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Abstract

In this work, we focus on semantic parsing of natu-
ral language conversations. Most existing methods
for semantic parsing are based on understanding the
semantics of a single sentence at a time. However,
understanding conversations also requires an un-
derstanding of conversational context and discourse
structure across sentences. We formulate semantic
parsing of conversations as a structured prediction
task, incorporating structural features that model
the ‘flow of discourse’ across sequences of utter-
ances. We create a dataset for semantic parsing of
conversations, consisting of 113 real-life sequences
of interactions of human users with an automated
email assistant. The data contains 4759 natural
language statements paired with annotated logical
forms. Our approach yields significant gains in per-
formance over traditional semantic parsing.

1 Introduction
The ability to interact with computers using natural language
is a fundamental challenge towards building intelligent cog-
nitive agents. The problem of language understanding is
usually approached using semantic parsing, a growing area
within the field of natural language processing (NLP). Se-
mantic parsing is the conversion of natural language utter-
ances to formal semantic representations called logical forms
that machines can execute. For example, a natural lan-
guage sentence like ‘Set the subject of the mail as hello’
may be mapped to a logical form such as setFieldValue(
subject, stringVal(‘hello’)), which can then be ex-
ecuted to yield the desired behavior or output. Similarly, in
the domain of mathematics, ‘What is the product of three and
five?’ may be mapped to a logical form such as multiply(
3, 5)1. Semantic parsing has previously been explored in an
eclectic variety of settings such as querying from databases
[Zelle and Mooney, 1996; Zettlemoyer and Collins, 2005;
Berant et al., 2013], robot navigation [Kate et al., 2005] and
spreadsheet manipulation [Gulwani and Marron, 2014].

1Predicates used in logical forms (such as stringVal and
multiply) come from domain-specific meaning representations

[U1] User: Compose an email
[A1] Agent: Composing new email. Its fields
are: recipient, subject and body
[U2] User: Use mom’s email
[A2] Agent: I set the recipient field to
‘momthebest@email.com’
[U3] User: Set the subject to hello, please
[A3] Agent: I set the subject field to ‘hello,
please’
[U4] User: Set the subject to hello, please
[A4] Agent: I set the subject field to ‘hello’
[U5] User: Set the body to I’ll be late
[A5] Agent: I set the body field to ‘I’ll be
late’
[U6] User: Send the email
[A6] Agent: I sent the email ...

Figure 1: Example of a real-world interaction between a human
(User) and an automated email assistant (Agent).

However, most methods for semantic parsing have focused
on parsing single natural language sentences in isolation.
While this is useful for environments consisting of one-shot
interactions of users with a system (e.g., running QA queries
on a database), many settings of human-computer interac-
tions require extended interactions between a user and an au-
tomated assistant (e.g. making a flight booking). This makes
the one-shot parsing model inadequate for many scenarios.

Figure 1 shows a snippet of a conversation between a hu-
man user and a digital email assistant. We note that pragmat-
ics and conversational context offer essential cues in under-
standing several individual utterances from the user. In partic-
ular, observe that utterance U2 (‘Set to mom’s email’) cannot
be correctly parsed based on its content alone, but requires an
understanding of the discourse. Based on the previous state-
ment (composing a new email), setting the recipient field is
the user’s likely intent. Similarly, utterances U3 and U4 show
an example of a repetition, where the agent first misinterprets
(U3), and then correctly parses a statement (U4). While pars-
ing U4, the agent needs to implicitly understand that it should
interpret the current utterance to a different logical form than
before (even though the textual content is identical). This
would not be possible in the one-shot parsing setting, which
cannot incorporate such implicit feedback. Instead, correctly
interpreting the sentence requires modeling of the discourse
structure of the conversation.
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We address the problem of semantic parsing of natural lan-
guage conversations. The underlying thesis is that modeling
discourse structure and conversational context should assist
interpretation of language [Van Dijk, 1980]. Here, we focus
on incorporating structural cues for modeling these discourse
structures and context. However, we do not address issues
such as anaphora and discourse referents [Kamp and Reyle,
1993] that are prevalent in conversations, but lie beyond the
scope of the current work. Our main contributions are:

• We address semantic parsing in the context of conversa-
tions; and provide an annotated dataset of conversations,
comprising of 4759 natural language statements with their
associated logical forms.

• We formulate the problem as a structured prediction task,
and introduce a latent variable model that incorporates both
text-based cues within sentences, and structural inferences
across sentences. Using this model, we empirically demon-
strate significant improvements in parsing conversations
over the state-of-the-art.

• We also present effective heuristic strategies for expanding
the search space of allowable meaning representations to
improve semantic parsing of conversations.

• We show that latent categories learned by the model are
semantically meaningful, and can be interpreted in terms
of discourse states in the conversations.

2 Related Work
Supervised semantic parsing has been studied in a wide
range of settings [Zettlemoyer and Collins, 2005; Wong
and Mooney, 2007; Kwiatkowski et al., 2010]. Recent ap-
proaches have focused on various strategies for using weaker
forms of supervision [Clarke et al., 2010; Krishnamurthy and
Mitchell, 2012; Berant et al., 2013] and rapid prototyping
of semantic parsers for new domains [Wang et al., 2015;
Pasupat and Liang, 2015]. Other works have explored se-
mantic parsing in a grounded contexts, and using perceptual
context to assist semantic parsing [Matuszek et al., 2012;
Krishnamurthy and Kollar, 2013]. However, none of these
approaches incorporate conversational context to jointly in-
terpret a conversational sequence. For instance, poor interpre-
tations made while parsing at a point in a conversation cannot
be re-evaluated in light of more incoming information. A no-
table work that incorporates conversational data in relation to
semantic parsing is [Artzi and Zettlemoyer, 2011]. However,
rather that incorporating contextual cues, their goal is very
different: using rephrasings in conversation logs as weak su-
pervision for inducing a semantic parser. Closer to our work
is previous work by [Zettlemoyer and Collins, 2009], who
also learn context-sensitive interpretations of sentences using
a two-step model. However, their formulation is specific to
CCG grammars and focuses on modeling discourse referents.

The role of context in assigning meaning to language
has been emphasized from abstract perspectives in compu-
tational semantics [Bates, 1976; Van Dijk, 1980], as well as
in systems for task-specific applications [Larsson and Traum,
2000]. Examples of the former include analyzing language
from perspectives of speech acts [Searle, 1969] and semantic

scripts [Schank and Abelson, 1977; Chambers and Jurafsky,
2008; Pichotta and Mooney, 2015]. These works induce typi-
cal trajectories of event sequences from unlabeled text to infer
what might happen next.

On the other hand, a notable application area that has ex-
plored conversational context within highly specific settings
is state tracking in dialog systems. Here, the focus is on in-
ferring the state of a conversation given all previous dialog
history [Higashinaka et al., 2003; Williams et al., 2013] in
context of specific task trajectories, rather than interpreting
the semantic meanings of individual utterances.

In terms of approach, while our formulation is largely ag-
nostic to the choice of semantic parsing framework, for this
work our method is based on CCG semantic parsing, which
is a popular semantic parsing approach [Zettlemoyer and
Collins, 2007; Kwiatkowski et al., 2013; Artzi et al., 2015].
The CCG grammar formalism [Steedman and Baldridge,
2011] has been widely used for its explicit pairing of syntax
with semantics, and allows expression of long range depen-
dencies extending beyond context-free-grammars. We also
allow our semantic parser to output logical forms that may
not be entailed from an utterance using a strict grammar for-
malism, expanding on similar ideas in [Wang et al., 2015;
Goldwasser and Roth, 2014]. Finally, some of the heuris-
tics proposed in this paper for improving parsing performance
are motivated by previous work on paraphrasing for semantic
parsing [Berant and Liang, 2014].

3 Semantic Parsing with Conversational
Context

We present an approach for semantic parsing of conversations
by posing conversations as sequences of utterances to model
‘flow of discourse’. We consider the problem as a structured
prediction task, where we jointly learn preferences for collec-
tive assignments of logical forms for sentences in a sequence.

zt−1 ztz1 zTz1 zT

st−1 sts1 sT

lt−1 ltl1 lT

N

Figure 2: Model diagram for semantic parsing of conversational se-
quences. Traditional semantic parsing features depend on utterances
st and associated logical forms lt only. Our model additionally al-
lows structured features that can depend on previous logical forms
lt−1, latent variables zt representing the discourse state of the con-
versation at any step, and the previous utterances s1 . . . st.

Let s denote a conversation sequence of T utterances by
a user, with individual utterances denoted as {s1 . . . sT }.
Let l := {l1 . . . lT } be the intended logical forms for cor-
responding utterances. We assume a supervised learning
setting where we have labeled training sequences T :=
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{
(
s(1), l(1)

)
. . .

(
s(N), l(N)

)
} consisting of utterances and

their associated logical forms. In comparison, the tradi-
tional supervised setting for learning semantic parsers con-
sists of pairs of training utterances and associated logical
forms (si, li), but doesn’t have a sequential structure. Our
model utilizes this sequential structure to incorporate infor-
mation about discourse and pragmatics.

In addition, we also associate a latent categorical variable
denoted as zt with each user utterance st to reinforce the mod-
eling of the flow of discourse (see Figure 2). The latent states
can take one ofK possible discrete values, and abstractly rep-
resent distinct discourse states. The value ofK is a predefined
parameter for the model2. In Section 6, we show that these la-
tent states learn distinct interpretable discourse states that are
prevalent in conversations, and can support dynamic model-
ing of context with the progress of a conversation.

For a given utterance sequence s = {s1 . . . sT }, our model
predicts logical assignments, l̂ = {l̂1 . . . l̂T }, and latent dis-
course states, ẑ = {ẑ1 . . . ẑT } by solving the following infer-
ence problem, i.e. finding the highest scoring assignment of
logical forms, l, and discourse states, z, under a given model:

(̂l, ẑ) = argmax
l∈L(s),z

Sw(s, l, z) (1)

Here, L(s) is the search space associated with sequence s,
consisting of possible joint assignments of logical forms to
the various utterances in the sequence3, and the hat symbol
(ˆ) represents predicted variables. Sw(s, l, z) represents a lin-
ear score denoting the goodness of an assignment of logical
forms, l, and latent discourse states, z, to utterances in con-
versation sequence s. This score is defined as:

Sw(s, l, z) = wTφ(s, l, z)

where, φ is a feature function that produces a real-valued fea-
ture vector for the tuple (s, l, z). As we shall see in Section 4,
these features consist of two categories φ = [φtext φcontext]:
(a) φtext: features for individual parses that model how well
individual logical forms, lt, match corresponding natural
language utterances, st, in isolation. This subset subsumes
all features from traditional semantic parsing models (b)
φcontext: features that model conversational context and
discourse across the chain structure of the conversation. The
model parameters, w, consist of a real-valued weight for
each kind of feature, and are learned during training.

Learning: The model parameters w can be trained via the la-
tent variable Structured Perceptron algorithm [Collins, 2002;
Zettlemoyer and Collins, 2007], which performs subgradient
updates minimizing the following structured hinge loss:

2Setting K = 1 effectively reduces the model to not using latent
variables at all. This model still incorporates structural context and
discourse by learning preferences for joint assignments of logical
forms to utterances. However, the latent variables zt afford addi-
tional flexibility to the model. i.e. for the same context, the model
can behave differently based on the current state

3For any utterance st, the grammar of the meaning representation
formalism can specify the set L(st) of its candidate logical forms.
The associated search space for the sequence s is then simply given
by the cross-product L(s) = ⊗tL(st)

L(w, s, l, z) :=
∣∣∣ max
l̂∈L(s),ẑ

Sw(s, l̂, ẑ)−max
z?

Sw(s, l, z
?)
∣∣∣
+
(2)

The objective consists of a difference of two terms: the first
is the score of predicted assignment (̂l, ẑ) for sequence s un-
der the current model, while the second is the score of the
highest-scoring latent discourse states for s with the ground
truth logical form l. These correspond to solving the fol-
lowing inference problems: (1) finding the best combination
of logical forms and discourse states for a sequence (Equa-
tion 1), and (2) finding the best combination of discourse
states for a sequence and given logical forms. We describe the
procedure to solve Equation 1 below. The second inference
problem is a simpler case of the same equation, since one of
the two variables to be inferred (l) is already known. Finally,
in our experiments, we also use an l2-regularizer (with ridge
parameter 0.01) for weight-vector w.

We note that our formulation does not pre-suppose a
specific semantic parsing framework, grammar or feature-
definition. In this work, we use a CCG-based semantic
parsing approach. However, our framework can seamlessly
extend to other formalisms such as DCS [Liang et al., 2013]
that are trained with gradient updates.

Inference: Both training and prediction for the model depend
on efficiently solving the inference problem in Equation 1. In
general, the problem can be tractably solved if components
of feature function φ decompose into smaller factors. In our
case, φtext features decompose according to the structure of
individual parse trees. Similarly, φcontext features factorize
according to chain structure of the discourse due to Markov
properties (details in Section 4). Our inference procedure
consists of a hierarchical two step process: (1) we find a can-
didate set of possible logical forms for each utterance, st, in
a sequence, and (2) we find the best joint assignment among
these by incorporating information from contextual and struc-
tural cues. We now briefly describe the two steps.

In the first step, we obtain a set of candidate logical forms,
L(st), for individual utterances, st, while viewing them in
isolation. For this, we score a potential logical form using
only the text-based features (φtext). This is identical to tradi-
tional semantic parsing, and the highest scoring logical forms
for an utterance can be found using the k-best CYK algo-
rithm. In practice, considerations such as large grammars
make exact inference prohibitive for this setting. Follow-
ing previous works in semantic parsing [Kwiatkowski et al.,
2013; Berant et al., 2013], we employ beam search to find an
approximate set of best candidate parses for a sentence.

In the next step, we combine the various L(st) to infer the
best joint semantic parse l (and discourse states z) for the
complete sequence, s. This involves obtaining a sequence of
lt’s that incorporates scores from the contextual and discourse
features (φcontext). Since these features decompose accord-
ing to the chain structure of the sequence, the highest scoring
assignments of a sequence of discourse states z and logical
forms l can be efficiently computed using the Viterbi algo-
rithm (where hidden states of the Viterbi chart correspond to
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pairs of logical forms in the candidate set and discrete dis-
course states).
Expansion strategies: The approach described above uses
the traditional semantic parsing setting (using the score from
φtext only) to define the set of possible logical forms for an
utterance, L(st). However, one may define strategies to ex-
pand the candidate set L(st) to also include logical forms that
are not included in the beam from the text-only features. We
consider the following simple heuristics to expand the candi-
date set, L(st), for each utterance st:

1. Highest PMI (PMI): Add to L(st) the logical forms
that have the n-highest PMI with the best scoring logical
form from the text-only model for the previous utterance
(st−1) in the training set.

2. Highest conditional probability (Prob): Add to L(st)
the n most frequent logical forms that followed the best
scoring logical form from the text-only model for the
previous utterance (st−1) in the training set.

3. Paraphrase (PP): Add to L(st) the candidate sets for k
utterances in the training set that are semantically most
similar to st. For computing similarity, we use Vec-
tor Tree Kernels [Srivastava et al., 2013] that provide
a semantic similarity score between two sentences using
syntactic information and distributional embeddings.

4. Most frequent (MF): Add the n-most frequent logical
forms observed in the training data to the candidate set
L(st) for each utterance.

Prediction: Our model is trained to simultaneously consider
all utterances of a sequence. At prediction time however, in
most scenarios, the agent would need to continually infer the
parse of the latest sentence during the conversation, in a real-
time setting. In particular, we need to ensure not to use future
utterances while predicting the logical form for the current ut-
terance. Hence, at prediction time, we simply use the model
to predict logical forms for the sequence of conversation end-
ing at the current utterance.

4 Features
In this section, we outline the text-based and context-based
features used by our model. The text-based features are based
on lexical and grammar rules, typically employed in tradi-
tional semantic parsers, whereas the context-based features
are based on simple counts of specific configurations of logi-
cal predicates and discourse state assignments for a sequence.
Thus, both kinds of features can be computed efficiently.
Simple text-based features φtext: These depend on a single
utterance st and a candidate logical form lt. As such, they
lie in the ambit of traditional semantic parsing features, and
are standard features for CCG semantic parsers [Zettlemoyer
and Collins, 2007; Azaria et al., 2016; Artzi and Zettlemoyer,
2013]. We use the following text-based features:
T1: Lexicon features: Indicator features for each lexicon en-

try that fires for the given utterance, and indicator fea-
tures for each syntactic category (POS) in the utterance
combined with the logical form.

T2: Rule application features: Indicator features for both
unary and binary rules in the parse of the given utterance
to the associated logical form.

T3: String-based features: Number of words in the utterance,
indicator features denoting whether string spans occur at
the beginning or end of the utterance.

Structural context-based features φcontext: These features
model the flow of discourse and context-specific regularities
by learning preferences for correlations between logical pred-
icates, discourse state assignments and features based on the
text of conversational history.
C1: Transition features: Indicator features denoting

combinations of logical predicates in succes-
sive utterances (e.g., {Li:setBodyToString,
Li−1:createEmail})4, combinations of discourse
variable assignments in successive utterances (e.g.,
{Zi=State1,Zi−1=State2} ), combinations of logical
predicates and discourse variable in successive steps.

C2: Emission features: Indicator features denoting pres-
ence of a logical predicate in the current utter-
ance combined with the current discourse state (e.g.
{Zi=State0,Li:greeting}).

C3: Lexical trigger features: Indicator features denoting
presence of trigger words (from CCG lexicon) in the
current utterance, paired with logical predicates in the
current logical form and the current discourse state.

C4: Repetition features: Indicator features denoting whether
the current utterance is a repeat, Indicator features de-
noting if the current utterance is a repeat and the current
logical form is the same as the previous step, etc.5

C5: Domain-specific features: Indicator feature that looks
at long term history to denote whether the user is
currently teaching the system a new procedure (e.g.,
inProcedure=true). See Section 5 for explanation.

C6: Positional features: Feature denoting the position of the
current utterance in the conversation.

C7: Provenance features: Indicator feature denoting whether
the current logical form was derived from the CCG
grammar, or added through an expansion strategy.

5 Dataset
Most existing datasets for semantic parsing focus on under-
standing single utterances at a time, rather than conversations.
We created a dataset of real-life user conversations in an email
assistant environment. For this, we annotated raw transcripts
of interactions between human subjects and an email assistant
agent in a text-dialog environment provided in previous work
by [Azaria et al., 2016].

Each interaction session consists of the user trying to ac-
complish a set of email-based tasks by interacting with the
agent (refer to Figure 1 for a simple example). The sys-
tem also allows users to teach new procedures (e.g., for-
warding an email), concepts (e.g., concept of a contact with

4{Li:a,Lj:b} denotes that the logical form Li includes the
logical predicate a, and Lj contains b.

5While Figure 2 indicates possible edge features between latent
variables (zt or lt) and st , the model also allows features that could
depend on the entire history of utterances observed till t (s1 . . . st).
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Number of user utterances 4759
User sessions 113
Avg length of session (utterances) 42
Word types (all utterances) 704

Table 1: Corpus statistics for the Email Assistant dataset

fields name, phone number, etc.), and instances (e.g., in-
stantiating a contact) on-the-fly. Because of this feature,
and since the users are unaware of the capabilities of the
agent, linguistic usage in the experiments is complex and
diverse, compared to many existing datasets. The data
consists of sequences of user utterances and system re-
sponses. In order to make the data usable for research,
we pruned conversation sequences and annotated user utter-
ances with their associated logical forms. e.g., the utter-
ance: ‘What is Mom’s email?’ is annotated with the logi-
cal form (evalField (getFieldByInstanceName mom
email)), following the logical language in the original paper
[Azaria et al., 2016]. Utterances that could not be reasonably
expected to be interpreted by the email agent were marked as
unknownCommand (7% of utterances). However, if the user
later taught the system what she meant, future instances of the
utterance were marked with the intended logical form (e.g.,
users often taught the command ‘Next’ to read and move to
the next email in the inbox). Sequences devolving into non-
meaningful interactions were removed, e.g., if the annotator
deemed that the user did not intend to complete a task. Super-
fluous segments of the original conversation (e.g., utterances
re-phrasing a previous utterances that the system didn’t pro-
cess) were also manually pruned.

Annotating every command by manually specifying its
logical form would require experience with the underlying
logical language of the system. Instead, we developed a soft-
ware that allowed faster annotation using an alternate proce-
dure. The software allows annotators to load a conversation
sequence, and execute each utterance against a live version
of the email agent. If the response indicates that agent has
correctly interpreted the command, the annotator may save
the associated logical form for the utterance. However, if the
response indicates that the system did not interpret the com-
mand correctly (judged by the annotator’s belief of the user’s
intent), the annotator may provide a command which (i) re-
flects the intention of the utterance, and that (ii) the email
agent can interpret correctly. In effect, the strategy uses anno-
tators to paraphrase the original command into simpler com-
mands (still in natural language) that the agent would parse
to the correct logical form, without exposing them to the un-
derlying meaning representation formalism.

Figure 1 summarizes the statistics for the curated dataset.
For evaluation and future comparisons, we split the data into
a training fold (93 conversation sequences) and a test fold (20
conversation sequences).

6 Evaluation and Analysis
In this section, we discuss quantitative and qualitative evalu-
ation of our method. We first make a comparative evaluation
of our method in recovering gold-standard annotation parses

on the held-out test set. Next, we make an ablation study
to assess the contributions of different families of structural
features described in Section 4. We then briefly analyze the
characteristics of the latent states learned by the model, and
qualitatively discuss the performance of the model.

Parsing performance: For training our models, we tune pa-
rameters, i.e. number of training epochs (5), and the number
of clusters (K = 3) through 10-fold cross-validation on the
training data. For the CCG grammar, we use the PAL lexi-
con induction algorithm [Krishnamurthy, 2016] to expand the
base lexicon provided by [Azaria et al., 2016]. Our baselines
include the following semantic parsing models:
• Unstructured CCG: CCG parser from [Azaria et al., 2016],

which uses the same lexicon and text-based features from
Section 4, but does not incorporate structural features

• Seq2Seq: Deep neural network based on sequence-to-
sequence RNN model from [Bahdanau et al., 2015] to di-
rectly maps utterances to logical forms.

• LEX: Alignment-based model that chooses best parse using
lexical trigger scores only, with no syntactic rules (does not
use provided lexicon).
Table 2 compares the performance of variations of our

method for semantic parsing with conversational context (SP-
Con) with baselines on the held-out test set of conversational
sequences. Parses are evaluated for exact match in logical
forms, and reported results are averages over 5 runs. We ob-
serve that the Seq2Seq and Unstructured CCG models per-
form comparably, whereas LEX doesn’t perform as well.

We find that our structured models (SPCon and its
variations) consistently outperform the baseline models.
Further, the expansion strategies suggested in Section 3 lead
to consistent gains in performance. The improvement of
SPCon over Unstructured CCG, and further improvements
of expanded models over SPCon are statistically significant
(α = 0.1, McNemar’s test). In particular, the expansion
strategies that afford highest coverage (MF and PP) prove to
be most effective. This suggests that the structural features
are helpful for disambiguating between a large number of
candidate logical forms, even when text-only features don’t
yield the correct logical form as a candidate. This also
indicates that the performance of the unstructured CCG
parser is restricted by issues of recall (the correct parse is not

Accuracy
Previous methods
Unstructured CCG 51.9
Seq2Seq 52.3
LEX 46.4
Proposed models
SPCon 54.2
SPCon + PMI 56.2
SPCon + Prob 56.9
SPCon + MF 62.3
SPCon + PP 59.8

Table 2: Test accuracies on Email Assistant dataset
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among the candidates from the beam search for the majority
of error cases) due to the open-ended linguistic usage in the
dataset. The expansion strategies partially alleviate this issue.

Feature ablation: Next, we perform an ablation study to
analyze the contributions of various kinds of features to the
model performance. Figure 3 shows the effects of succes-
sively removing different categories of structural features
from the best performing model described above.

Figure 3: Comparison of parsing accuracy by successive removal of
structured feature families described in Section 4. Removing struc-
tural transition and emission features (C1 and C2) leads to the most
significant drop in performance.

We note that removing positional and provenance features
(C6 and C7) has minimal effect on model performance. Re-
moving features identifying repetition and domain-specific
features (C4 and C5) leads to a 1% drop. Further removing
lexical trigger features (C3) that associate certain words
with specific logical predicates and discourse states leads
to a more significant drop. However, the biggest effect
is seen by removing transition and emission features (C1
and C2). This is expected since these are fundamental for
modeling associations across steps in the sequential structure
of conversations. Ablating these features in the final step
reduces the model to text-based features only, and the model
performance is then understandably close to the performance
of the unstructured CCG model (the marginal difference is
due to batch updates for sentences in a conversation sequence
vs online updates in the unstructured case). This also
validates our thesis that incorporating contextual information
leads to better models for understanding conversations.

Latent states: We investigate the effect of latent states on
model performance. We varied the number of latent states
(K) and found model performance deteriorated for more than
K = 3 states (see Figure 4). We qualitatively explored
contents of individual latent states to see if learned latent
states reflect distinct discourse states in conversations. Ta-
ble 3 characterizes some of the highest weighted features

Figure 4: Parsing accuracy for different values of K

associated with each state for a run of the model. State
1 appears to be associated with confusion as it has high-
est weights for features that indicate presence of logical
predicates unknownCommand and cancel. Similarly, State
2 is associated with teaching new procedures (the feature
inProcedure=true has a high weight, and another high-
weighted feature indicates presence of the logical predicate
doSeq which is strongly associated with teaching proce-
dures). On the other hand, State 3 has a more generic charac-
ter, consisting of the most common logical predicates, and is
the predicted state for the majority of utterances.

We also observe that latent states enable our approach to
model interesting context-specific linguistic usage. For ex-
ample, an analysis of state-specific weights learned by the
model showed that it learns two distinct interpretations for the
trigger word cancel in different contexts: within a learning
procedure cancel is strongly associated with a logical predi-
cate to quit the procedure, outside this context it is strongly
associated with undoing the action taken in the previous step.

State 1 has(unknownCommand), has(cancel)
State 2 inProcedure=true, has(doSeq)
State 3 has(createInstanceByName), has(readInstance)

Table 3: High-weight features for each latent state (K = 3). has(a)
denotes a feature associated with the presence of logical predicate
a.

Errors: We found that in many examples, structured fea-
tures partially address many of the issues highlighted in Fig-
ure 1. A manual inspection of errors revealed that a signif-
icant number (about 20%) of them are due to user-specific
procedures that were taught to the agent by human users dur-
ing the original study. These errors are too hard to resolve
with a batch training approach, and would require incorporat-
ing user-specific behavior in the semantic parsing.

7 Conclusion
In this paper, we introduce the problem of semantic parsing
of conversations. We present a conceptually simple structured
prediction formulation that incorporates conversational con-
text by leveraging structural regularities in conversation se-
quences. This enables joint learning of text-based features
traditionally used by semantic parsers, as well as structural
features to model the flow of discourse. The current work
uses a simple model of discourse as statistical regularities
(with Markov properties) in sequential structure of conver-
sations. This can be refined by incorporating models of dis-
course entities and discourse referents from discourse repre-
sentation theory. Understanding of conversations can also be
enhanced by models incorporating background world knowl-
edge. Finally, the idea of using conversational context can be
generalized to incorporate other modes of contextual infor-
mation, such as from the agent’s execution environment.
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