluating the payoff of these options may give an
indication of the stability that such change may create.

The work is expected to form a genuine effort on
understating the relation between changes in requirements
and the architecture through strategic value-based
reasoning. It aims to assist stakeholders’ in strategic
“what if” analysis, analyzing the strategic position of the
enterprise- if the enterprise is highly centered on the
software architecture (as it is the case in web-based
service providers companies) and evaluating trade-offs
between two or more candidate software architectures for
stability. The intellectual framework is most critical; it
demonstrates that with value-based reasoning we can
improve our ability to evaluate for architectural stability
and develop software systems that need to adapt to the
inevitable evolving requirements.

7. References

[1] Amram, M., Kulatilaka, N.: Real Options: Managing
Strategic Investment in an Uncertain World. Harvard
Business School Press, Cambridge, Massachusetts (1999)

[2] Baldwin, C. Y., Clark, K. B.: Design Rules - The Power of
Modularity. MIT Press (2001)

[3] Baldwin, C. Y., Clark, K. B.: Managing in the Age of
Modularity. Harvard Business Review, Vol. 75(5). (1997)
84-93

[4] Baldwin, C. Y., Clark, K. B.: Modularity and Real options.
Working paper, Harvard Business School (1993)

[5] Black, F., Scholes, M.: The Pricing of Options and
Corporate Liabilities. Journal of Political Economy (1973)

[6] Boehm, B., Sullivan, K. J.: Software Economics: A
Roadmap. In: Finkelstein, A. (ed.): The Future of Software
Engineering (2000)

[7] Boehm, B.: Software Engineering Economics. Prentice
Hall (1981)

[8] Cox, J., Huang, C. F.: Option Pricing Theory and Its
Applications. In: Bhattacarya, S., Constantinides, G.
(eds.): Theory of Valuation: Frontiers of Modern Finance,
Vol. 1. Totowa, NJ: Rowman and Littlefield (1989) 272-
288

[9] Cox, J., Ross, S., Rubinstein, M.: Option Pricing: A
Simplified Approach. Journal of Financial Economics.
Vol.7 (3). (1979) 229-264

[10] Favaro, J. M., Favaro, K.R., Favaro, P. F.: Value-Based
Software Reuse Investment. Annals of Software
Engineering. Vol. 5. (1998) 5 – 52

[11] Finkelstein, A.: Architectural Stability, Some Preliminary
Comments.http://www.cs.ucl.ac.uk/staff/a.finkelstein/talks.
html (2000)

[12] Hull, J. C.: Options, Futures, and Other Derivative
Security. Third edition, Prentice-Hall (1997)

[13] McDonald, R., Siegel, D.: The Value of Waiting to Invest.
Quarterly Journal of Economics. Vol. 101(4). (1986) 707–
727

[14] Merton, R. C.: Continuous-Time Finance. Blackwell,
Cambridge, Massachusetts (1990)

[15] Myers, S. C.: Finance Theory and Financial Strategy.
Corporate Finance Journal. Vol. 5(1). (1987) 6-13

[16] Myers, S. C.: Determinants of Corporate Borrowing.
Journal of Financial Economics. Vol. 5(2). (1977) 147-175

[17] Ross, S. A., Westfield, R.W., Jaffe, J.: Corporate Finance
(Fourth). Irwin, Chicago (1996)

[18] Schwartz, S., Trigeorgis, L.: Real options and Investment
Under Uncertainty: Classical Readings and Recent
Contributions. MIT Press Cambridge, Massachusetts
(2000)

[19] Sullivan, K. J., Griswold, W., Cai, Y., Hallen, B.: The
Structure and Value of Modularity in Software Design. In:
Proc. ESEC/FSE-9, Vienna, Austria (2001) 99-108

[20] Sullivan, K. J.: Chalasani, P., Jha, S., Sazawal, V.:
Software Design as an Investment Activity: A Real
Options Perspective. In: Real Options and Business
Strategy: Applications to Decision-Making. Trigeorgis
L.(ed.) Risk Books (1999)

[21] Sullivan, K. J.: Software Design: The Options Approach.
In: 2nd International Software Architecture Workshop,
Joint Proceedings of the SIGSOFT '96 Workshops. San
Francisco, CA (1996) 15–18

[22] Trigeorgis, L.: Real options in Capital Investment: Models,
Strategies, and Applications. Praeger Westport,
Connecticut London (1995)

43

Understanding the Economics of Refactoring
Rob Leitch

MacDonald, Dettwiler and Associates, Ltd.
13800 Commerce Parkway

Richmond, BC, V6V 2J3, Canada
1 (604) 231 2184

rleitch@mda.ca

Eleni Stroulia
Department of Computing Science

221 Athabasca Hall, University of Alberta
Edmonton, AB, T6G 2E8, Canada

1 (780) 492 3520
stroulia@cs.ualberta.ca

ABSTRACT
In this paper we discuss a novel method for estimating the
expected maintenance savings given a refactoring plan. This work is
motivated by the increased adoption of refactoring practices as part
of new agile methodologies and the lack of any prescriptive theory
on when to refactor.

1. INTRODUCTION AND MOTIVATION
Estimating the cost of future maintenance activities on a working
application is an important research question. If such an estimate
were possible, the guesswork would be eliminated from the
decision of whether to maintain or replace existing software. There
is some evidence in the literature [1] [4] that perfective
maintenance accounts for the majority of the overall maintenance
effort in a project. Perfective maintenance activities aim to improve
the quality attributes of the software, such as its performance or its
maintainability. Therefore the problem of “maintenance cost
prediction” can be recast as “perfective maintenance cost
prediction”.

A long-standing method in support of perfective maintenance is
local source code transformation, more recently re-discovered as
"Refactoring" [3]. Although there are many tools developed to
support code transformations there is no general agreement on
what transformations are beneficial and when these changes should
be applied. For example, the refactoring catalog contains
“symmetrical” refactorings, i.e., opposite transformations such as
“extract method” and “inline method”. In addition, there are
alternative refactorings applicable to similar low-level designs, such
as “extract subclass” and “extract interface”. It is up to developers
to decide which type of refactoring to apply in anticipation of
future development. Furthermore, currently there is only informal
advice on when to refactor. Fowler [3] suggests that refactoring
may not be beneficial when there is a deadline coming up or when
the software is of such poor quality that it would be easier to re-
develop it from scratch. This advice implies an estimate of the cost
of refactoring vs. the cost of redevelopment. However, no such
cost-estimate model exists. In spite of the lack of strong prescribed
methodology, most popular agile methods advocate refactoring as a
regular practice in the software lifecycle. This practice is becoming
widely adopted as the method of choice for improving the
extendibility and maintainability of software.

In our recent work, we have been investigating several aspects of
refactoring. These aspects include understanding the impact of
long-term code transformations on the quality of software design
and the nature of developing a cost-benefit model estimating the
tradeoff between the up-front cost of refactoring and the expected
downstream maintenance savings. Specifically, we are interested in
predicting the Return on investment (ROI) for a planned
refactoring activity.

If the ROI is greater than or equal to one, then the planned
refactoring will be cost effective.

2. ESTIMATING THE REFACTORING ROI
To calculate the Refactoring ROI according to formula (1) above,
we need to estimate

1. the development cost of the planned refactoring activity, and

2. the anticipated maintenance cost of each of the two software
versions (i.e., before and after refactoring).

We adopt COCOMO [2] to calculate the refactoring-plan
development cost, and we propose a novel method for predicting
the maintenance effort for the original and restructured designs.

A fairly common approach to this problem has been to try and
relate design metrics to observed maintenance costs through
regression analysis. However, while metrics can be used to identify
outlier design components and to comparatively evaluate
alternative designs, there are currently no suitable predictive
models of maintenance effort. One reason for this is the nature of
software maintenance. Corrective maintenance effort is directly
related to latent defects or faults in the system, while perfective
and adaptive maintenance are directly related to system
enhancement in response to functional evolution or environmental
changes. There is evidence that the perfective effort category
accounts for the majority of maintenance cost [1] [4]. Because this
type of maintenance is influenced by factors external to the
system, it is not obvious that such effort can be predicted by
design metrics. In addition, there is no general agreement regarding
which metrics can predict system fault density.

ROI = (Maintenance Savings from Proposed Refactoring) /
 (Development Cost of Planned Refactoring). (1)

44

Figure 1: Informed Refactoring Decision Making, using Refactoring ROI estimates.

In our work we have been experimenting with an alternative
strategy for predicting maintenance cost. This strategy is based on
the following assumptions.

The anticipated future maintenance cost of a given software system
is the sum of the costs of each individual future maintenance
request.

Maintenance activities occur randomly in the software system, as
modifications necessitated by new requirements on the software
system. Therefore the probability that a maintenance request will
strike an individual module is directly proportional to the size of
the module relative to the size of the overall system.

A substantial part of the cost of any single modification is the cost
of the regression testing necessitated after the modification is
completed. We assume that the regression-testing savings brought
about by refactoring can be substantial enough to bring the ROI
fraction above 1. With these assumptions we can restate formula
(1) as follows:

The regression-testing cost of a particular modification is directly
proportional to the amount of code that has to be examined as a
result of the change. This in turn can be estimated based on the
dependencies of the modified module with the rest of the system.

The ROI estimation process implied by these assumptions, as well
as the informed refactoring decision-making process it enables, are
depicted in Figure 1. Given a legacy system, its expected
regression-testing cost is first calculated based on the occurrence of
a random maintenance activity. Next, a number of alternative

refactoring plans can be formulated and their respective
development costs estimated using COCOMO. The predicted
regression-testing costs of the proposed new designs are then
calculated. At this point, the ROI of each alternative refactoring
plan can be computed. These estimates are then used to decide
whether refactoring the system is beneficial, and what sort of
refactoring plan should be implemented.

3. EXPLORATORY CASE STUDY
Let us now illustrate our ROI estimation method with an
exploratory case study using a simple Java system. The trial
system was created in a student environment as part of a graduate
course in Object-oriented (OO) analysis and design. The code
followed a typical OO development cycle, including user
requirements definition through use-case analysis, development of
a class model, and dynamic state modeling prior to implementation.
The application is a real-time traffic light control system for a four-
way intersection, including a graphical simulation of the
intersection operation. We refer to this system as “TrafficApp”.

For the purposes of counting “Source Lines of Code” (SLOC) in a
procedure, we use the definition of a logical source statement as
defined in the COCOMOII.2000 model [3]. Using this definition,
the trial case study program contains 740 SLOC, broken down into
6 classes and 29 procedures. Table 1 shows the distribution of code
and procedures within TrafficApp.

3.1. Refactoring Plan

A source code walkthrough was performed on TrafficApp to
identify candidate refactoring opportunities according to the criteria
defined in [3]. The result of this walkthrough is a list of suggested
refactorings presented in Table 4, along with the projected source
code impact for each affected procedure. The data in Table 4

Legacy System
Maintenance

Cost Prediction

…..

Refactoring
Plan

Maintenance
Cost
Prediction

…..
Refactored System

Maintenance
Cost Assessment

Legacy
Code

Refactoring
Analysis

Maintenance
Cost
Prediction

ROI
estimation

COCOMO …..

Refactoring Plan
Cost Assessment

…
..

ROI

Refactoring
Decision

ROI = (Regression-Testing Savings from Proposed Refactoring) /
 (Development Cost of Planned Refactoring). (2)

45

indicates the amount of code to be added or deleted for each
procedure. Note that the recommended restructuring will add new
procedures to the system. Table 1 shows the predicted impact of
the restructuring at the class level, including changes in code size
and the number of procedures.

Table 1: Code and procedures in TrafficApp.
Size (SLOC)

Class Before After Change
Class 1 411 343 -17%
Class 2 164 81 -51%
Class 3 95 108 14%
Class 4 23 23 0%
Class 5 23 23 0%
Class 6 24 24 0%
TOTAL 740 602 -19%

No. of Proc.
Class Before After Change

Class 1 4 11 175%
Class 2 7 8 14%
Class 3 6 7 17%
Class 4 5 5 0%
Class 5 2 2 0%
Class 6 5 5 0%
TOTAL 29 38 31%

Avg. Proc. Size (SLOC)
Class Before After Change

Class 1 103 31 -70%
Class 2 23 10 -57%
Class 3 16 15 -3%
Class 4 5 5 0%
Class 5 12 12 0%
Class 6 5 5 0%
TOTAL 26 16 -38%

3.2 Impact on the Dependency Structure
Two sets of data and control dependency graphs were constructed
for TrafficApp. One set of graphs represents the system state
before refactoring (based on a manual code inspection). The second
set of graphs represents the predicted state of TrafficApp after
refactoring. The plot of Figure 2 illustrates the difference between
these sets of graphs, showing changes in the dependency structure
of the system resulting from the proposed restructuring.

3.3. Mean Re-test Impact

Table 5 shows the calculation of the mean re-test impact for
TrafficApp before and after restructuring based on the overall
dependency graphs and the source code distribution in the system.
The mean re-test impact before refactoring is 408 SLOC, while the
predicted mean re-test impact after refactoring is 216 SLOC.

3.4. Effort Calculations

Table 2 summarizes the example calculations performed using the
COCOMOII.2000 model to predict maintenance costs before and
after refactoring as well as the cost of the restructuring. As well,
this table presents the COCOMO re-use model parameters
assumed for TrafficApp. The net result is a predicted savings of
0.225 person-months per maintenance activity as a result of the

proposed restructuring. This compares with a restructuring cost of
1.18 person-months.

Table 2: COCOMOII.2000 cost predictions for TrafficApp.

Parameter
Refact.

Cost

Maint.
Cost

Before

Maint.
Cost
After

Maint.
Savings

Size (KSLOC) 0.740 0.740 0.602 -
EAF 1.000 1.000 1.000 -

Scale Factor 18.970 18.970 18.970 -
Exponent 1.100 1.100 1.100 -

SU 30.000 30.000 30.000 -
AA 4.000 4.000 4.000 -

UNFM 0.400 0.400 0.400 -
DM 13.800 5.000 5.000 -
CM 29.700 5.000 5.000 -
IM 100.000 55.100 35.900 -

Equiv. KSLOC 0.437 0.213 0.131 -
Effort (p-months) 1.180 0.538 0.313 0.225

3.5. ROI Calculation

From Table 2, we can see that the ROI will be greater than one if
there are greater than or equal to six maintenance activities after the
design restructuring. This is determined by dividing the refactoring
cost by the maintenance savings per activity (=1.18/0.225=5.2).

3.6. Results Discussion

Table 3 provides a comparison between the dependency graphs
before and after refactoring, measuring the number of dependency
paths shown in each graph. This result shows that the density of
dependency paths in the restructured graphs is lower than for the
original design.

Table 3: Dependency graphs before and after refactoring.

BEFORE AFTER

Graph
No.

Dep.
Fill

Ratio
No.
Dep.

Fill
Ratio Chng.

Data 112 13.3% 147 10.2% -23.6%
Control 73 8.7% 101 7.0% -19.4%
Overall 179 21.3% 241 16.7% -21.6%

In Figure 3, each data point represents the re-test impact of a single
procedure versus the probability of that impact occurring for a
random maintenance event. Note that the impact data is expressed
as a percentage of the total SLOC in the system rather than as an
absolute SLOC number. For the combined graph in Figure 3, the
code size reference is the original, unchanged version of
TrafficApp.

From the above analysis, the proposed refactoring is predicted to
decrease the overall code size by 19% and increase the number of
procedures in the system by 31%. In addition, the density of
dependency paths in the system is predicted to decrease by
approximately 22%. This decrease in density appears to result
from the introduction of new procedures into the system
possessing relatively few external dependencies. These new
procedures are created by extracting code from larger original
procedures (using the Extract Method and Move Method
transformations defined in [3]).

46

Table 4: Proposed refactoring plan and design impact for TrafficApp.

 Table 5: Mean re-test impact before and after restructuring.

Proc.
No. Code Problems Refactoring Add. Del.

Proc.
No. Code Problems Refactoring Add. Del.

1

Long Method,
Duplicated Code,

Feature Envy Extract Method 24 225 33 N/A (new proc.) Extract Method 27 0
2 Duplicated Code Extract Method 4 28 34 N/A (new proc.) Extract Method 81 0

10

Switch Statement,
Duplicated Code,

Feature Envy Move Method 4 49 35 N/A (new proc.) Extract Method 17 0

11

Long Method,
Switch Statement,
Duplicated Code Extract Method 4 56 36 N/A (new proc.) Extract Method 9 0

30 N/A (new proc.) Extract Method 4 0 37 N/A (new proc.) Move Method 13 0
31 N/A (new proc.) Extract Method 9 0 38 N/A (new proc.) Extract Method 14 0
32 N/A (new proc.) Extract Method 10 0 - - - - -

SUBTOTAL: 59 358 SUBTOTAL: 161 0
TOTAL: 220 358

BEFORE REFACTORING AFTER REFACTORING

Class
No. Proc. No.

Size
(SLOC)

Test
Impact
(SLOC) Prob.

Mean
(SLOC) Proc. No.

Size
(SLOC)

Test
Impact
(SLOC) Prob.

Mean
(SLOC)

Class 1 1 306 677 41.4% 279.9 1 105 539 17.4% 94.0
2 80 106 10.8% 11.5 2 56 91 9.3% 8.5
3 18 84 2.4% 2.0 3 18 32 3.0% 1.0
4 7 7 0.9% 0.1 4 7 7 1.2% 0.1
- - - - - 30 4 116 0.7% 0.8
- - - - - 31 9 121 1.5% 1.8
- - - - - 32 10 122 1.7% 2.0
- - - - - 33 27 139 4.5% 6.2
- - - - - 34 81 193 13.5% 26.0
- - - - - 35 17 129 2.8% 3.6
- - - - - 36 9 91 1.5% 1.4

Class 2 5 27 530 3.6% 19.3 5 27 228 4.5% 10.2
6 3 203 0.4% 0.8 6 3 141 0.5% 0.7
7 1 201 0.1% 0.3 7 1 139 0.2% 0.2
8 3 120 0.4% 0.5 8 3 64 0.5% 0.3
9 15 99 2.0% 2.0 9 15 61 2.5% 1.5
10 49 133 6.6% 8.8 10 4 18 0.7% 0.1
11 66 120 8.9% 10.7 11 14 82 2.3% 1.9
- - - - - 38 14 61 2.3% 1.4

Class 3 12 29 677 3.9% 26.5 12 29 539 4.8% 26.0
13 7 447 0.9% 4.2 13 7 222 1.2% 2.6
14 18 562 2.4% 13.7 14 18 253 3.0% 7.6
15 18 99 2.4% 2.4 15 18 61 3.0% 1.8
16 1 188 0.1% 0.3 16 1 97 0.2% 0.2
17 22 106 3.0% 3.2 17 22 54 3.7% 2.0
- - - - - 37 13 49 2.2% 1.1

Class 4 18 9 357 1.2% 4.3 18 9 156 1.5% 2.3
19 3 605 0.4% 2.5 19 3 310 0.5% 1.5
20 3 605 0.4% 2.5 20 3 310 0.5% 1.5
21 1 1 0.1% 0.0 21 1 1 0.2% 0.0
22 7 614 0.9% 5.8 22 7 319 1.2% 3.7

Class 5 23 3 336 0.4% 1.4 23 3 135 0.5% 0.7
24 20 20 2.7% 0.5 24 20 20 3.3% 0.7

Class 6 25 7 321 0.9% 3.0 25 7 120 1.2% 1.4
26 5 111 0.7% 0.8 26 5 96 0.8% 0.8
27 1 401 0.1% 0.5 27 1 176 0.2% 0.3
28 1 1 0.1% 0.0 28 1 1 0.2% 0.0
29 10 11 1.4% 0.1 29 10 11 1.7% 0.2

MEAN RE-TEST IMPACT: 408 MEAN RE-TEST IMPACT: 216

47

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

Dependency TO (Proc. No.)

De
pe

nd
en

cy
 F

RO
M

 (P
ro

c
.N

o.
)

Data Removed Data Added Control Removed Control Added

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Re-test Impact (% of Total Original SLOC)

Pr
ob

ab
ili

ty

Before After

Figure 3: Procedure-level re -test impact versus the probability of
that impact occurring for a random maintenance event.

Figure 2: The changes in the dependency structure of TrafficApp before and after the proposed restructuring.

48

The refactoring appears to reduce the peaks along both axes of the
impact probability distribution of Figure 3. Compared to the
original distribution, the refactored distribution appears shifted
down and to the left.

Procedure-level dependency analysis predicts that the mean
regression testing impact (in terms of affected SLOC) of a random
maintenance activity will decrease by approximately 47% due to the
proposed design restructuring.

Cost estimation modeling using COCOMOII.2000 suggests that the
restructuring will be cost effective if six or more maintenance events
occur after the refactoring investment.

The results of the procedure-level analysis are not duplicated by a
class-level analysis of the same design transformations. In general,
the class-level analysis yields more conservative results regarding
cost-effectiveness. It appears that the class-level approach is not as
sensitive to the proposed design restructuring activities.

4. DISCUSSION
This work is at a very early stage, however we have applied our
refactoring ROI method to two exploratory Java case studies: a trial
academic system with 740 SLOC and a commercial database
application containing 2.5 KSLOC. The case study results provide
measurements of the effects of restructuring on parameters such as
mean code re-test impact, number of system data and control
dependency paths, and system size. In addition, we estimated the
break-even point in terms of the number of maintenance activities to
achieve ROI > 1 for the proposed design transformations. Our
results show that common low-level source code transformations
can change the system dependency structure in a beneficial way,

allowing recovery of the initial refactoring investment over a number
of maintenance activities simply on the basis of regression-testing
savings.

This early experience has generated several interesting “research
leads” that we would like to pursue. For example, it would be
interesting to explore other metrics to estimate maintenance benefits
in addition to examining regression-testing costs. Furthermore, we
are currently estimating regression-testing cost based on procedure-
level dependencies; would other more or less precise metrics be
better predictors? Could the refactoring decision-making process be
influenced by previous refactorings applied to the system, i.e., can
some refactorings preclude other refactorings from occurring in the
future?

5. REFERENCES
[1] Basili, V., Briand, L., Condon, S., Kim, Y., Melo, W. y Valett,

J.D., Understanding and Predicting the Process of Software
Maintenance Releases", Proceedings of the International
Conference on Software Engineering, IEEE Computer Society,
Los Alamitos, CA (USA), 1996, pp. 464-474.

[2] Boehm, B., Horowitz, E., Madachy, R., Reifer, D., Clark,
B.D., Steece, B., Brown, A.W., Chulani, S., and Abts, C.,
Software Cost Estimation with COCOMO II, Prentice Hall
PTR, 2000.

[3] Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D.,
Refactoring: Improving the Design of Existing Code, Addison-
Wesley, 1999.

[4] Polo, M., Piattini, M., Ruiz, F. Using code metrics to predict
maintenance of legacy programs: a case study, IEEE ICSM
2001, Florence, Italy.

49

Composable Process Elements for Developing COTS-Based Applications
EDSER-5 Position Paper

Ye Yang, Jesal Bhuta, Barry Boehm, Dan Port, Chris Abts*
University of Southern California, Texas A&M University*

{ yey, boehm, dport, jesal}@cse.usc.edu, cabts@cgsb.tamu.edu

1. Introduction
In his ICSE 2002 keynote address [3], Robert Balzer

issued a challenge to the software engineering
community to provide better methods for dealing with
COTS-based software systems, and to present them at
subsequent ICSE’s. This paper provides a partial
response to this challenge. It presents some data that we
have found useful in understanding COTS-based
application (CBA) trends and effort distributions. The
COTS effort distributions and sequences also suggest a
framework for the primary contributions of the paper: a
set of composable process elements and a decision
framework for using them in the development of CBA’s.

Traditional sequential requirements-design-code-test
(waterfall) processes do not work for CBA’s [11], simply
because the decision to use a COTS product constitutes
acceptance of many, if not most, of the requirements that
led to the product, and to its design and implementation.
In fact, it is most often the case that a COTS product’s
capabilities will drive the “required” feature set for the
new product rather than the other way around, though
the choice of COTS products to be used should be driven
by the new project’s initial set of “most significant
requirements.” Additionally, the volatility of COTS
products [9] introduces a great deal of recursion and
concurrency into CBA processes.

Some recent CBA process models have partially
addressed these issues by adding CBA extensions to a
sequential process framework [8]. These work in some
situations, but not in others where the requirements,
architecture, and COTS choices evolve concurrently; the
example in Section 4 illustrates this point.

Other process frameworks such as the spiral model [5]
and the SEI Evolutionary Process for Integrating COTS-
Based Systems (EPIC) process [2] provide suitably
flexible and concurrent frameworks for CBA processes.
However, they have not, to date, provided a specific
decision framework for navigating through the option
space in developing CBA’s. They identify key activities
(evaluate alternatives; identify and resolve risks;
accumulate specific kinds of knowledge; increase
stakeholder buy-in; make incremental decisions that
shrink the trade space), but leave their sequencing to the
individual CBA developer.

The decision framework presented here is based on
our experience in analyzing large CBA’s in the course of
gathering empirical data for the Constructive CBA cost
model (COCOTS), a COTS counterpart to COCOMOII
[1,6], and our experience developing and analyzing
several dozen e-services CBA’s for USC’s Information
Services Division and its Center for Scholarly
Technology [4].

2. Definitions and Context
2.1 Definitions

We adopt the SEI COTS-Based System Initiative’s
definition [7] of a COTS product: A product that is:
• Sold, leased, or licensed to the general public;
• Offered by a vendor trying to profit from it;
• Supported and evolved by the vendor, who retains

the intellectual property rights;
• Available in multiple identical copies;
• Used without source code modification.

We also follow the SEI in defining a COTS-Based
System very generally as “any system, which includes one
or more COTS products.” This includes most current
systems, including many which treat a COTS operating
system and other utilities as a relatively stable platform
on which to build applications. Such systems can be
considered “COTS-based systems,” as most of their
executing instructions come from COTS products, but
COTS considerations do not affect the development
process very much.

To provide a focus on the types of applications for
which COTS considerations do affect the development
process, we define a COTS-Based Application as a
system for which at least 30% of the end-user
functionality (in terms of functional elements: inputs,
outputs, queries, external interfaces, internal files) is
provided by COTS products, and at least 10 % of the
development effort is devoted to COTS considerations.
The numbers 30% and 10% are not sacred quantities, but
approximate behavioral CBA boundaries observed in the
application projects. There was a significant gap
observed in COTS-related effort reporting. The projects
observed either reported less than 2% or over 10%
COTS-related effort, but never between 2-10%.

50

No. Process Map
4 ATGC
5 ATA
6 A(TG)AG
7 A(TG)A(TG)

Table 1. CBA Effort
Sequences

In our six years of iteratively defining, developing,
gathering project data for, and calibrating COCOTS cost
estimation model, we identified four primary sources of
project effort due to CBA development considerations.
These are defined in COCOTS as follows:
• COTS Assessment is the activity whereby COTS

products are evaluated and selected as viable
components for a user application.

• COTS Tailoring is the activity whereby COTS
software products are configured for use in a specific
context. This definition is similar to the SEI
definition of “tailoring” [10].

• COTS Glue Code development and integration is the
activity whereby code is designed, developed, and
used to ensure that COTS products satisfactorily
interoperate in support of the user application.

2.3 CBA Activity Distribution

Based on 2000-2002 USC-CSE e-services data and
1996-2001 COCOTS calibration data, we observe a large
variation of COTS-related (assessment, tailoring, and
glue code) effort distributions. This is clearly illustrated
in the e-services and COCOTS COTS effort distributions
in Figures 2.3a and 2.3b respectively.
 The industry projects in Figure 2.3b were a mix of
small-to-large business management, engineering
analysis, and command control applications. Assessment
effort ranged from 1.25 to 147.5 person-months (PM).
Tailoring effort ranged from 3 to 648 PM; glue code
effort ranged from 1 to 1411 PM.

Some CBA approaches, including our initial approach
to COCOTS, just focus on one CBA activity such as glue
code or assessment. As shown in Figure 2.3a, some
projects (projects 3, 8, 9, 10) are almost purely tailoring
efforts, while other projects (projects 2, 4, 5) spent most
of the time on COTS assessment. The industry projects in
Figure 2.3b have similar attributes. We also note that all
projects had some degree of assessment, and so we never
have observed tailoring or glue code only efforts, or a
mix of only these two. In addition, the assessment and
glue code-only combination is very rare.

In previous work [12] these observations have led us
to believe that there are typically three types of CBA
projects. These are chiefly-assessment oriented; chiefly
assessment and tailoring; or a significant mix of all three
COTS-related activities. We found that different CBA
types had significantly different project attributes (such
as requirements flexibility), risk profiles, and project
development characteristics.

 Another notable fact found from looking at effort data
that was collected on a weekly basis, is that assessment
activities (A), tailoring activities (T), and glue code
development (G) are not necessarily sequential. Table 1
shows a sampling of the A, T, G sequences for some of
the e-services projects (we also denote custom
development with the letter C). The sequences of
activities are time ordered from left to right and activities
undertaken in parallel are indicated by placing the

activity letters within parentheses. We note that all
sequences begin with assessment. We also note that the
small cycle of ATG or A(TG) is very common and often
repeating combination.

 The different combinations of assessment, tailoring,
and glue code activities resulted from insufficient earlier
assessment (for example, project No. 6), COTS changes
(Project No. 5, 7), or requirement changes (project No.
4). Such decision factors are not directly addressed by the
current literature on CBS processes. Therefore, we have
developed a CBA process decision framework and a set
of composable process
elements to address and
accommodate these
critical factors. This
decision framework is
consistent with our
empirical data and the
distribution and sequence
observations discussed in
this section.

3. CBA Process Decision Framework and
Process Elements
 As evidenced in section 2.3, there are a wide variety
of CBA effort distributions, and the particular effort
distribution of a CBA significantly reflects its project
risks and development characteristics. As such, applying
a one-size-fits-all development process is likely to
encounter difficulties in addressing the needs and risks of
a given CBA.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

P r o j e c t s
A s s e s s m e n t T a i l o r i n g G l u e C o d e

Figure 2.3a. CBA Effort Distribution of
USC e-Service Projects

Figure 2.3b. CBAs Effort Distribution of
COCOTS Calibration Data

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P r o j e c t s

51

 As the fraction of CBA’s has increased among our
USC e-services projects, we have encountered increased
conflict between CBA process needs and our UML-based
MBASE process and documentation guidelines. This has
led to a good deal of confusion, frustrating re-work, risky
decisions, and a few less than satisfactory products.
 A notable example of this re-work occurred within
one of the authors’ “USC Collaborative Services” project
in which the developers scrapped (after much expended
effort) their process-mandated UML based design models
and substituted extensive and detailed assessments and
comparisons of several COTS packages, each of which
covered most or all of the desired capabilities.
 In analyzing this problem, we found that the ways
that the better projects handled their individual
assessment, tailoring, and glue code activities exhibited
considerable similarity at the process element level. We
also found that these process elements fit into a recursive
and reentrant decision framework accommodating
concurrent CBA activities and frequent go-backs based
on new and evolving OC&P’s and COTS considerations.
We now describe the CBA process decision framework
and its respective assessment, tailoring, and glue code
elements.

3.1. The CBA Process Decision Framework
 Figure 3.1 presents the dominant decisions and
activities within CBA development as abstracted from
our observations and analysis of USC e-services and
CSE- affiliate projects. This represents the overall CBA
decision framework that composes the assessment,
tailoring, glue code, and custom code development
process elements within an overall development lifecycle.
 Some explanation of Figure 3.1 is in order. The CBA
process is undertaken by “walking” a path from “start” to
“Non-CBA Activities” that connects (via arrows)
activities as indicated by boxes and decisions that are
indicated by ovals. Activities result in information that is
passed on as input to either another activity or used to
make a decision. Information follows the path that best
describes the activity or decision output. Only one labeled
path may be taken at any given time for any particular
walk; however it is possible to perform multiple activities
simultaneously (e.g. developing custom application code
and glue code, multiple developers assessing or
tailoring).
 The small circles with letters A, T, G, C indicate the
assessment, tailoring, glue code, and custom code
development process elements respectively. With the
exception of the latter, each of these areas will be
expanded and elaborated in the sections that follow.
These areas can generate the development activity
sequences indicated in Table 1 by noting the order that
these process elements are visited. Each area may enter
and exit in numerous ways both from within the area
itself or by following the decision framework of Figure
3.1. In addition, this scheme was developed from and is
consistent with the CBA activity distributions of Figures

2.3. In particular, only (and in fact all) “legal”
distributions are possible (e.g. that all distributions have
assessment effort is consistent with all paths in the
framework initially passing through the assessment
element (or area “A”). We now summarize the less
obvious aspects of each process area.

Figure 3.1. CBA Effort Decision Framework

P1: Identify OC&P’s: Evaluation Criteria, Weights
and Scenarios. This is the entrance to the CBA process
where the initial evaluation attributes and desired
operational outcomes for the application are established.
Risk considerations, stakeholders’ priority changes, new
COTS releases and other dynamic considerations may
significantly alter the objectives, constraints, and
priorities (OC&P’s). In particular, if no suitable COTS
packages are identified, the stakeholders may change the
OC&P’s and the process is started over with these new
considerations.

P2: Identify alternatives: Candidate COTS products.
This and activity P1 establish the entry conditions for an
Assessment activity.

P5: Multiple COTS cover all OC & P’s? If a
combination of COTS products can satisfy all the
OC&P’s, they are integrated via glue-code. Otherwise,
COTS packages are combined to cover as much of the
OC&P’s as feasible and then custom code is developed to
cover what remains.

P6: Can Adjust OC & P's?
When no acceptable COTS products can be identified,
the OC&P’s are re-examined for areas that may allow
more options. Are there constraints and priorities that
may be relaxed that have eliminated some products from
consideration? How firm are the objectives and if
adjusted slightly will it enable consideration of more
products? Are there analogous areas in which to look for
more products and alternatives?

52

P8: Coordinate Application Code development and
Glue Code effort. Custom developed components must
eventually be integrated with the chosen COTS products.
The interfaces will need to be developed so they are
compatible with the COTS products and the particular
glue code connectors used. This means that some glue
code effort will need to be coordinated with the custom
development.

3.2. Assessment Process Element

COTS assessment aims at helping to make buy-or-
build choices and helping select the most satisfactory
combination of COTS products from various candidates.
Current approaches to COTS assessment processes
identify key tasks and emphasize the concurrency and
high coupling involved in the tasks [14,15]. But they
leave open how COTS assessment fits with tailoring,
glue code, and the overall process. Here we present a
COTS assessment process that provides these linkages as
shown in Figure 3.2:

Figure 3.2. The Assessment Process Element

Entry Conditions for Assessment

The entry condition for assessment assumes that
suitable COTS evaluation criterion, their corresponding
weights, business scenarios, and COTS candidates are
present (starting with the results of Fig. 3.1 decision
elements P1 and P2).

Evaluation criteria and weights are established based
on stakeholder-negotiated OC&P’s for the system.
Stakeholders also agree on the business scenarios to be
used for the assessment. The assessment sub-model of
COCOTS has collected an extensive list of attributes
used in COTS evaluation [1,6].

A1: Initial Filtering. Initial assessment tries to quickly
filter out the unacceptable COTS packages based on the
evaluation criteria. The objective of this activity is to
reduce the number of COTS candidates needing to be
evaluated in detail. If no available COTS products pass
this filtering, this assessment element ends up at the
“none acceptable” exit.

A2: Tailoring or Glue Code Needed for Evaluation.
The remaining COTS candidates from initial filtering
will undergo more detailed assessment. To do so, some
COTS products need to be tailored (e.g., to assess

usability), and some need to be integrated by glue code
development (e.g., to assess interoperability).

A3: Detailed Assessment. The focus of detailed
assessment is to collect data/information about each
COTS candidate against evaluation criteria from pre-
designed business scenarios, analyze the data and make
decision trade-offs. Some useful techniques are listed
here:

1. Use a market watch activity to get the latest COTS
information, and collect COTS information from
its current users to gain first hand COTS
experience from its current user group.

2. Assess vendor supportability to address life cycle
issues such as system refresh and maintenance.

3. Develop, instrument, and evaluate prototypes,
benchmarks, simulations, or analytic models to
analyze key performance parameters and tradeoffs.

A screening matrix or analytic hierarchy process is a

useful and common approach to analyze collected
evaluation data. The evaluation criteria and COTS
candidates work as the columns and rows of the matrix
respectively. The final score for a particular COTS
candidate is the weighted sum of its points across all of
the evaluation criteria. A ranking of all COTS candidates
will be produced to help making the COTS decision.
However, often a more focused analysis such as a gap
analysis [13] or a business case analysis will be needed.

Besides the above major activities taking place during
an assessment process element, there are some other
management activities that are necessary and even
critical to the assessment result. Such management
activities are periodic assessment reviews, including the
evaluating team, senior management, customers and the
key users. The primary tasks for assessment review are to
provide feedback to the evaluation process, to negotiate
changes of requirements, design and COTS candidates,
to adjust and refine the sets of evaluation criteria,
weights, and business scenarios, and make final
decisions. The final decisions establish different
directions for exiting the COTS assessment process. We
have identified the following three exit directions:

1. Full COTS solution is the best, which means
there is a single COTS product or a combination
of COTS products covering desired OC&P’s;

2. A partial COTS solution is the best, which
means that COTS product(s) only cover part of
the OC&P’s, and custom development is needed
to meet the gap between COTS and OC&P’s;

3. No COTS products are acceptable, which means
that pure custom development is the optimal

53

solution, unless the stakeholders are willing to
adjust unsatisfied OC&P’s.

3.3. Tailoring Process Element

In more cases than not the COTS packages may have
to be modified slightly in order to satisfy the OC & P’s
for the system [12]. If these modifications are directly
supported within the COTS packages themselves, then
this is considered tailoring activity. The tailoring process
element is illustrated in Figure 3.3.

Figure 3.3. The Tailoring Process Element

Entry Conditions for Tailoring
While several COTS products may be tailored
simultaneously (often by different people), the tailoring
process element focuses on tailoring an individual COTS
product. This product may be under consideration by the
assessment element; be adapted for use as a glue code
component; or be a fully assessed and ready to use
product simply needing some specialization. Tailoring
may be entered multiple times to accommodate multiple
products or refinements to a previously tailored product.

T1: Identify Tailoring Options Identify the candidate
options to be used in order to tailor the COTS system. A
COTS product may have multiple tailoring options; in
such cases the decision must be made as to what
capabilities are required to be implemented by which
option. As shown in Table 2, tailoring options may
include GUI operations, parameter setting, or
programming specialized scripts.

T2: Clear Best Choice? If a dominant tailoring COTS
tailoring option is found then the developers can proceed
to the development of the system. If there are still
multiple tailoring options, the developers need to
evaluate them in order to select the best option.

T3: Evaluate COTS Tailoring options. When there is
no clear choice from T1 on which tailoring options to
pursue, some further evaluation may be necessary. The
typical evaluation considerations are: need to implement
a particular design, the complexity of tailoring needed,
need for adaptability and compatibility with other COTS
tailoring choices, and available developer resources.

3.4. Glue Code Process Element

 The intent of a glue code activity is to integrate COTS
products as basic application components. In some
fortunate cases, the combination of COTS components
and application components being integrated or assessed
will easily plug-and-play together. If not, some glue code
needs to be defined and developed to integrate the
components, and some evaluation may be necessary to
converge on the best combination of COTS, glue code,
and application code for the solution. A number of
architectural approaches for using glue code or
connectors to integrate COTS products have been
developed [16, 17], but less has been done to work out
the process for glue code development and its
interactions with other CBA processes. Figure 3.4
illustrates the activities and decisions made when
working with glue code.

Entry Conditions for Glue Code
The primary entry conditions are a set of components
assessed to require glue code for successful joint
operation, and a set of exit conditions. When entered
from Assessment, the entry criteria also include the
assessment criteria, and the exit conditions may be to
develop just enough glue code to determine the most
acceptable (if any) combination of components and glue
code for a set of evaluation scenarios. When entered from
the main decision framework (Fig. 3.1), the exit
conditions will be to both determine the best combination
of components and glue code, and develop and verify that
the combination acceptably satisfies the system OC&P’s.

Figure 3.4. The Glue Code Process Element

G1: Best or Only Choice? In this initial decision point
determine if there is a clear best choice of viable COTS
package (and possible application code) combinations. If
so then proceed to tailoring if necessary, otherwise there
is a need to evaluate and assess viable combinations.

G3: Identify Valid Combinations. Often COTS
packages are attractive from an OC&P standpoint, but
cannot be made to feasibly (either technically or
economically) interoperate. If none of the candidate
packages can feasibly interoperate with respect to the
current OC&P’s, then more candidates must be generated
or the OC&P’s must be changed. When there are several
valid combinations, the options are to be assessed to
identify the best option.

54

G4: Develop and Integrate. This is the most complex
part of the glue code process element. It involves many
detailed activities all that must be carefully risk managed.
Fortunately there exists a large body of knowledge on the
subject of developing and integrating COTS with glue
code (such as [16, 17]) and we will not detail them here.
The basic tasks are:
1. Determine the interconnection topology options and

minimize the complexity of interactions.
2. Evaluate and choose connector options (e.g. events,

procedure calls, pipes, shared memory, DB, etc.).
3. Implement the connector infrastructure and develop

the appropriate interfaces (simultaneously with
application code interfaces if necessary as indicated
within the application code process).

4. Integrate the components.

G5: Best Option? It may be that the G4 step produces
poorer integrated performance than expected. If so, the
G5 step determines whether one of the previously-
rejected combinations may be better.

5. Conclusions
 The fraction of projects that are COTS-based
applications (CBA’s with over 30% of end-user
functionality provided by COTS and over 10% of
development effort devoted to COTS considerations) is
rapidly increasing in many application sectors. A 5-year
longitudinal analysis of similar small e-services
applications showed a growth from 28% CBA’s in 1997
to 60% in 2001.
 For samples of both small and large CBA’s we have
analyzed, most COTS-specific effort was devoted to
COTS Assessment (A), Tailoring (T), or Glue code (G)
activities. There is no one-size-fits-all distribution of A,
T, and G effort, although there are some common
patterns and significant correlations (e.g., a -.92 negative
correlation between amount of Tailoring effort and Glue
code effort).
 Not only waterfall processes, but also standard object-
oriented, UML-based processes have significant
difficulties in dealing with the uncontrollable COTS
architecture constraints, COTS dynamism, COTS
uncertainty, and concurrency of activities involved in
developing CBA’s.
 Our CBA project analysis found that for the most
part, “where the effort happens, there the process
happens.” We also found that the Assessment, Tailoring,
and Glue code activities followed similar processes for
these elements. These A, T, and G process elements, and
a custom application-code construction process element
(C), could be composed into an overall process decision
framework for CBA’s.
 However, there was also no one-size-fits-all path
through the decision framework. In fact, most CBA
processes we have analyzed are dynamic and concurrent,

and the process elements need to be reentrant and
recursive.

7. References
[1] C. Abts, B. Boehm, and E. Bailey Clark, “COCOTS:
A Software COTS-Based System (CBS) Cost Model,”
Proceedings, ESCOM 2001, April 2001, pp. 1-8.
[2] C. Albert and L. Brownsword, “Evolutionary Process
for Integrating COTS-Based Systems (EPIC): An
Overview,” CMU-SEI-2002-TR-009, July 2002.
[3] R. Balzer, “Living with COTS,” Proceedings, ICSE
24, May 2002, p. 5.
[4] B. Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, and
R. Madachy, “Using the WinWin Spiral Model: A Case
Study,” Computer, July 1998, pp. 33-44.
[5] B. Boehm, “A Spiral Model of Software Development
and Enhancement,” Computer, May 1988, pp. 61-72.
[6] B. Boehm, C. Abts, A.W. Brown, S. Chulani, B.K.
Clark, E. Horowitz, R. Madachy, D. Reifer, and B.
Steece, Software Cost Estimation with COCOMO II,
Prentice Hall, 2000.
[7] L. Brownsword, P. Oberndorf, and C. Sledge,
“Developing New Processes for COTS-Based Systems,”
Software, July/August 2000, pp. 48-55.
[8] M. Morisio, C. Seaman, A. Parra, V. Basili, S. Kraft,
and S. Condon, “Investigating and Improving a COTS-
Based Software Development Process,” Proceedings,
ICSE 22, June 2000, pp. 32-41.
[9] V. Basili and B. Boehm, “COTS Based System Top
10 List,” Computer, May 2001, pp 91-93.
[10] B. C. Meyers and P. Oberndorf, Managing Software
Acquisition: Open Systems and COTS Products,
Addision Wesley, 2001.
[11] G. Benguria, A. Garcia, D. Sellier, and S. Tay,
“European COTS Working Group: Analysis of the
Common Problems and Current Practices of the
European COTS Users,” COTS-Based Software Systems
(Proceedings, ICCBSS 2002), Springer Verlag, 2002, J.
Dean and A. Gravel (eds.), pp. 44-53.
[12] D. Port, J. Bhuta, Y. Yang, B. Boehm, “Not All
CBS Are Created Equally: COTS Intensive Project
Types,” Submitted to ICCBSS 2002.
[13] C. Ncube and J. Dean, “The Limitations of Current
Decision-Making Techniques in the Procurement of
COTS Software Components,” COTS – Based Software
Systems J. Dean and A. Gravel (eds.), Springer Verlag,
2002, RP-176-187.
[14]. N. Maiden, H.Kim, and C. Ncube, “Rethinking
Process Guidance for Selecting Software Components,”
COTS-Based Software Systems, J.Dean and A.Gravel
(eds.), Springer Verlag, 2002, pp.151-164.
[15] S.Comella- Dorda, J.Dean, E.Morris, and
P.Oberndorf, “A Process for COTS Software Product
Evaluation,” COTS -Based Software Systems , J.Dean
and A.Gravel (eds.), Springer Verlag,2002, pg. 86-96
[16]. N. Medvidovic, R. Gamble, and D. Rosenblum,
“Towards Software Multioperability: Bridging
Heterogeneous Software Interoperability Platforms,”

55

Proceedings, Fourth International Software Architecture
Workshop, 2000
[17] L.Davis and R. Gamble, “Identifying Evolvability
for Integration,” COTS-Based Software Systems, J.Dean
and A. Gravel (eds.) Springer Verlag, 2002, pp.65-75

56

WinWin Spiral Approach to Developing COTS-Based Applications
EDSER-5 Position Paper

Barry Boehm, Dan Port, Ye Yang
University of Southern California, Texas A&M University*

{boehm, dport, yey}@cse.usc.edu

Abstract
Data collected from five years of developing e-service
applications at USC-CSE reveals that an increasing
fraction have been commercial-off-the-shelf (COTS)-
Based Application (CBA) projects: from 28% in 1997 to
60% in 2001. Data from both small and large CBA
projects show that CBA effort is primarily distributed
among the three activities of COTS assessment, COTS
tailoring, and glue code development and integration,
with wide variations in their distribution across projects.
We have developed a set of data-motivated composable
process elements, in terms of these three activities, for
developing CBA's as well an overall decision framework
for applying the process elements. We present a real-
world example showing how it operates within the
WinWin Spiral process model generator to orchestrate,
execute, and adapt the process elements to changing
project circumstances.

1. Definitions and Context
1.1 Definitions

We adopt the SEI COTS-Based System Initiative’s
definition [7] of a COTS product: A product that is:
• Sold, leased, or licensed to the general public;
• Offered by a vendor trying to profit from it;
• Supported and evolved by the vendor, who retains

the intellectual property rights;
• Available in multiple identical copies;
• Used without source code modification.

We also follow the SEI in defining a COTS-Based
System very generally as “any system, which includes one
or more COTS products.” This includes most current
systems, including many which treat a COTS operating
system and other utilities as a relatively stable platform
on which to build applications. Such systems can be
considered “COTS-based systems,” as most of their
executing instructions come from COTS products, but
COTS considerations do not affect the development
process very much.

To provide a focus on the types of applications for
which COTS considerations do affect the development
process, we define a COTS-Based Application as a
system for which at least 30% of the end-user
functionality (in terms of functional elements: inputs,
outputs, queries, external interfaces, internal files) is
provided by COTS products, and at least 10 % of the
development effort is devoted to COTS considerations.
The numbers 30% and 10% are not sacred quantities, but
approximate behavioral CBA boundaries observed in the

application projects. There was a significant gap
observed in COTS-related effort reporting. The projects
observed either reported less than 2% or over 10%
COTS-related effort, but never between 2-10%.

In our six years of iteratively defining, developing,
gathering project data for, and calibrating COCOTS cost
estimation model, we identified four primary sources of
project effort due to CBA development considerations.
These are defined in COCOTS as follows:
• COTS Assessment (A) is the activity whereby COTS

products are evaluated and selected as viable
components for a user application.

• COTS Tailoring (T) is the activity whereby COTS
software products are configured for use in a specific
context. This definition is similar to the SEI
definition of “tailoring” [10].

• COTS Glue Code (G) development and integration is
the activity whereby code is designed, developed,
and used to ensure that COTS products satisfactorily
interoperate in support of the user application.

1.2 CBA Growth Trend

An increasing fraction of CBA projects have been
observed in over five years’ USC-CSE e-services project
data. As seen in figure 2.1, the CBA fraction has
increased from 28% in 1997 to 60% in 2001.

Major considerations for adopting COTS products in
these projects are: 1) the clients’ request, 2) the schedule
constraint, 3) compliance with organization standards,
and 4) the budget constraint. The primary reason for the
growth in COTS content has, however, been the large
increase in the number of COTS products providing
application functions. In 1997, most of the teams were
programming their own search engines and Web
crawlers, for example; by 2001 these functions were
being accomplished by COTS products.

Some of our USC-CSE affiliates have reported similar
qualitative trends, but this is the first quantitative data
they and we have seen on the rate of increase of CBA
projects under any consistent definition and in any
application sector (e-services applications probably have
higher rates of increase than many other sectors). We
have experienced many notable effects of this increase:
for example, programming skills are necessary but not
sufficient for developing CBA’s (see also 8,9,10,11]).

57

fraction of projects satisfying (30%, 10%) CBA criteria

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1997 1998 1999 2000 2001
Year

Figure 1.2 CBA Growth in Small E-Service Projects

2. The CBA Process Decision Framework
 Figure 2.1 presents the dominant decisions and
activities within CBA development as abstracted from
our observations and analysis of USC e-services and
CSE- affiliate projects. This represents the overall CBA
decision framework that composes the assessment,
tailoring, glue code, and custom code development
process elements within an overall development lifecycle.
 Some explanation of Figure 2.1 is in order. The CBA
process is undertaken by “walking” a path from “start” to
“Non-CBA Activities” that connects (via arrows)
activities as indicated by boxes and decisions that are
indicated by ovals. Activities result in information that is
passed on as input to either another activity or used to
make a decision. Information follows the path that best
describes the activity or decision output. Only one labeled
path may be taken at any given time for any particular
walk; however it is possible to perform multiple activities
simultaneously (e.g. developing custom application code
and glue code, multiple developers assessing or
tailoring).
 The small circles with letters A, T, G, C indicate the
assessment, tailoring, glue code, and custom code
development process elements respectively. With the
exception of the latter, each of these areas will be
expanded and elaborated in the sections that follow. Each
area may enter and exit in numerous ways both from
within the area itself or by following the decision
framework of Figure 2.1. In addition, this scheme was
developed from and is consistent with the CBA activity
distributions of Figures 2.3. In particular, only (and in
fact all) “legal” distributions are possible (e.g. that all
distributions have assessment effort is consistent with all
paths in the framework initially passing through the
assessment element (or area “A”). We now summarize
the less obvious aspects of each process area.

Figure 2.1. CBA Effort Decision Framework

P1: Identify OC&P’s: Evaluation Criteria, Weights
and Scenarios. This is the entrance to the CBA process
where the initial evaluation attributes and desired
operational outcomes for the application are established.
Risk considerations, stakeholders’ priority changes, new
COTS releases and other dynamic considerations may
significantly alter the objectives, constraints, and
priorities (OC&P’s). In particular, if no suitable COTS
packages are identified, the stakeholders may change the
OC&P’s and the process is started over with these new
considerations.

P2: Identify alternatives: Candidate COTS products.
This and activity P1 establish the entry conditions for an
Assessment activity.

P5: Multiple COTS cover all OC & P’s? If a
combination of COTS products can satisfy all the
OC&P’s, they are integrated via glue-code. Otherwise,
COTS packages are combined to cover as much of the
OC&P’s as feasible and then custom code is developed to
cover what remains.

P6: Can Adjust OC & P's?
When no acceptable COTS products can be identified,
the OC&P’s are re-examined for areas that may allow
more options. Are there constraints and priorities that
may be relaxed that have eliminated some products from
consideration? How firm are the objectives and if
adjusted slightly will it enable consideration of more
products? Are there analogous areas in which to look for
more products and alternatives?

P8: Coordinate Application Code development and
Glue Code effort. Custom developed components must
eventually be integrated with the chosen COTS products.
The interfaces will need to be developed so they are
compatible with the COTS products and the particular

58

glue code connectors used. This means that some glue
code effort will need to be coordinated with the custom
development.

3. Example WinWin Spiral Approach to
CBA Development

3.1. Elaborated WinWin Spiral Model

Figure 3.1 provides a more detailed and concise
version of the Win Win Spiral Model than that presented
in [5]. It returns to the original four segments of the
spiral, and adds stakeholders’ win-win elements in
appropriate places. It also emphasizes concurrent product
and process development, verification and validation;
adds priorities to stakeholders’ identification of objectives
and constraints; and includes the LCO, LCA, and IOC
anchor point milestones [19] also adopted by the Rational
Unified Process.

Figure 3.1. Elaborated WinWin Spiral Model

3.2. Example CBA: Oversize Image Viewer

One of the USC e-services COTS-based applications
involved the development of a viewing capability for
oversized images. The original client needed a system to
support viewing of digitized collections of old historical
newspapers, but other users became interested in the
capability for dealing with maps, art works and other
large digitized images. The full system capability
included not just image navigation and zoom-in/zoom-
out; but image catalog and metadata storage, update,
search, and browse; image archive management; and
access administration capabilities.

Several COTS products were available for the image
processing functions, each with its strengths and
weaknesses. None could cover the full system capability,
although other COTS capabilities were available for
some of these. As the initial operational capability (IOC)
was to be developed as a student project, its scope needed
to be accomplished by a five–person development team in
24 weeks. The application described in the next section
makes some small simplifications of the project for the
sake of brevity, but the overall COTS decision sequence
and spiral cycles happened largely as described.

3.3. Applying the Decision Framework and the
WinWin Spiral Model

The process description provided here for the
Oversize Image Viewer (OIV) project covers the project’s
first three spiral cycles. Each cycle description begins
with its use of the WinWin Spiral Model, as the primary
sequencing of tasks is driven by the success-critical
stakeholders’ win conditions and the project’s major risk
items.

The OIV process description for each cycle then
discusses its use of the CBA Process Decision Framework
and its process elements. It shows that the framework is
not used sequentially, but can be re-entered if the Win
Win Spiral risk patterns cause a previous COTS decision
to be reconsidered. The resulting CBA decision sequence
for the OIV project was a composite process, requiring
all four of the Assessment, Tailoring, Glue Code, and
Development process elements.

Table 1 provides a spiral model template that is an
update of the template used in the original spiral model
paper [5]. It shows the major spiral artifacts and
activities in the OIV project’s first three spiral cycles.
The discussion below indicates how these were
determined by the major stakeholder OC&P’s and project
risk items.

3.3.1. Spiral Cycle 1

The original client was a USC librarian whose
collections included access to some recently-digitized
newspapers covering the early history of Los Angeles.
Her main problem was that the newspapers were too
large to fit on mainstream computer screens. She was
aware that some COTS products were available to do
this. She wanted the student developer team to identify
the best COTS product to use, and to integrate it into a
service for accessing the newspapers’ content, covering
the full system capability described in section 4.2 above.
Lower priorities involved potential additions for text
search, usage monitoring, and trend analysis.

 Her manager, who served as the customer, had two
top-priority system constraints as her primary win
conditions. One was to keep the cost of the COTS
product below $25K. The other was to get reasonably
mature COTS products with at least 5 existing supported
customers.

The student developer team’s top-priority constraint
was to ensure that the system’s Initial Operational
Capability (IOC) was scoped to be developable within the
24 weeks they had for the project.

The team quickly used these top-priority constraints
to filter out two COTS products: system XYZ was too
expensive, and system ABC had only one beta-test
customer. The other two OIV COTS products, ER
Mapper and Mr. SID, had different user interfaces; the
major risk was to select one that users would
subsequently find unacceptable. This risk was addressed
by exercising the two products; this stage of the COTS
assessment concluded that ER Mapper had considerably

59

stronger performance and image navigation
characteristics than Mr. SID. Mr SID’s main advantage
was that it ran on Windows, Unix, and Macintosh
platforms, while ER Mapper was only running on
Windows. As the client had a Windows-based operation,
ER Mapper was identified as the best candidate. Plans
were made to tailor it for the overall product solution,
and integrate it with other COTS and/or application
code, as ER Mapper was not a complete application
solution for such functions as cataloguing and search.

When the customer reviewed these plans, however,
she felt that the investment in a campus OIV capability
should also benefit other campus users, some of whom
worked on Unix and Macintosh platforms. She
committed to find representatives of these communities
to participate in a re-evaluation of ER Mapper and Mr.
SID for campus-wide OIV use. The client and developers
concurred with this revised plan for spiral cycle 2.

Use of the CBA Decision Framework in Cycle 1

The first three steps of spiral cycle 1 in Table 1

(Stakeholders, OC&P’s, Alternatives) include COTS
products as alternatives and establish the preconditions
(top-level evaluation criteria, weights, and scenarios;
candidate COTS products) for entering the CBA
Assessment decision framework in Figure 2.1 and 3.2.
Spiral step 4 (Evaluation in Table 1) establishes the entry
into Assessment in Figures 3.1 and 3.2.

Following the Assessment Framework in Figure 3.2,
the initial filtering step eliminated some candidates
(XYZ and ABC), but not ER Mapper or Mr. SID. The
risk assessment in Table 1 required the two COTS
products to be exercised, which involved Tailoring to
accommodate the newspaper image files, but not glue
code at this point. The evaluation identified ER Mapper
as the best OIV solution, but only as a partial solution for
other needed functions such as cataloguing, search, and
archiving.

Thus the Assessment process element (Figure 3.2)
exits back to the overall CBA decision Framework
(Figure 2.1) in the “Partial COTS solution best”
direction. But it cannot proceed further until the Win
Win Spiral process determines whether either
applications code or added COTS products or both need
to be developed for the rest of the application (a lower
risk decision deferred to a subsequent spiral cycle).

However, spiral cycle 1 ended with a new decision to
revisit Assessment with likely new OC&P’s emerging
from other-OIV-user stakeholders as evaluation criteria.
Thus we can see that the CBA decision framework is not
sequential, but needs to be recursive and reentrant
depending on risk and OC&P decisions made within the
Win Win Spiral process.

3.3.2. Spiral Cycle 2

With the new Unix and Mac OIV stakeholders, a new
win-win set of OC&P’s emerges, including not only Unix
and Mac OIV usability but also interoperability with
other selected COTS products on all three platforms. The
new evaluation/COTS assessment confirmed that Mr.
SID was usable on all three platforms, but that ER
Mapper had only general plans for Unix and Mac
versions.

When ER Mapper declined to guarantee early Unix
and Mac versions, Mr. SID became the new choice for
the OIV functions. Concurrent assessment of candidate
COTS products for the non-OIV functions converged on
MySQL for catalog database support and Java for GUI
support. Although the initial evaluation indicated that
these were interoperable with Mr. SID, a fully
interoperable build-upon (vs. throwaway) prototype was
scheduled to be developed and interoperability-verified in
spiral cycle 3. The other outstanding risk identified was
that the system’s GUI needed prototyping with additional
end-user representatives also planned for spiral cycle 3.

Spiral cycle 2 ended with a WinWin Spiral LCO (Life
Cycle Objectives) milestone review. At the LCO review,
all of the stakeholders agreed to support the
commitments allocated to them in the plans.

 Cycle 1 Cycle 2 (LCO) Cycle 3 (LCA)

Stakeholders
Developer,
customer, library-
user client, COTS
vendors

Additional user
representatives (Unix,
Mac communities)

Additional end-users
(staff, students) for
usability evaluation

OC&P’s

Image navigation,
cataloguing,
search, archive and
access
administration

COTS cost ≤ $25K,
≥ 5 user
organizations

IOC developed,
transitioned in 24
weeks

System usable on
Windows, Unix, and
Mac platforms

Detailed GUI’s satisfy
representative users

Alternatives ER Mapper, Mr SID,
Systems ABC, XYZ

ER Mapper, Mr SID Many GUI
alternatives

Evaluation;
Risks

XYZ > $25K; ABC <
5 user org’s

ER Mapper, Mr SID
acceptable

Risk picking wrong
product without
exercise

ER Mapper Windows-
only; plans to support
Unix, Mac; schedule
unclear

Mr SID supports all 3
platforms

Risk of Unix, Mac non-
support

Risk of developing
wrong GUI without
end-user prototyping

Mr SID/MY SQL/Java
interoperability risks

Risk
Addressed

Exercise ER
Mapper, Mr SID

Ask ER Mapper for
guaranteed Unix, Mac
support in 9 months

Prototype full range
of system GUI’s, Mr
SID/My SQL/Java
interfaces

Risk
Resolution

ER Mapper image
navigation, display
stronger

ER Mapper: no
guaranteed Unix, Mac
support even in 18
months

Acceptable GUI’s, Mr
SID/My SQL/.Java
interfaces
determined

Product
Elaboration

Use ER Mapper for
image navigation,
display

Use Mr SID for image
navigation, MySQL for
catalog support, Java
for admin/GUI support

Develop production
Mr SID/My SQL/Java
glue code

Process
Elaboration

Tailor ER Mapper
for library-user
Windows client

Prepare to tailor Mr
SID, My SQL to
support all 3 platforms

Use Schedule as
Independent Variable
(SAIV) process to
ensure acceptable
IOC in 24 weeks

Product
Process

Customer: want
campus-wide
usage, support of
Unix, Mac platforms

ER Mapper runs
only on Windows

Need to address Mr
SID/My SQL/Java
interoperability, glue
code issues; GUI
usability issues

Need to prioritize
desired capabilities
to support SAIV
process

Commitment

Customer will find
Unix, Mac user
community
representatives

Customer will buy Mr
SID

Users will support GUI
prototype evaluations

Customer will
commit to post-
deployment support
of software

Users will commit to
support training,
installation,
operations

Table 1. Spiral Model Application to
Oversize Image Viewer 60

Use of the CBA Decision Framework in Cycle 2

The new stakeholders and OC&P’s in cycle 2 required
the project to backtrack to the beginning of the
Assessment process element in Figure 2.1 and 3.2. For
the OIV function, ER Mapper was filtered out without
further evaluation when it declined to guarantee early
Unix and Mac versions. Some tailoring was required to
verify that Mr. SID performed satisfactorily on Unix and
Mac platforms.

Concurrently, Assessment filtering and evaluation
tasks were being performed for the cataloguing and GUI
functions.

This concurrency is a necessary attribute of most
current and future CBA processes. Simple deterministic
process representations are simply inadequate to address
the dynamism, time-criticality, and varying
risk/opportunity patterns of such CBA’s. However, the
Win Win spiral process provides a workable framework
for dealing with risk-driven concurrency, and the
composable CBA decision framework and process
elements provide workable approaches for handling the
associated CBA activities. The dynamism and
concurrency makes it clear that the CBA process
elements need to be recursive and reentrant, but they
provide a much-needed structure for managing the
associated complexity.

3.3.2. Spiral Cycle 3

The additional end-user stakeholder communities
increased the risk of developing GUI’s that were fine for
some users and unsatisfactory to others. These risks were
resolved by involving representative end users in
exercising GUI prototypes for various cataloguing,
search, and navigation functions. The major CBA
processes involved the Assessment of detailed
interoperability characteristics of Mr. SID, MySQL, and
the GUI software on the Windows, Unix, and Mac
platforms. This involved invocation of both the
Tailoring and Glue Code process elements.

The other major risk was the fixed 24-week IOC
development schedule. This was handled via the
Schedule as Independent Variable (SAIV) process
described in [18]. The SAIV process requires customers
and users to prioritize their desired capabilities. The
priorities are used to define a core capability clearly
buildable within the fixed schedule, and to architect the
application for ease of adding or dropping borderline-
priority features. This approach was satisfactory to the
stakeholders, and resulted in a successfully transitioned
Initial Operational Capability at the end of the 24 weeks.

Use of the CBA Decision Framework in Cycle 3

The Assessment process for interoperability of Mr
SID, My SQL, and the Java GUI components on the
Windows, Unix, and Mac platforms did not involve a
comparative evaluation of alternative COTS products,
although alternatives would have been necessary in case

one of the COTS products had proved completely
inadequate. The interoperability assessment involved
both tailoring of the COTS products for the three
platforms and some glue code to (successfully) enable
interoperability.

Subsequent spiral cycles to develop the core capability
and the IOC did not involve further Assessment, but
involved concurrent use of the Tailoring, Glue Code, and
custom development processes.

3.4. Summary of CBA Decision Framework Use

The use of the CBA decision framework during the
three spiral system definition cycles and the subsequent
development activity can be summarized by the sequence
A, T; (AA); A, (TG); (TGC). The first spiral cycle
involved Assessment supported by Tailoring. The second
cycle involved two concurrent pure Assessments for the
OIV COTS choice and for the other COTS choices. The
third cycle involved an interoperability Assessment
supported by concurrent Tailoring and Glue Code
processes. The final development activity involved
concurrent Tailoring, Glue Code, and custom
development processes.

4. Conclusions
 Using the WinWin Spiral Model’s risk-driven
approach coupled with the CBA decision framework as a
process model generator, however, enabled projects to
generate appropriate combinations of A, T, G, and C
process elements that best fit their project situation and
dynamics. An extensive discussion of its application to
an actual CBA project is provided as an example.
 The resulting combinations of A,T,G, and C elements
serve as a sort of genetic code for the projects CBA
process which can be used to identify and compare it
with other projects CBA processes. The analogy can be
stretched too far, but it suggests several attractive
directions for future research, such as determining how
best to represent the concurrency and backtracking
aspects; validating and refining effort distributions based
on process elements; assessing the validity of the process
elements and decision framework in other CBA sectors;
and identifying common process element configurations,
valid and invalid configurations, or large-grain CBA
process patterns.

5. References
[1] C. Abts, B. Boehm, and E. Bailey Clark, “COCOTS:
A Software COTS-Based System (CBS) Cost Model,”
Proceedings, ESCOM 2001, April 2001, pp. 1-8.
[2] C. Albert and L. Brownsword, “Evolutionary Process
for Integrating COTS-Based Systems (EPIC): An
Overview,” CMU-SEI-2002-TR-009, July 2002.
[3] R. Balzer, “Living with COTS,” Proceedings, ICSE
24, May 2002, p. 5.
[4] B. Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, and
R. Madachy, “Using the WinWin Spiral Model: A Case
Study,” Computer, July 1998, pp. 33-44.

61

[5] B. Boehm, “A Spiral Model of Software Development
and Enhancement,” Computer, May 1988, pp. 61-72.
[6] B. Boehm, C. Abts, A.W. Brown, S. Chulani, B.K.
Clark, E. Horowitz, R. Madachy, D. Reifer, and B.
Steece, Software Cost Estimation with COCOMO II,
Prentice Hall, 2000.
[7] L. Brownsword, P. Oberndorf, and C. Sledge,
“Developing New Processes for COTS-Based Systems,”
Software, July/August 2000, pp. 48-55.
[8] M. Morisio, C. Seaman, A. Parra, V. Basili, S. Kraft,
and S. Condon, “Investigating and Improving a COTS-
Based Software Development Process,” Proceedings,
ICSE 22, June 2000, pp. 32-41.
[9] V. Basili and B. Boehm, “COTS Based System Top
10 List,” Computer, May 2001, pp 91-93.
[10] B. C. Meyers and P. Oberndorf, Managing Software
Acquisition: Open Systems and COTS Products,
Addision Wesley, 2001.
[11] G. Benguria, A. Garcia, D. Sellier, and S. Tay,
“European COTS Working Group: Analysis of the
Common Problems and Current Practices of the
European COTS Users,” COTS-Based Software Systems
(Proceedings, ICCBSS 2002), Springer Verlag, 2002, J.
Dean and A. Gravel (eds.), pp. 44-53.
[12] D. Port, J. Bhuta, Y. Yang, B. Boehm, “Not All
CBS Are Created Equally: COTS Intensive Project
Types,” Submitted to ICCBSS 2002.
[13] C. Ncube and J. Dean, “The Limitations of Current
Decision-Making Techniques in the Procurement of
COTS Software Components,” COTS – Based Software
Systems J. Dean and A. Gravel (eds.), Springer Verlag,
2002, RP-176-187.
[14]. N. Maiden, H.Kim, and C. Ncube, “Rethinking
Process Guidance for Selecting Software Components,”
COTS-Based Software Systems, J.Dean and A.Gravel
(eds.), Springer Verlag, 2002, pp.151-164.
[15] S.Comella- Dorda, J.Dean, E.Morris, and
P.Oberndorf, “A Process for COTS Software Product
Evaluation,” COTS -Based Software Systems , J.Dean
and A.Gravel (eds.), Springer Verlag,2002, pg. 86-96
[16]. N. Medvidovic, R. Gamble, and D. Rosenblum,
“Towards Software Multioperability: Bridging
Heterogeneous Software Interoperability Platforms,”
Proceedings, Fourth International Software Architecture
Workshop, 2000
[17] L.Davis and R. Gamble, “Identifying Evolvability
for Integration,” COTS-Based Software Systems, J.Dean
and A. Gravel (eds.) Springer Verlag, 2002, pp.65-75
[18] B.Boehm, D. Port, L. Huang and W. Brown, “Using
the Spiral Model and MBASE to Generate New
Acquisition Process Models: SAIV, CAIV, and
SCQAIV,” Cross Talk, January 2002, pp.20-25
(http://www.stsc.hill.af.mil/crosstalk)
[19] B. Boehm, “Anchoring the Software Process,”
Software, July 1996, pp. 73-82

62

Economic Risk-Based Management in Software Engineering:

The HERMES Initiative

Stefan Biffl
Vienna Univ. of Technology
Inst. of Software Technology

A-1040 Vienna, Austria

Michael Halling
Johannes Kepler Univ. Linz
Systems Eng. & Automation

A-4040 Linz, Austria

Paul Grünbacher
Johannes Kepler Univ. Linz
Systems Eng. & Automation

A-4040 Linz, Austria
Stefan.Biffl@tuwien.ac.at mh@sea.uni-linz.ac.at gruenbacher@acm.org

Abstract

Developing software of high quality is both socially
and economically critical. Nevertheless software projects
are often managed badly without considering economic
potential and constraints. The decision making process is
often performed in an ad-hoc manner and approaches
from business administration or operations research are
rarely adopted. In Austria, we have recently been devel-
oping a research agenda that addresses these issues in an
interdisciplinary research plan. This paper introduces
and motivates this joint research initiative and identifies
important issues needing attention.

1. Introduction

The pervasive impact of software on life in our society
makes the capability to develop high-quality software a
socially and economically relevant issue. However, ap-
proaches to the management of software engineering (SE)
projects are often based on surprisingly simplistic assump-
tions, often just rules of thumb and lessons learned. While
there are many projects documented that run well, there
are also many reports on late, over-budget, and sometimes
spectacularly disastrous projects. While (empirical) SE is
good at generating knowledge on a technical level that has
a clear use and is less dependent on context assumptions,
the improvement on the management level lags behind,
possibly due to more complex dependencies of this
knowledge on project context. What is missing so far, is a
profound exchange of knowledge and collaboration of SE
with related research fields, namely business administra-
tion and operations research, in order to attack SE man-
agement problems in a more comprehensive way.

We have recently been developing a new research ini-
tiative in Austria. The proposed Joint Research Project
(JRP) “Integrated Economic Risk-based Management in
Software Engineering” (IERMSE, further called “Her-

mes”) aims at addressing some of these issues. Therefore,
Hermes combines approaches from the disciplines soft-
ware engineering, business administration, and operations
research to tackle the key challenge of project manage-
ment (PM) and quality management (QM), i.e., to help
develop high-quality software in an economically efficient
way. The key issues of the JRP are represented in the title:
(a) ‘risk-based’ refers to project uncertainty and variabil-
ity, which is often connected with mainly negative aspects
of defects and loss, and will be completed with the posi-
tive side of risk: opportunities in SE projects and an orien-
tation towards the added value of SE projects, processes
and products; (b) ‘economic’ refers to the integration of
economic points of views with the typical technical focus
in SE; (c) ‘management in SE’ includes the full range of
management from detail management of project activities
to the large-scale management of multiple projects in a
business unit. Hermes focuses on strategic proactive man-
agement (in contrast to reactive management for local
short-term optimization) of multiple software projects in
an uncertain and dynamic business environment.

The Hermes JRP is motivated by recent international
initiatives, such as the workshop “Economics-Driven SE
Research” (EDSER) or the workshop on “SE Decision
Support“ (SEDECS) at the International Conference on
SE and Knowledge Engineering both stating the need for
the systematic integration of scientific economic ap-
proaches into SE.

2. Research Areas

Figure 1 presents an overview on the JRP research ar-

eas in three groups: (A) general concepts and methodolo-
gies for valuation and decision support; (B) management
approaches for SE projects and processes; and (C) man-
agement support infrastructure.

Research areas A1 und A2 will provide a solid meth-
odological foundation from management science as they
develop advanced methods (A1) for the valuation of SE
projects and (A2) for making key decisions (regarding

63

uncertainty, risk, multiple target criteria, and different
preferences among stakeholders) in SE management for
the framework process model steps of the projects in
group B.

A1. Valuation
of SE Projects

A2. Decision
analysis and

support

B3. Workflow
modeling

General
Concepts and

M ethodologies

B1. Quality
Management

in SE

B2. Project
Management

in SE

B4. Group
Support and
Negotiation

C1. Knowledge
Management

for SE

C2. Adaptive
Workflow in SE

M anagement
of SE Projects
and Processes

M anagement
Support

Infrastructure

Figure 1. Hermes Research Areas

The research areas in group B form the center of the
research initiative as they focus on key application aspects
of SE management: (B1) quality management, (B2) pro-
ject management, (B3) workflow modeling, (B4) group
support and negotiation for team building – each with a
specific framework process model that can describe the
suitability of a range of methods for a particular SE pro-
ject: from simple methods used in current practice to so-
phisticated scientific methods to be developed. The four
framework process models in projects B1 to B4 allow
defining capability levels for all models and methods used
for a process step: (a) to assess the capability of models
and methods used in current practice, (b) to rank candi-
dates for ‘best practice’ approaches, and (c) to determine
the need for scientific research in these areas. The frame-
work process models also facilitate the empirical evalua-
tion of new scientific methods and the dissemination of
suitable methods into practice. Such a framework process
model has to be compatible with commonly used SE proc-
ess models, such as the V-model, the spiral model, or re-
cent agile approaches. The assessment part of the frame-
works should be compatible to wide-spread approaches,
such as CMM(I) or SPICE: (a) to define capabil-
ity/maturity levels for key process areas and (b) to allow
gap analysis in specific project environments. Experience
with existing assessment frameworks documents good
results for improvement on technical aspects, but also a
need for management support for SE projects, especially
for multiple projects. We regard the approach of frame-
work process models with several maturity levels for each
step in the model as an excellent opportunity to achieve
method development and application that is rooted in
practice, supports a strong management vision, and allows
stable growth on a clear path to scientific sound methods
at a suitable pace for a business partner in practice.

The projects in group C develop advanced manage-
ment support infrastructure techniques/tools for key areas
needed in the processes of the projects in group B: (C1)
knowledge management repository and (C2) adaptive
workflow tool support.

3. Research Method

In the SE community the importance of empirical re-
search to evaluate technical processes has been growing
considerably. This is for example documented in the Em-
pirical Software Engineering journal and an increasing
number of empirical papers in top SE journals and confer-
ences. The general research approach in the JRP is em-
pirical validation of hypotheses generated from theory and
practice according to the Quality Improvement Paradigm
[1] as SE processes with effects that depend on project
context cannot be evaluated solely with a theoretical ar-
gumentation but must be empirically evaluated.

Step 1 Step 2 Step 3

Step 4

Feedback of validated
hypotheses to theory

A. General
Methodology

B. SE
Management
Applications

Theory

G eneral Solution
Approaches

Empirical
Validation

SE project
application problems

Integration of
Models and
Hypotheses

O perational ization

Figure 2. Research Approach

Figure 2 shows the four steps in the research approach:
1. initial theory foundation based on existing research; 2.
operationalization of models and hypotheses – application
of the initial theory foundation for modeling and simula-
tion studies that prepare the design and project plans for
empirical studies (e.g., simulation with prototypes, cali-
bration with empirical data; feasibility studies); 3. conduct
of empirical studies (validation of theory and simulation
studies with empirical data); and 4. feedback of results
from simulation and empirical studies to build an ad-
vanced SE theory.

In the initiative we will first focus on developing a de-
tailed theoretical foundation for the applied methods (e.g.,
stable frameworks for reference processes) and identify
solution packages for SE application problems. These
solution packages are not necessarily integrated and get
evaluated in environments with low risk and a reasonable
return on investment (e.g., prototypes and feasibility stud-
ies).

Subsequently, we want to validate, refine, and integrate
these solution approaches (processes and tools) using em-
pirical and simulation techniques: e.g., evaluation of us-
ability in large field studies. A major focus is also on the
dissemination of proven solutions into practice and to
spark applied research in industry.

The JRP goals rely on the one hand on advanced
knowledge on economic valuation and eco-
nomic/statistical decision theory and on the other hand on

64

knowledge on SE processes, negotiation, and SE project
management: (a) one cannot take existing approaches in
business administration or operations research and simply
apply them to SE problems as SE problems differ signifi-
cantly from traditional situations in Business Administra-
tion and Operations Research. Researchers in business
administration and economics typically see a software
development project as a R&D project, which is untypical
and risky, and thus not routinely investigated. (b) SE re-
search usually has a technical and practical focus and is
less based on scientifically founded management methods.
(c) Project managers usually have a focus on getting
things done, rather than on science in general and particu-

larly in SE.
To attain the goals of the proposed JRP there is a need

for a critical mass of scientists with deep knowledge in a
variety of research areas that would be unlikely to come
together in unrelated individual small research projects.
Also, to tackle these tasks the project needs researchers
with a multi-science background to coordinate the differ-
ent projects and translate between the research cultures.
This joint JRP will enable the collaboration of established
research groups, working so far on different aspects of the
theory and application of the JRP research areas, in one
organized cooperating group. It should also intensify in-
ternational contacts and collaboration.

Table 1. Summary of Research Projects

Project Problem Description Research Goals
A1: Valuation
of SE Projects

Strategic decision-making is often focused on cost
and risk instead of value creation.

Apply valuation techniques from corporate fi-
nance to SE projects.

A2:
Decision

Analysis and
Support

Characteristics of decisions in SE involve uncer-
tainty, multiple criteria, different incentives of
stakeholders, and dynamic environments. Current
techniques to support decisions with these charac-
teristics are not adapted to the specific require-
ments of SE and need to be modified.

Apply and extend multi-criteria, dynamic, and
stochastic decision models; apply negotiation
and auction techniques to deal with information
asymmetries, incentive incompatibility and stra-
tegic behavior of stakeholders.

B1:
Quality Man-
agement in SE

There is little information on the value and risks
for different Quality Assurance (QA) techniques
and their combination with respect to project con-
text in a company or organization.

Extend and investigate existing QA techniques
from a technical perspective with respect to pro-
ject context; use methods from A1 and A2 to
better evaluate and plan QA in different realistic
project scenarios.

B2:
Project Man-
agement in SE

Project management, including several coupled
projects in a company, is based on rules of thumb
rather than well-studied methods.

Extend project management techniques for a
multi-project environment; apply results from
A1, A2, and B3 to support key project manage-
ment decisions.

B3:
Workflow
Modeling

Project plans for single projects are often unrealis-
tic and expensive to maintain. PERT and GERT
techniques provide only limited considerations for
cost effectiveness under uncertainty.

Project plans that capture uncertainty in a realis-
tic way for analysis and that are worthwhile to
maintain. Activity modeling, resource manage-
ment with stochastic processes; white-box view
on project level based on results from A2.

B4:
Group Sup-

port and
Negotiation in

SE

Software is developed in teams; existing research
often focuses on individual engineers thus ne-
glecting team issues and collaboration.

Develop methods and tools supporting software
development teams; apply negotiation methods
as proposed in A2 to support group decision
making and allow mutually satisfactory solu-
tions among stakeholders.

C1:
Knowledge

Management

Different characteristics of SE process models
lead often to inefficient knowledge management.

Tools for knowledge management for support-
ing SE process models in projects B1to B4.

C2:
Adaptive
Workflow

Management
in SE

Uncertainty in SE processes demands for flexible
work flow management system support, ad-hoc
communication and recommendation facilities and
a proper balance between pre-modeled workflows
on the one hand and incremental planning and ad-
hoc reactions on the other hand.

Provide comprehensive WFMS support for SE
based on B3, particularly addressing the issues
of adaptivity of SE processes, reuse and synthe-
sis of SE process knowledge and ad-hoc col-
laboration and recommendation facilities.

65

4. Project Overview

This Section gives an overview of the projects of the

proposed JRP Hermes. For each project we present key
problems targeted in the JRP and the key research goals of
each project. Table 1 gives an overview.

A1. Valuation of SE projects: Current state-of-the-
practice and state-of-the-art in software engineering fo-
cuses often exclusively on cost issues for decision-
making. The main advantage of costs is that they are, at
least partly, easier to measure than benefits. However, if
we study valuation concepts in business administration,
we observe that the goal of all methods is to appropriately
quantify the value of a project. Therefore we want to es-
tablish a value-oriented valuation approach in software
engineering. Based on this value-oriented concept we aim
at developing a more complete approach towards project
risk management. [4][7][8][12]

A2. Decision analysis and support: Decision problems
in software engineering have special characteristics, which
distinguish them from traditional decisions problems dealt
with in operations research. Therefore an important goal
of this research project is to analyze decisions in SE in
order to identify feasible optimization methods. As far as
different methods are concerned our main focus lies on
multi-criteria decision making. Another important dimen-
sion of SE decisions is that they usually influence very
different stakeholders. Therefore an important part of de-
cision support is to extend existing preference elicitation
techniques. Further goals include theoretical support of
group decisions and the development of negotiation meth-
ods for SE problems. [13][19]

B1. Quality management (QM): QM methods for risk
reduction are an integral part of risk management and ad-
dress mostly product and process risks. Currently there is
a large number of quality assurance techniques, but little
pragmatic guidance founded on sound theory on when to
use which technique. Based on a framework process
model, which allows to assess the QM capability of a pro-
ject organization, we propose to investigate defect reduc-
tion techniques – such as formal technical review and test-
ing approaches – as well as tool support options for these
techniques in different application contexts to gather data
for improved value-oriented QM planning considering not
only the technical but also the economic point of view.
[2][9][11][16]

B2. Project management: Current project planning in
practice suffers from simplistic approaches (a) that lack
practical support for modeling uncertainty and project
interdependencies to help a project manager decide
among several project options and (b) that are easy to
maintain over the course of a project. We aim at project
plan models that are based on information the project

manager can provide, that are maintainable to project
change in real project situations, and that support manag-
ers in applying methods developed in research areas A1
and A2. From such a value- and risk-oriented approach we
expect more realistic plans that can be used for more ef-
fective project control and better decision-making. [6][17]

B3. Workflow modeling: This project focuses on mod-
eling activities under variability and uncertainty to inves-
tigate the interrelationships of many work packages in a
SE project for improved project control under uncertainty
in day-to-day activities. Using UML and Petri Nets as
modeling frameworks, we will study simulation and
optimization techniques. Knowing that there is always a
trade-off in modeling between the expressiveness of the
model (i.e., the modeling power) and the model
complexity (affecting the time to solve the problems) we
are looking for efficient evaluation approaches. To
achieve this goal, we have to identify problem classes and
the appropriate choice of models and parameters in the
solution methods. [18]

B4. Group support and negotiation in SE: Software de-
velopment requires team work and collaboration of differ-
ent experts belonging to the development team and exter-
nal project partners. This research project aims at evaluat-
ing the dynamics of this team work and at providing tool
support using the methods developed in projects A1
andA2. One specific and important aspect of this group
support is negotiation because it enables project teams to
discuss open issues, develop a shared vision of the pro-
ject, and create a Win-Win situation for all team members.
Therefore we propose to extend existing group support
processes and tools for negotiation to other negotiation
situations in a SE project, such as project planning, pro-
ject controlling, risk monitoring, and post-mortem reviews
for process improvement. Improving the quality of meet-
ings and teamwork promises to effectively lower the over-
all project risk. [5][10][14][15]

C1. Knowledge management for SE: Knowledge man-
agement (KM) in SE focuses on managing and modeling
resources of the software development process to provide
useful feedback information or knowledge for the con-
cerned actors (software engineers, end users, and project
management). KM can be used for (a) significantly exert a
strong influence on decreasing development costs, time to
production, and increase software quality as well as (b)
helping to deploy knowledge across distributed teams to
compress development time frames.

C2. Adaptive workflow management in SE: Workflow
management systems (WFMSs) are more and more used
to make SE processes explicit and to enable their enact-
ment by workflow engines, thus facilitating standardiza-
tion and reuse and increasing productivity and efficiency.
To cope with the varying degree of uncertainty inherent in
every SE project, workflow management systems should
not only be able to provide pre-modeled and potentially

66

automated workflows but should also be adaptive allow-
ing incremental planning and ad-hoc reactions to changing
situations which is not fully supported by existing ap-
proaches. The emphasize of this project is on a compre-
hensive WFMS support for SE, particularly addressing the
issues of adaptivity of SE processes, reuse and synthesis
of SE process knowledge and ad-hoc collaboration and
recommendation facilities.

5. Issues

We decided to present this research proposal at the

EDSER workshop in order to discuss the following issues
with the workshop participants:

1. Is the proposed research agenda complex enough?
Or, did we miss any important field that should be repre-
sented in the project structure? For example, what about
psychology in order to understand and motivate team
members of software development teams appropriately.

2. Is the proposed research agenda too complex?
Should we remove some fields/projects because they are
not required for developing better solutions? Will soft-
ware engineering maintain its ad-hoc and intuitive charac-
teristic because it simply is rather an art than a craft?

3. Is it worth investing effort into developing better
software? Will the market appropriately value
high/appropriate quality, or will other approaches towards
software engineering like open source projects solve the
problem of quality? The proposed projects will result in
well-founded methods/process to optimize decision-
making. However this will take some time and increase
development effort and time. Will their be an incentive for
software development companies to use “better” proc-
esses?

4. Why are SE management techniques still mainly
based on simplistic assumptions and intuition

5. What are the reasons for the lack of methodological
foundation in the area of SE, in particular SE economics?
For comparable areas like for example corporate valuation
(i.e., where the value of entire corporations is modeled)
and credit risk estimation (i.e., where the risk of bank-
ruptcy is estimated for a company) a large body of theory
exists. However, little effort has so far been invested in
well-defined theory in the area of software engineering.

6. How can we best transfer economic methods and
tools into SE? What are the pitfalls?

7. Do you know about related research projects that
may provide valuable input to this research?

6. Conclusions

In this paper we have briefly reported on a new re-

search initiative that aims at integrating economic theories
and approaches into SE to improve decision-making in

real-world situations. This initiative is a first step to spark
and integrate international research. We invite the EDSER
community to share their ideas, suggestions, and concerns.

References

[1] V. Basili, G. Caldiera, H.D. Rombach, "Experience Fac-
tory," in J. J. Marciniak, ed., Encyclopedia of Software Engi-
neering, John Wiley & Sons: 1994, 469--476.
[2] St. Biffl, “Hierarchical Economic Planning of the Inspec-
tion Process”, Proc. of the 3rd Int. Workshop on Economics-
Driven Software Engineering Research (EDSER-3) IEEE CS
Press, May 2001.
[3] B. Boehm “Software Risk Management: Principles and
Practices”, IEEE Software, Jan. 1991, p.32-41
[4] B. Boehm, Software Engineering Economics, Prentice
Hall, 1984.
[5] B. Boehm, P. Grünbacher, R.O. Briggs, Developing
Groupware for Requirements Negotiation: Lessons Learned,
IEEE Software, May/June 2001, 46-55.
[6] J. Bosch, Software product lines: Organizational alterna-
tives. In Proc. of the 23rd International Conference on Software
Engineering, IEEE Computer Society Press, 2001, pp. 91–100..
[7] R. Brealey, S. Myers, “Principles of Corporate Finance”,
6th Edition, McGraw-Hill, 2000.
[8] H. Erdogmus, J. Favaro; Keep Your Options Open: Ex-
treme Programming and Economics of Flexibility; in: XP Per-
spectives; eds. Marchesi M.; Succi G.; Addison-Wesley; 2002.
[9] J. Favaro, P. Favaro; When the Pursuit of Quality Destroys
Value; IEEE Software, May 1996.
[10] J. Favaro; Managing Requirements for Business Value;
IEEE Software March 2002.
[11] M. Halling, St. Biffl, P. Grünbacher, An Economic Ap-
proach for Improving Requirements Negotiation Models with
Inspection, to appear: Requirements Engineering Journal,
Springer, 2003.
[12] W. Harrison, D. Raffo, J. Settle, “Process Improvement as
a Capital Investment: Risks and Deferred Paybacks”, Proc. of
the Pacific Northwest Software Quality Conference (PNSQC),
Portland, Oregon, October, 1999.
[13] R. Keeney, H. Raiffa, Decisions with Multiple Objectives:
Preferences and Value Tradeoffs. J. Wiley & Sons, New York,
1976.
[14] G.E. Kersten, S.J. Noronha, “WWW-based Negotiation
Support: Design, Implementation, and Use”. Decision Support
Systems 25, , 1999, pp. 135-154.
[15] N. Medvidovic, P. Grünbacher, A: Egyed, “Bridging Mod-
els across the Software Lifecycle”, to appear: Journal of Systems
and Software, 2003.
[16] D. Port, M Halling, R. Kazman, S. Biffl, “Strategic Quality
Assurance Planning”, Proc. of the 4th Int. Workshop on Eco-
nomics Driven Software Engineering Research (EDSER-4) at
the Int. Conf. on Software Engineering, 2002.
[17] K. Schmid, “An Economic Perspective on Product Line
Software Development; First Workshop on Economics-Driven
Software Engineering Research”, Proc. of the 1st Int. Workshop
on Economics Driven Software Engineering Research (EDSER-
1) at the Int. Conf. on Software Engineering, May 1999.

67

[18] K. Sullivan, P. Chalasani, S. Jha, V. Sazawal, “Software
Design as an Investment Activity: A Real Options Perspective,”
in Real Options and Business Strategy: Applications to Decision
Making, (L. Trigeorgis, ed.), Risk Books, 1999.

[19] R. Vetschera, “Multi-Criteria Agency Theory”, Journal of
Multi-Criteria Decision Analysis 7, 1998, pp. 133-143.

68

Software Dependability Risks and the Insurance Process
Dan Port

University of Hawaii
Department of Information Management

dport@hawaii.edu

LiGuo Huang
University of Southern California
Department of Computer Science

liguohua@usc.edu

ABSTRACT
The concept of software dependability is intuitively
understood but difficult to quantify into a constructive
model. In this paper, we present a dependability risk model
to convey that dependability is a relative economic measure
of the dependability attribute risk factors. A system that is
“undependable” is “risky” relative to the value (or benefit)
of items at risk that is expected from that system. We also
propose the questions that our dependability risk model can
answer and provide a simple example.

Keywords
dependability risk insurance

1. Introduction
The concept of software dependability is intuitively
understood but difficult to quantify into a constructive
model. The concept is analogous to hardware dependability
in which the goal is to provide a measure of assurance that
a system will not fail to perform in an expected manner.
Dependability extends beyond system reliability (the focus
of which is on how likely a system will cease to function
altogether) to an aggregate of dependability attributes [1]
that include the following:
Robustness: reliability, availability, survivability,
recoverability
Protection: security, safety

Quality of Service: accuracy, fidelity, performance assurance,
maintainability

Integrity: correctness, verifiability

Availability means the readiness for correct service.
Reliability means the continuity of correct service.
Survivability means that a software system can repair itself

or degrade gracefully to preserve as much critical
capabilities as possible in the face of attacks and failures.
Recoverability means a software system can recover itself
from faults. Security means absence of unauthorized
access to, or handling of, system state. It is the concurrent
existence of a) availability for authorized users only, b)
confidentiality, and c) integrity with ‘improper’ taken as
meaning ‘unauthorized’. Safety means absence of
unauthorized disclosure of information. Maintainability
means the ability to undergo repairs and modifications.
Integrity means absence of improper system state alternations.
Integrity is a prerequisite for availability, reliability and safety.

These attributes are mostly compatible and synergetic, but
it is not uncommon for there to be some conflicts and
tradeoffs. Some examples of this might be within a system
that makes use of distributed information to increase the
survivability of its data in the event that a particular data
location is destroyed. In such a system security is traded off
(or complicates the dependability with respect to data
security) for survivability as the data must be accessible in
multiple locations thereby increasing the number of entry
points for possible security breaches. Other examples are
building a fail-safe system whereby safety is balanced with
quality of service, or employing a graceful degradation
policy where survivability now contrasts with quality of
service.

The dependability attributes described above only tell part
of the story. The degree to which each attribute applies is
relative to the expected outcome when the system is subject
to negative events (e.g. a component fails, security is
violated, data is incorrect).

Our view is that dependability is a relative economic
measure of the dependability attribute risk factors. A
system that is “undependable” is “risky” relative to the
value (or benefit) of items at risk that is expected from that
system. To illustrate this, consider system faults that result
from undependable software (that is, faults with respect to
the dependability attributes listed previously). Software
faults/defects incur economic losses over time (e.g. IUM’s,
reputation, reduced sales, opportunities, etc.) with relative
to the dependability attributes. For example if a sales
system that people depend on to process customer sales is
unavailable, there will assuredly be a measurable economic
loss. Such was the case when the AT&T business sales

69

system became bottlenecked and the loss was in thousands
of dollars per minute [2].

Ultimately for any system, a return on investment (ROI) is
expected due to the continued (dependable) operation of
that system. In this light, we invest in dependability as an
insurance policy in which we make an initial investment
(such as fault tolerance) along with continual premiums
(e.g. security policies, contingency measures, backup
systems) to insure against non-achievement of an
acceptable ROI. This involves a complex and dynamic
interplay of cost, risk, and value with respect to the
dependability attributes and operational constraints and
priorities. We propose a possible model to help analyze this
perspective along with some potentially interesting
questions and some initial examples.

2. Dependability Risk Model
Clearly value is created over the time a system operates,
and a respectable return on investment (ROI) is expected
due to the continued (dependable enough) operation of that
system. Risks within the dependability attributes reduce
this expected ROI and thus the key to a “dependable”
system is to ensure the total investment for the dependable
operation of the software system and the expected losses
due to dependability risks do not outweigh the expected
gains due to flawless operation of the system.

We are looking at risk models rather than the traditional
reliability models for the following reasons:
• Risk models may be more empirically accessible than

other models
• Overall dependability risk is simply the sum of

dependability attribute risks, regardless of
dependencies

• There is a well-established theory and practice of risk
assessment and management to draw upon

• It matches well with intuitive concepts of
dependability

There are many possible value-risk models that may apply
to dependability risk. A particularly attractive and
straightforward one we have been considering is the
“insurance” model [3]. It is summarized as:

∑∑∑
===

−−=
)(

11

)(

1

)()()(
tN

i
i

m

j
j

tN

i
i

RV

tRItVtX

where)(tVi is a random variable distributed according to

the value of item i “at risk” at time t,)(tNV is the number
of value events given totally dependable operation of the
system up to time t , jI is the amount invested to achieve

the desired level for each of m dependability attributes
during the development of the system,)(tN R is the

number of dependability faults up to time t , and)(tRi is a
random variable distributed according to the potential loss
(risk) of each type of system failure i up to time t. The
insurance process has parameters that can be estimated
with empirical distributions gathered from analogous
systems, with the exception of)(tVi , which can be
estimated via an earned-value [4] model.

3. Dependability Problems To Be Answered
by Dependability Risk Model
The dependability risk model can be used to analyze cost-
benefit issues such as how dependable is dependable
enough. For instance, it helps answer basic dependability
questions such as:
• (How much is enough?)

o Given an investment amount and value earned
over time, how low can the dependability risk
be before an expected ROI is unachievable?

o Can we find a minimum I (amount of
investment) that insures)(tX will never be
negative?

• (Risk of Catastrophe) Is there a high risk of an
effectively infinite loss (Including low probability,
high loss events)?

• (Risk of Recession) Is there a time t in which
)(tX will ever be negative?

• (Risk of Ruin) Is there a time t after which)(tX will
always be negative?

• (Risk of Decay) Will cumulative small losses force
)(tX to zero over time?

One of its applications is to map various dependability
approaches to dependability attributes and benchmark them
with respect to risk/value. Therefore we can compare the
relative dependability attribute risks and effectiveness of
dependability approaches on risk reduction. Defect and
fault seeding is often considered for gathering empirical
estimates of defect and fault populations.
Our goals are to develop dependability risk models based
on development-time and runtime characteristics, evaluate
use of dependability risk models as means of determining
extent to invest in dependability (e.g. defect removal,
dependability mechanisms such as fault handling or a
particular architecture style) with respect to system value
and risks. We hope that by implementing and continuously
monitoring dependability risk models, developers will gain

70

insight into when and how much to invest in dependability
(i.e. fault removal, tolerance mechanisms, prevention, etc.).
The heading of subsections should be in Times New Roman 12-
point bold with only the initial letters capitalized. (Note: For
subsections and subsubsections, a word like the or a is not
capitalized unless it is the first word of the header.)

4. A Simple Example
Let us consider a painfully oversimplified example to
illustrate the analytical considerations described above. For
this, say that the value achieved is constant,
or ctVi =)(for some constant c, and that the value events
occur continuously over time (this is of course grossly
oversimplified for any practical software system). We will
assume that the number of faults up to time t is Poisson
with intensityα and that)(tRi is identically exponentially
distributed and independent of t with mean µ and

variance 2σ . Further, let us ignore initial investment costs
for dependability. The dependability risk model will be:

∑
=

−=
)(

1
)(

tN

i
i

R

RcttX

Let us consider a simplified “how much is enough”
question. The expected “profit” for the above model will be

tctXE)()]([αµ−= so clearly to achieve a desirable
ROI αµ>c . However, this does not answer the critical
question of when a particular ROI will be achieved. Let us
deal with the question of how tolerance of dependability
risks. That is, how is there a point at which we lose so
much value that we should give up on the system? This
roughly translates into the
probability 0)({)(<+= tXuPuψ for some }0>t
where u is the tolerance value desired. Under these
conditions (assuming αµ>c) it can be shown that:








 −
−

= µ
αµ

αµψ c
cu

e
c

u)(

As one would expect, larger tolerance of dependability
risks means it is less likely that such tolerance will be
exceeded at some point.

5. A Proposed Application of the
Dependability Risk Model: SCRover
USC is developing the Inspector SCRover (ISCR) as part
of the High Dependability Computing Program testbed. We
are currently gathering data (e.g. empirical value and
dependability fault distributions) in order to apply our
dependability model as part of this effort. ISCR is a robot
that is developed to assist in public safety situations. These
situations might arise after an explosion or earthquake. In
these situations, it is desirable to have a robot go into

confined spaces and inventory the potential hazardous
situations. The rover will be able to navigate autonomously
or be maneuvered by the rover operator in a closed
environment, up to a certain distance of a target object
centered in a webcam’s view. Its essential components are:

• ISCR Operator User Interface
• Range Finder
• Stereo Camera
• Battery
• Navigation Guidance & Control (NG&C)
• Rover Hardware

Since ISCR is a mission critical system, any software or
hardware failure will cause the mission failure and risk of
catastrophe. Dependability becomes a very important level
of service requirement which means if operating in
autonomous mode the rover will not crash and if operating
in non-autonomous mode the rover will follow the operator
instructions.
Based on the dependability attributes we defined, the
potential dependability risks for Inspector SCRover are as
follows:
• Availability/Reliability Risk: If the rover runs out of

the battery but it fails to detect it or reserve enough
power in order to return to its home for recharging, it
will stop.

• Correctness/Accuracy/Fidelity Risks:
1) The delay or failure of the sensor(s) or the

communication between sensors and state variable
database, the navigation path could be deviated due to
the outdated range finder or position & heading data.

2) In autonomous mode, if the algorithm for position &
heading controller has defects, it can also deviate the
rover’s navigation path.

3) In another case, if the rover fails to transfer from
autonomous mode into non-autonomous mode when
operator overriding is necessary, it won’t be able to
follow the operator’s command in a fidelity way.

• Recoverability Risk:
It’s desirable that the rover can successfully recover
itself from some failure. However, it’s hard to achieve.

6. REFERENCE
[1] A. Avizienis, J.-C. Laprie and B. Randell,

Fundamental Concepts of Dependability, Research
Report N01145, LAAS-CNRS, April 2001.
http://citeseer.nj.nec.com/avizienis01fundamental.html

71

[2] A. Jones, “The challenge of building survivable
information-intensive systems”, IEEE Computer, Vol.
33, No. 8, August 2000, pp. 39-43.

[3] B. Randell, “System structure for software fault
tolerance”, IEEE Transctions on Software
Engineering, Vol. SE-1, No. 10, June 1975, pp. 1220-
232.

[4] J.C. Laprie, “Dependable computing and fault
tolerance: concepts and terminology”, Proc. 15th IEEE
Int. Symp. on Fault-Tolerant Computing (FTCS-15),
Ann Arbor, Michigan, June 1985, pp. 2-11.

72

Using Risk to Balance Agility and Discipline:
A Quantitative Analysis

Barry Boehm
University of Southern California
Department of Computer Science

boehm@sunset.usc.edu

Keywords
agile, discipline, architecting, risk, sweet spot

We have shown several qualitative analyses [2, 3] indicating that
one can balance the risks of having too little project discipline
with the risks of having too much project discipline, to find a
“sweet spot” operating point which minimizes the overall risk
exposure for a given project. We have shown qualitatively that as
a project’s size and criticality increase, the sweet spot moves
toward more project discipline, and vice versa.

However, these results would have stronger credibility if shown
to be true for a quantitative analysis backed up by a critical mass
of data. Here we show the results of such a quantitative analysis,
based on the cost estimating relationships in the COCOMO II cost
estimation model and its calibration to 161 diverse project data
points [1]. The projects in the COCOMO II database include
management information systems, electronic services,
telecommunications, middleware, engineering and science,
command and control, and real time process control software
projects. Their sizes range from 2.6 thousand lines of code
(KLOC) to 1,300 KLOC, with 13 projects below 10 KLOC and 5
projects above 1000 KLOC.

The risk-balancing analysis is based on one of the calibrated
COCOMO II scale factors, “Architecture and Risk Resolution,”
called RESL in the COCOMO II model. Calibrating the RESL
scale factor was a test of the hypothesis that proceeding into
software development with inadequate architecture and risk
resolution results would cause project effort to increase due to the
software rework necessary to overcome the architecture
deficiencies and to resolve the risks late in the development cycle
– and that the rework cost increase percentage would be larger for
larger projects.

The regression analysis to calibrate the RESL factor and the other
22 COCOMO II cost drivers confirmed this hypothesis with a

statistically significant result. The calibration results determined
that for this sample of projects, the difference between a Very
Low RESL rating (corresponding to an architecting investment of
5% of the development time) and an Extra High rating
(corresponding to an investment of over 40%, here established at
50%) was an extra 7.07% added to the exponent relating project
effort to product size. This translates to an extra 18% effort for a
small 10 KSLOC project, and an extra 91% effort for an extra-
large 10,000 KSLOC project.

The full set of effects for each of the RESL rating levels and
corresponding architecting investment percentages are shown in
Table 1 for projects of sizes 10, 100, and 10000 KSLOC. Also
shown are the corresponding total-delay-in-delivery percentages,
obtained by adding the architecting investment time to the rework
time, assuming a constant team size during rework to translate
added effort into added schedule. Thus, in the bottom two rows
of Table 1, we can see that added investments in architecture
definition and risk resolution are more than repaid by savings in
rework time for a 10,000 KSLOC project up to an investment of
33%, after which the total delay percentage increases.

This identifies the minimum-delay architecting investment “sweet
spot” for a 10,000 KSLOC project to be around 33%. Figure 1
shows the results of Table 1 graphically. It indicates that for a
10,000 KSLOC project, the sweet spot is actually a flat region
around a 37% architecting investment. For a 100 KSLOC project,
the sweet spot is a flat region around 20%. For a 10 KSLOC
project, the sweet spot is at around a 5% investment in
architecting. The term “architecting” is taken from Rechtin’s
System Architecting book [5], in which it includes the overall
concurrent effort involved in developing and documenting a
system’s operational concept, requirements, architecture, and life-
cycle strategic plan. It is roughly equivalent to the agilists’ term,
Big Design Up Front (BDUF) [4]. Thus, the results in Table 1
and Figure 1 confirm that investments in architecting and BDUF
are less valuable for small projects, but increasingly necessary as
the project size increases.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

73

Table 1. Effect of Architecting Investment Level on Total
Project Delay

However, the values and sweet spot locations presented in Figure
1 are for nominal values of the other COCOMO II cost drivers
and scale factors. Projects in different situations will find that
“their mileage may vary.” For example, a 10-KSLOC safety-
critical (COCOMO II RELY factor rating = Very High) project
will find that its sweet spot will be upwards and to the right of the
nominal-case 10-KSLOC sweet spot. A 10,000-KSLOC highly-
volatile (COCOMO II Requirements Volatility factor = 50%)
project will find that its sweet spot will be higher and to the left of
the nominal-case 10,000-KSLOC sweet spot, due to the costs of
BDUF rework. Also, various other factors can affect the
probability (and size) of loss associated with the RESL factor,
such as staff capabilities, tool support, and technology
uncertainties [1]. And these tradeoffs are only considering project
delivery time and productivity and not business value, which
would push the sweet spot for safety-critical projects even further
to the right. Clearly, there are a number of further issues and
situations deserving of additional analysis.

Figure 1. How Much Architecting is Enough?

REFERENCES
[1] B. Boehm, C. Abts, A.W. Brown, S. Chulani, B. Clark,

E. Horowitz, R. Madachy, D. Reifer, and B. Steece,
Software Cost Estimation with COCOMO II, Prentice
Hall, 2000.

[2] B. Boehm and W. Hansen, “The Spiral Model as a
Tool for Evolutionary Acquisition,” CrossTalk, May
2001, pp. 4-11.

[3] B. Boehm, “Get Ready for Agile Methods, With
Care,” IEEE Computer, January 2002, pp. 64-69.

[4] P. McBreen, Questioning Extreme Programming,
Addison Wesley, 2003.

[5] E. Rechtin, Systems Architecting, Prentice Hall, 1991.

COCOMO II
RESL Rating

Very
Low

Low
Nomin

al
Hig
h

Very
High

Extra
High

% Architecting
Investment

5 10 17 25 33 >40 (50)

Scale Factor
Exponent for
Rework Effort

1.070
7

1.056
5

1.0424
1.02
83

1.0141 1.0000

10 KDSI Project:
-Added Rework %

18 14 10 7 3 0

-Project Delay % 23 24 27 32 36 50

100 KDSI Project:
-Added Rework %

38 30 21 14 7 0

-Project Delay % 43 40 38 39 40 50

10,000 KDSI Project:
-Added Rework %

91 68 48 30 14 0

-Project Delay % 96 78 65 55 47 50

Percent of Project Schedule Devoted to Initial
Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

Total % Added Schedule

Pe
rc

en
t o

f T
im

e
Ad

de
d

to
 O

ve
ra

ll
Sc

he
du

le

Percent of Project Schedule Devoted to Initial
Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

Total % Added Schedule

Percent of Project Schedule Devoted to Initial
Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

Total % Added Schedule

Pe
rc

en
t o

f T
im

e
Ad

de
d

to
 O

ve
ra

ll
Sc

he
du

le

74

	E09_CourseForges2.pdf
	BACKGROUND
	COMMUNITY VALUES
	Overview
	Declaration of Shared Intent
	Rights and Responsibilities

	THE COURSE FORGE
	The Web Site
	The CourseForges Alliance

	COURSE CONTENTS
	Pragmatic Considerations for CourseForges Course Development
	Possible Content of an EDSER-Course
	Software Business
	Value Models
	Decision Making
	Applications

	INVITATION
	ACKNOWLEDGMENTS
	REFERENCES

	E13_RealOptions-mod.pdf
	Table 1. Real-Option Risk Vectors
	Vector 1

