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Abstract

While computational modeling has yielded several plausible models for language

emergence in a set of uniformly endowed agents, most of these treatments do not address

emergence of syntax; and have focused on the evolution of a coherent lexicon. While

a coherent vocabulary is a necessity for any language, it is in fact syntax which allows

humans to express seemingly infinite meanings using a finite set of phonetic elements.

Most earlier models also ignore population turnover, and do not incorporate dynamical

and structural aspects of populations.

In this thesis, we have extended a well known inductive learning model of language

learning to large populations, heteregeneous interactions, and realistic social commu-

nitites. The model induces grammatical rules on the basis of phonetic resemblances

between lexical entities, and similarities in semantic meanings they correspond to. We

have developed a framework where multiple agents can interact in an iterated learning

setting, and each agent can receive its primary linguistic input from a set of speakers

according to distributions specified by the existing social topology. We also try to extend

the deterministic production model to a probabilistic one, and investigate possible biases

which can expedite the emergence of compositional syntax.

In particular we study the effect of population size and the structure of social topol-

ogy on linguistic coherence and language emergence for this model. Our investigation of

the extended model on different social graphs leads to several insights, and indicate that

social topology can have significant effects on the acquisition and evolution of language.
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Chapter 1

Introduction

“Language is the means of getting an idea from my brain into yours without surgery.”

-Mark Amidon

Questions of the emergence and evolution of human language are among fundamental

questions in social and cognitive sciences. Human language exhibits a range of unique

features such as semantic structure, open-endedness and compositionality; unmatched

elsewhere in the natural world. While a few other species exhibit a limited lexicon (in

primates), linguistic pattern learning (in primates) [4], and rudimentary syntacic struc-

ture (in the dance of bees) [3], no other species exhibits linguistic behaviour resembling

the complexity of human language[5, 6]. It is in fact commonly recognized that the com-

plexity of human thought, development of mental concepts and cognitive awareness are

inseparably connected with, and intimately entwined with human language development.

A major issue in the study of human language evolution is a lack of historical data.

The development of languages are one-time epochal events, with no stratified records

at various phases of their development. Empirical clues about language acquisition and

emergence only come from the study of contemporary pidgins and creoles, or the study

of language acquisition in children.
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1.1 The Nativist Approach

Presenting the precocious use of language by human infants as evidence, the Chomskyian

school of linguistics has proposed that all human languages share some linguistic primi-

tives that render them easy to learn given very little exposure (argument of ‘poverty of

stimulus’)[7][8]. The strong Chomskyian view holds that these linguistic primitives have

a genetic basis, called a Language Acquisition Device(LAD); and that the major part

of human language is hardwired into human brain structure. It claims that the basis of

language, not unlike the visual apparatus [9], is in the expression of genes.

In this view, language is not acquired from the environment, but rather reached

internally through a process of maturation. This treatment resolves the poverty of

stimulus dilemma at the design level itself, suggesting that most of the syntactic structure

of language is biologically specified. The role of the environment is minimal, and only

foolows an internally pre-determined course of linguistic development. Indeed, the strong

Chomskyian school holds that the LAD is an organ, no less real than the brain or the

liver. Apart from poverty of stimulus, there are other factors, such as the emergence

of syntactic language in a group of deaf Nicaraguan children [26], and the existence of

a critical period for first language acquisition that are cited in support of the nativist

view.

However, the Chomskyian perspective has several critics, especially because there is

no plausible account of how the LAD evolved. Consequently, the view is far from being

universally accepted.

1.2 And dissenters

The assumption that language has a purely or overwhelmingly genetic basis is not con-

clusively supported by empirical neurobiological studies. The most significant counter-

argument against Chomskyian nativism’s biological determinism is the variety in the

structures of existing natural languages. The alternate empiricist view has suggested

that rather than being an innate biological quality, the structure of language is induc-

2



tively inferred by children from primary linguistic input (PLI); and that the structure of

language itself contains the seed for its learning.

While the strong empiricist view emphasizes the role of PLI and induction learn-

ing as sole determinants of a listener’s linguistic hypothesis, and precludes any innate

bias altogether, Deacon suggested a less extreme alternative. He suggested that rather

than biological evolution being responsible to develop a LAD over time, it is languages

themselves that stucture to adapt to some inherent biases in our cognitive structures,

and limitations such as limited number of examples. This can explain the emergence

of ‘language universals’ as well as linguistic divergence since the cognitive apparatus is

almost the same, but linguistic evolution can follow widely different pathways.

The generic induction-learning argument has support from several observations in

child language acquisition. Evidence suggests that linguistic patterns of children are

very closely synchronous to that of their parents. Pinker [22] observes that children

generalize a rule after sufficient number of exposures to instantiations of the same. Thus

an agent can acquire prevalent linguistic behaviour purely based on observing relative

frequencies of behaviours, and any inherent prewiring is not needed to explain the phe-

nomenon. An Occam’s razor view of the situation would suggest that a non-nativist

hypothesis be preferred, that doesnt require additional support from an independent

language acquisition organ.

Also, Child Directed Speech(CDS) or baby-talk universally exhibits modifications in

linguistic behaviour such as smaller vocabulary and simplistic syntactic forms that might

aid learning of a child. In some sense, this negates the argument of poverty of stimulus,

by claiming that learnable linguistic stimulus is not as sparse as is often perceived.

1.2.1 Perspective from Learning Theory

The nativist school though, in some sense, can claim some mathematical basis from

results in classical learning theory.

In 1967, Gold [11] laid a framework for language learnability as identifying a language

in the limit of providing all strings in the language. Gold proved that no learning
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algorithm AH can learn from any set of super-finite languages (a set having all finite

languages and at least one infinite language), under this framework. This argument

however, is open to criticism on grounds that the notion of learnability is unnaturally

restrictive, since children dont need to learn a language exactly. In fact, it would be hard

to find two observers who would agree on the validity of all strings for any language.

Indeed, linguistic mutations and the dynamic open-ended nature of human languages

suggest that we learn languages imperfectly; and our linguistic hypothesis significantly

differ from those of our cultural forebears.

Vapnik’s framework of statistical learning theory [12] relaxed the constraint of per-

fect learning using the PAC learning model. The PAC framework essentially aims for a

bound on a high probability of accuracy, while allowing a small probability of general-

ization error ε). This relaxation extends the class of learnable languages, but critically it

reaffirms Gold’s conclusion that learnability needs a constrained set of candidate hypoth-

esis languages. This could be viewed as evidence in favor of the Chomskyian concept

of Universal Grammar, in the sense that the learner needs an apriori bias about the

hypothesis space, that assists the language acquisition process.

In summary, the dual fact that only humans can produce or learn languages; and

that no learning algorithm AH can be guaranteed to work well on unrestricted search

spaces or all sorts of training data suggests that language needs at least some inherited

subliminal biological/cognitive biases. On the other hand, it is unfounded and hard to

argue that biological evolution has lead to a highly constrained and refined ‘language

organ’, as championed by proponents of the Chomskyian school and Universal Grammar.

If language acquisition indeed proceeds by, or is even marginally facilitated by a process

of inductive learning, this implies that the external environment influences the structure

and pedagogy of language. The questions to raise, then, are the extent to which language

is learnt by inductive generalizations, the form and drivers of evolutionary linguistic

biases, and the mutual roles of cultural adaptation and the foresaid biological evolution.

4



1.3 Complex Adaptive Approach

In this thesis we explore the possibility, as just suggested and first proposed by lin-

guists including Briscoe and Steels [14][13], of treating language as an evolutionary phe-

nomenon. This view of language treats it as a living ‘complex adaptive system’, that is

continually adapting through co-evolving cultural and biological forces.

Language, in this sense, needs to be seen as a continually changing complex system

(similar to an economy or an ecosystem) where local interactions lead to global organi-

zation, and the onus of adaptation is on language itself to be transmissible; within the

constraints of available cognitive architecture, limited communication, and noisy signal

perception. This is the sense in which the system is complex : there is no hierarchy or

modular structure in the interactions, and global level properties are not obvious from

the nature of local interactions. In this sense, features such as compositionality are seen

as emergent(rather than predetermined) solutions in response to the system constraints

and initial conditions.

The system evolves through interactions of the agents among themselves and with

the environment, changing the state of each agent, as well as potentially both the en-

vironment and the cultural and social systems. The system is called adaptive since the

future state of the system (consisting of states of individual agents and the environment)

at any point is a probabilistic function of the current state.

In this work, we assume a population of artificial agents endowed with identical

cognitive architecture, and investigate, as have others, how many features of natural

languages can emerge from a richer treatment of language as a complex adaptive system,

as evolutionary artefacts in a process of cultural evolution and social transmission in

social communities over many generations.

1.4 Role of culture,population and topology

Social structuring started 250000 years ago when Homo hydelbergensis moved out of

Africa. There is evidence of cave paintings, which possibly form the first signs of human
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language development. It has been claimed that social topology, geographical locality

and social behaviour are major determinants of linguistic evolution [16]. Most language

models however ignore this structure, assuming uniform homogenous interactions at all

population levels. Significantly, Nettle [17] shows that population structure can deter-

mine the problem of whether a rare linguistic mutation will propagate in a population.

Ke [19] extended Nettle’s results to more realistic networks, and showed that socially

influential agents can affect the spread of a linguistic variation. Mague [25] applies

Mufwene’s basic model [24] of lexicon learning to multiple population structures, and

shows dynamics of language learning are directly influenced by population structure.

Similar results are reported by Lee et al [23], showing that an impoversished treatment

of population structure in language models can lead to flawed and spurious generaliza-

tions.

1.5 Overview

Many models have shown and vindicated the emergence of stable vocabularies in popu-

lations of agents. The amalgamation of linguistic lineal units through social interactions

across mutiple generations can lead to formation of stable coherent lexicons that form

the heart of any human language. While computational modeling has yielded several

plausible models for language emergence in a set of uniformly endowed agents, most

of these treatments suffer from a lack of treatment of syntax [33], ignoring population

turnover [30], and lack of population structure [1] or unrealistic population dynamics

[31, 17, 19].

In this thesis, we seek to rectify some of these shortcomings by a more realistic treat-

ment of language, and social structures that more closely resemble human interaction

networks, at least in their rudimentary forms. In the process, we extend a well known

Iterated Learning model by Kirby by introducing necessary biases, while highlighting

some limitations of the model, especially in scenarios of multiple teachers and coexisting

hypotheses.
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In chapter 2, we briefly review major seminary works in language evolution, especially

those following a computational modeling approach. In chapter 3, we explain the basic

framework of our model, basic types of rule subsumption; and the application of the

model to a population of agents. chapter 4 explores various population models and their

emergent properties. In chapter 5, we explain the results, and conclude with a brief

discussion and possible future directions of enquiry.
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Chapter 2

Review of computational

simulation models

As previously mentioned, the critical problem in studying language emergence and evolu-

tion is the lack of documented data. Most extant human languages emerged a long time

ago, and new languages do not emerge frequently. Moreover, the evolution of languages

is a gradual process, taking tens or hundreds of years. To conclude the linguist’s litany

of woes, the adaptation of cognitive architecture for language development in humans

was a one time event. This alone makes questions about language evolution naturally

hard to answer. Even fundamental issues such as emergence of features such as compo-

sitional syntax, and any analysis of evolutionary benefits of such adaptations are at best

speculative.

Because of paucity of data, abstract theorizing and phylogenetic speculation was the

modus operandi of research in this generic domain for a long time. With the advent of

computational linguistics however, a host of analytical and simulation based techniques

have been used to study language origin and evolution. Most analytical methods in

linguistics can be characterized by macroscopic population analysis by researchers such

as Niyogi [29], and function theoretic mathematical techniques as in work by Nowak and

Komarova [27, 28]. Such works can predict large scale properties, and are mathematically
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tractable.

An alternative approach to rigorous mathematical analyis is computational simula-

tion modeling. Simulation models provide an intermediate way between abstract theoriz-

ing on one hand, and grounded rigorous mathematical bases on the other. They provide

for intuitive modifications in the simulation setting, without needing to mathematically

analyze them precisely. By a choice of formalism, the linguist can choose what aspects

of language to study in isolation. A typical simulation model normally consists of an

alternate world, where a set of agents with predefined capabilities can interact among

themselves and with the environment, to evolve their linguistic behaviour. The choice

of agents who interact is dictated by a defined policy but is otherwise random. For

example, if agent groups are represented as the nodes of a graph then interaction may

be restricted to agents of only directly connected nodes. In particular simulation mod-

els are the natural way to investigate complex and mathematically intractable systems,

exhibiting non-linear behaviour.

In this chapter, we review briefly some relevant prior work in simulation modeling,

based on evolution of lexicons and syntax.

2.1 Luc Steels

Luc Steels pioneered robotic simulations in evolutionary linguistics in the well known

Talking heads experiment. The simulations [32, 33] consisted of robotic agents with

mounted cameras, negotiating a virtual world where objects had a discrete set of features.

Initially, agents had no innate semantic representation or lexical knowledge. However,

they are endowed with memory structures for storing lexical entities, as well as hardwired

procedures for parsing, or guessing the meaning of an unknown word. The agents are

also endowed with consistent sensory channels, which can each faithfully transmit the

value of one of several attributes for any perceived object.

The agents intially played discrimination games to identify an object by building deci-

sion trees based on the object’s sensory features. Next, agents participate in interactions
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called guessing games. A guessing game consists of a listener and a speaker randomly

chosen from the population. The listener and the speaker are co-located and share the

same context. The speaker selects one object from the context (called ‘topic’), and also

attributes that distinguish the topic from the rest of the context. If current distinctions

are not sufficient to distinguish the object from the background, new distinctions can

be created in an agent’s internal decision trees. The speaker verbalizes the attribute

through its existing lexicon, after which the listener tries to identify the attribute, and

hence the topic using it’s own lexicon and decision trees. The game is considered a suc-

cess if the listener successfully identifies the topic. Otherwise, the speaker identifies the

correct topic by a joint attention mechanism. Both the speaker and the listener update

their memories according to the outcome of the game. The update may involve a new

insertion into the lexicon, or a modification of the meaning-signal association matrix.

The representation of the lexicon as an association matrix allowed for situations of both

polysemy and homonymy. Steels’ system preferred more successful meaning-signal pairs

through a positive feedback between usage of a word in a word game, and its success.

Steels’ experiments showed that eventually all agents develop roughly the same discrimi-

nation trees, and hence the same object categories. Additionally, a joint lexicon emerged

in the population of agents.

The crux of the experiments was that a set of artificial agents could develop com-

mon perceptual distinctions and a coherent lexicon, without any innate or biologically

transmitted linguistic information. Also, this underplayed the significance of intergener-

ational cultural transmission in developing a coherent communication system. Instead, it

showed that common cognitive abilities can suffice to evolve a successful communicative

system in a population of agents.

2.2 A. Smith

Smith [36] used Steels’ talking heads framework to show that lexical coherence can de-

velop even in the absence of communication of explicit linguistic success. In this scenario,
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unlike in the Talking Heads’ experiments, agents play selfish language games, i.e. the lis-

tener never gets to know the intended meaning of the speaker. Thus there is no positive

feedback to reinforce more successful meaning-to-signal mappings. Instead, meaning is

inferred from the perceived context. In this case, it was shown that multiple exposures to

the listener’s language in different contexts, and comparision of overlap in the contexts

can be used to infer the intended meanings.

This work was inspired by language learning in children, where explicit meaning

is rarely communicated but children are exposed to multiple mappings for similar ob-

jects. They manage to acquire the correct mappings from existing linguistic hypotheses,

presumably by picking common elements of shared mappings.

Thus, Smith’s work addresses the poverty of stimulus problem, since it more realisti-

cally models how language acquisition occurs in humans, where in most communication

there is no overt transference of intended meaning.

2.3 Ted Briscoe

Briscoe [14, 15] was among the first to view language as a complex adaptive system. His

approach is also among the relatiively few which have tried to go beyond the lexicon and

tried to incorporate elementary syntax into simulations, a complex and yet characteristic

feature of human language. In his approach, the language of an agent as defined by a

set of 20 parameter values (which can be viewed as its linguistic apparatus, or LAD),

which largely focus on word order.

Each agent is modeled with a parser and an inbuilt parameter setting algorithm,

which changes the values of the parameters based on observed language triggers. The

parser works by modifying the contents of a stack containing word categories correspond-

ing to the input sentence. Agents are also endowed with an innate parameter setting

algorithm. If the parser fails on an input sentence, the parameter setting algorithm re-

sets the values of one of the parameters. A parameter is reset just once in the process of

linguistic acquisition by the agent. The choice of parameter to be reset is based on its
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position in the hierarchy of parameters (most general parameters are reset first).

Briscoe’s contribution was to show that a parameter-setting approach can lead to

linguistic convergence at a relatively high level (syntactic). In his model, biological

transmission does take place, and linguistic parameters get set to fixed values as we

move through the simulation (for example, the word order parameter can be fixed to a

particular word order). This can be seen as evolution of the linguistic apparatus. In this

way, the model shows co-occurring adaptation of both the LAD and language. Linguistic

convergence was achieved much faster when the initial parameters matched the language

triggers agents are exposed to in the learning phase. Thus, even a simplistic LAD could

be seen to evolve priors which would make language transmission and acquisition more

effective.

However, there are obvious issues in these claims. In Briscoe’s model, linguistic

evolution proceeds at an unrealistic pace when compared with the phylogentic timescale

of evolution. In reality, biological evolution is slower by several orders of magnitude.

Large scale genetic modifications only become manifest over periods of thousands of

years, while language forms can transform within a matter of a few decades or centuries.

In this way, linguistic embeddings at the level of genes would always be ‘moving targets’

for biological evolution, as shown in simulations by Chater et al [39].

2.4 Christiansen and Devlin

Christiansen and Devlin’s [38] simulations demonstrated that syntactic structures of

language might have evolved to fit human sequential learning mechanisms. They claimed

that constraints on the human learnability of sequential structure have steered the course

of syntax evolution in languages; and are reflected as word order universals.

Their simulations consisted of training simple recurrent networks (SRN’s) on 32 dif-

ferent grammars. Chosen grammars had varying levels of head-order consistency, i.e.

different ratios of head-first and head last phrases. The task for SRN’s was to predict

the category of the next lexical entitty in a sentence. It was found that there was a large
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correlation between head order consistency of grammars, and the accuracy of SRN’s in

learning them. Head-order inconsistent grammars were observed to be harder to learn.

Further analysis of human languages revealed that languages containing patterns that

SRN’s found harder to learn were much rarer.

Similar results were later reported by Lupyan and Christiansen [40] by a frequency

analysis of case-markings in human languages, and related the learnability of languages

in artificial networks with the frequencies of occurrence of different word order forms,

consisting of subject (S), verb (V) and object (O). Subject-first languages (SVO and

SOV), which dominate human languages (74%) were found to be easiest to learn by the

networks. OVS and OSV forms, which have very rare occurrence in world languages,

were not easily learned.

Further, Conway and Christiansen [37] reviewed sequential learning in non-human

primates, and found that learning behaviour for short length sequences and certain

patterns were largely similar to humans. However, other primates are unable to deal

with hierarchical sequential structure that is characteristic of human languages. This

could partly explain why humans alone have complex syntactic linguistic abilities.

These simulations and studies together suggest a plausible alternative explanation of

word-order emergence that avoids intractables such as Universal Grammar. They also

stongly argue that languages, guided by capabilities and limitations of human learning

and processing, primarily adapt culturally; while undercutting the influence of biological

evolution or a Chomskyian LAD in governing syntactic features of language.

2.5 Zuidema

Zuidema [49] argues that language acquisition in an iterated learning setting is a special

type of learning problem, since in this case the outcome of a learning process becomes

the target of another learning process. He shows that because of the special nature of

this learning process, language itself can adapt to the learning algorithm. Zuidema’s

language acquisition algorithm consists of three stepwise operations: (i) incorporation,
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which involves extending the extant language to include the current string, (ii) compres-

sion, involving substituting frequent and long substrings of signals with non-terminals,

and (iii) generalization, involving merging of two non-terminals. He demonstrates that

in this learning model, early learners are unable to learn the target language. However,

after several generations , an imposed compression based prior for CFG’s leads to emer-

gence of language which are reliably learnt by his learning procedure. This contradicts

Nowak’s argument of a ‘coherence threshold’, which is the minimum limit of the learning

accuracy of an individual that could be consistent with global linguistic coherence in a

majority of a population.

While Zuidema’s compression bias undermines his claim of the model having learnt

‘unlearnable grammars’ (as per Gold’s results), he effectively demonstrates how lan-

guages can emerge to fit biases in the learning procedures.

2.6 Simon Kirby

Kirby [1] demonstrated that complex properties of natural language such as composi-

tional syntax and recursion can emerge in a synthetic framework over generations of

interactions. Kirby claims that these properties must “inevitably emerge through the

complex dynamical process of social transmission”, and that transmission bottlenecks

serve as drivers for such transformations.

Kirby’s framework consists of an explicitly structured predicate-argument meaning

space, and a greedy rule subsumption algorithm. The simulation follows an Iterated

Learning Model [45, 20] of interaction, with the agent in Generation i always in the role

of a listener, which subsumes rules based on linguistic input from its parent in Generation

i−1. After a fixed number of iterations, the Agent i−1 ’dies’, the Agent i takes over the

role of the speaker and a new Agent i+1 with a blank grammar is introduced in the role of

a new listener. The major claim is that some languages will be more easily transmissible

through transmission bottlenecks, and these are the languages which will persist. This

was reiterated in a different work by Brighton [10], showing that compositional languages
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have a stability advantage over holistic languages for structured meaning spaces with few

training examples by comparing a wide range of meaning spaces, and other parameters.

The emergence of compostitionality and recursion however, seem to be functions of

the formulation and the learning algorithm, and not inevitable results of social trans-

mission and adaptation as Kirby claims. The induction algorithm overtly favors smaller,

compositional grammars. The kernel of the approach however, as far as we are concerned,

is that it realistically shows languages adapting and evolving, emergence of competing

word orders, and the rather interesting emergence of word categories, such as nouns,

verbs and fillers, corresponding to semantic categories in the internal representations.

2.7 Henry Brighton

Brighton [34] addressed the problem of choosing from a set of hypothesis, that forms

the core of the induction learning approach. In any agent based model, a linguistic

agent needs to choose from a set of possible hypotheses H, on exposure to training

data D. The chosen hypothesis should ideally be concise, and not be overly complex

and hard to learn. At the same time, it should sufficiently and correctly explain the

training data. Brighton formulated this tradeoff between simplicity and precision as

a Minimum Description Length (MDL) problem, and validated his approach using a

transducer based learning approach. The MDL principle provides a way of choosing,

given the set of hypothesis H and data D, which member of the hypothesis set represents

the most probable hypothesis, given that the data D was observed.

Brighton’s claim was that external constraints like MDL can explain universal prop-

erties such as compositionality and there is no need to invoke a biological LAD.
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Chapter 3

Approach

In this chapter, we describe the experimental setup and the learning model we use in

our study. Our model is motivated by the one proposed by Kirby [1] as discussed in the

previous chapter. We seek to extend the Iterated Learning Model proposed by Kirby

to more realistic population sizes and heterogeneous interactions between agents. The

cognitive capacities of agents and the nature of the meaning space are identical to those

in Kirby’s study. The extension of the model from a few agents to a large population

scenario presents several difficulties. We also attempt to generalize the model to simulate

probabilistic linguistic behaviour by agents holding multiple hypothesis at the same time,

and identify problems with this approach.

3.1 Basic setup

The Kirby world consists agents equipped with identical sets of meanings, an iden-

tical internal representation of language, and an induction algorithm that can move

towards more compositional grammars. There is an explicit and globally homogenous I-

language, where atomic concepts such as John, Gavin, Mary, likes, or knows can combine

as predicate-argument propositions to form more complex meanings such as loves(Mary,

John) or knows(Gavin,loves(Mary,John)).

The agents also have the ability to represent language through internally stored pro-
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duction rules, which can generate Context Free languages. While the linguistic apparatus

allows for features such as compositionality and recursion, they are not necessitated by

it. For instance the meaning kills(John,Mary) can be expressed in the setup with the

same signal ‘johnkillsmary ’, but using multiple possible grammars.

Grammar 1:

S/kills(John, Mary) −→ johnkillsmary

Grammar 2:

S/1(John, 2) −→ johnA/1B/2

A/1 −→ kills

B/2 −→ mary

Grammar 3:

S/1(2, 3) −→ M/2L/1N/3

L/kills −→ kills

M/John −→ john

N/Mary −→ mary

In the above scheme, the left hand side of a rule is a semantic representation, pos-

sibly only partially specified, with capital letters signifying learned word classes. The

numeric variables represent pre-terminals which can expand to fully specified meanings

through other rules of production. The right hand sides represent (partially specified)

lexical utterances, which can be construed to be sequences of atomic phonemes that the

agents can produce and distinguish. We assume that the vocal and auditory apparatus

is identically developed for all agents in the simulations, and hence this inventory is the

same. The bigger assumption, seemingly, is on the consistency of the internal representa-

tions of the left hand side. However, Steels’ [33] observation of the formation of coherent

discrimination trees and general consistency of perception in humans suggests that even
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if the internal representations are distinct, their net effect and workings are reasonably

consistent.

In the first grammar, the signal-to-meaning mapping is completely arbitrary, and

the language is holistic. No subpart of the holistic signal conveys any meaning. While

decoding, the string is not chunked into smaller parts, and the whole string needs to

be processed as a holistic entity. On the other hand, the third grammar is perfectly

compositional in the sense that meaning conveyed by a string is a function of its parts.

While the setup allows for such syntax to be functional, it is not initially hard-coded into

the system, i.e. the grammars are not explicitly needed to be compositional. In fact,

new individuals always begin with a blank grammar, and initially language consists of

just holistic rules of production.

3.2 Language games

Individuals start as ‘listeners’, and subsequently graduate to become ‘speakers’. Under

the Iterated Learning Model, an agent in generation i receives its primary linguistic input

from its linguistic parent in generation i−1, chooses its linguistic hypothesis through an

induction algorithm, and then becomes a speaker to provide linguistic input to generation

i+ 1.

3.2.1 Production mechanism

As a speaker, individuals need to convey randomly chosen meanings through their learnt

production rules. If an agent can produce the desired meaning from its current linguis-

tic hypothesis, it does. In case the current language cannot produce the meaning, it

produces the signal (string) corresponding to the closest meaning that it can produce,

and replaces the non-matching part with a randomly invented string of phonemes. For

example, suppose an agent currently has the following grammar:

Grammar 4:

18



S/fly(Rhinos, 1) −→ rhinoscanflyA/1

A/Aeroplanes −→ aeroplanes

A/Zeppelins −→ zeppelins

If the agent needs to convey ‘fly(Rhinos,Helicopters)’, it chooses a closest mean-

ing (say ’fly(Rhinos,Aeroplanes)’) that it can convey, and replaces the non-matching

part of the parse-tree (that produces the string aeroplanes from the semantic meaning

‘A/Aeroplanes’) with a random string of phonemes 1, say wxyz. Thus the utterance

for ‘fly(Rhinos,Helicopters)’ becomes rhinoscanflywxyz. On the other hand, suppose the

agent has to convey the proposition ‘fly(Hippos,Aeroplanes)’, there is no non-trivial parse

tree possible in the existing grammar that can be consistent with any of the three atomic

meanings, and hence an entirely new parse tree needs to be constructed corresponding

to an entirely random phonetic sequence, say ’jdix’. Thus the utterance corresponding

to ‘fly(Hippos,Aeroplanes)’ is the entirely non-compositional ‘jdix. 2

The production mechanism for the speaker, therefore, needs two procedures: one is

to deterministically check if it is possible to produce a meaning from a given grammar

and generate the corresponding utterance. A recursive pseudocode for the procedure is

given below:

PROCEDURE DEFINITION:

proc CanIProduce(Target_meaning, Current_symbol){

boolean=0; //Can grammar G produce the Target_meaning?

for i=1:Number of production rules in Grammar G,

{

C=Category symbol of rule i;

S=Partial semantic meaning on LHS of rule i;

1In this work, the random strings are chosen with a maximum length of three, and there can be one

of 15 phonemes at each position, represented by the first fifteen English alphabet
2This does not reflect an inadequacy in the generalization rules. If ‘fly(Rhinos,1)’ is an often reinforced

semantic structure, while the flying of anything else(including hippos) is a rare observation, it is not

entirely unnatural for ‘fly(Rhinos,1)’ to be learnt as a predicate with a single argument.
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RHS=Partial signal on RHS of rule i;

//For a rule with matching symbol:

if(C ~= Current_symbol) continue; end

Replace variables in ’S’ with corresponding category symbols from ’RHS’;

[b(1):b(k)]= Atomic elements or category symbols in the semantic S.

// which should not be more than that in Target.

[a(1):a(k)]= Corresponding k elements in the ‘Target’, determined by paranthesis.

flag=1;

//Match all k tokens:

for j=1:k {

if(b(j) is an atomic meaning){

if(a(j) ~= b(j)) flag=0; end; }

else if (b(j) is a category symbol){

boolean2= CanIProduce(a(j),b(j));

if(~boolean2) flag=0; end}

}

if(flag==1) return 1; end;

}

return 0;

CALLING THE PROCEDURE:

bool= CanIProduce(Target_meaning, ’S’);

//’S’ is start symbol in the grammar.
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3.2.2 Invention procedure

A second procedure is needed to formalize the notion of similarity of representations

of meanings in the I-space, for the invention mechanism to work on, in case the exact

meaning cannot be produced by a grammar. This must take into account not just the

structure of the semantic meanings, but their pathways of production (as seen earlier

in this section). For instance, consider a hypothetical Grammar 5, an extension of our

previous grammar.

Grammar 5:

S/fly(Rhinos, 1) −→ rhinoscanflyA/1

A/Aeroplanes −→ aeroplanes

A/Zeppelins −→ zeppelins

S/know(1,2) −→ B/1C/2

B/Rhinos −→ rhinonoun

B/Hippos −→ hippob

C/Rhinos −→ hippoc

C/fly(Rhinos,Helicopters) −→ abc

Suppose, we again needed to convey the unlikely proposition ‘know( Hippos,fly( Rhi-

nos,Aeroplanes))’, which cannot be expressed by the existing grammar. But as before,

the language can convey ‘fly( Rhinos,Aeroplanes)’. However, it can also convey ‘know(

Hippos,fly( Rhinos,Helicopters))’, which is closer in structural size. In this case, which

is the closer meaning? Thus finding the closest expressible meaning would require us to

formalize the notion of similarity.

We do this by choosing the parse tree with the least number of generalizations needed,

starting from the base of the parse tree (outermost predicate). A section of a parse

tree attempting to produce a corresponding meaning contributes a distance equal to

the minimum sum of distances of its individual branches. Also, if a section of a parse

tree cannot even partially match the corresponding submeaning (without any incon-
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sistency at any position), it contributes a distance equal to the number of unmatched

arguments and predicates in the intended partial meaning. Thus ‘know( Hippos,fly(

Rhinos,Helicopters))’ or ’know ( Hippos,Rhinos))’ are the closest expressible meanings,

with a distance of 3 each since they can match a relation and an argument each (‘know’

and ‘Hippos’), but not‘fly( Rhinos,Aeroplanes)’. No other parse trees can match any

argument or predicate without an inconsistency at any position. With this notion of

meaning similarity, the pseudocode for the invention algorithm is given below. The pro-

cedure determines if a given meaning is producible by the agent’s grammar, and if not,

invents a new signal generated from the closest meaning.

PROCEDURE DEFINITION:

proc Invent(Target_meaning, Current_symbol){

boolean=0; //Can meaning be produced without invention?

ut=RandomString; //Produced utterance

min= Infinity; //Distance of closest producible meaning.

for i=1:Number of production rules in Grammar G,

{

C=Category symbol of rule i;

S=Partial semantic meaning on LHS of rule i;

RHS=Partial signal on RHS of rule i;

//For a rule with matching symbol:

if(C ~= Current_symbol) continue; end

utemp=RHS;

Replace variables in ’S’ with corresponding category symbols from ’RHS’;

[b(1):b(k)]= Atomic elements or category symbols in the semantic S.

// which should not be more than that in Target.

[a(1):a(k)]= Corresponding k elements in the ‘Target’, determined by paranthesis.
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//some might be composite.

//Match all k tokens:

flag=1; diff=0; //least number of tokens that ‘i th’ rule mismatches

for j=1:k {

if(b(j) is an atomic meaning){

if(a(j) ~= b(j)){

flag=0; diff=numk;

utemp=RandomString; break;}

}else if (b(j) is a category symbol){

[boolean2 min_i uti]= Invent(a(j),b(j));

if(~boolean2) flag=0; end

diff=diff+min_i;

Replace category symbol b(j) in ’utemp’ by ’uti’;}

}

//Was this rule closer in meaning?

if(diff<min){

min=diff; ut=utemp;}

//On finding working rule, dont search further

if(flag==1){

min=0; boolean=1;

return [boolean ,min, ut];}

}

return [boolean, min, ut];

CALLING THE PROCEDURE:

[bool, dist, utterance]= Invent(Target_meaning, ’S’);

//’S’ is start symbol in the grammar.
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3.2.3 Interaction

Thus, we now have mechanisms that ensure that any ‘speaker’ can produce signals for

any valid meanings in the meaning space. The ‘listener’ attempts to correctly parse

these meaning-signal pairs. Since at the beginning, the listener’s grammar is empty, it

can’t match the heard utterance meaning pairs initially. However, at the end of each

unsuccessful communication, the listener uses the new data 3, to modify its linguistic

hypothesis according to the seen data; and thus improves its linguistic proficiency with

experience. The speaker too calls the induction algorithm every time the existing lin-

guistic hypothesis is unable to convey a meaning and must call the invention procedure.

Thus, the crux of the entire process is the induction mechanism, through which agents

can infer from strings the abstract meanings they represent. The following pseudocode

summarizes a language game of N interactions between two agents.

proc Interact(A, B, N);

%N interactions between two agents A and B, where A is speaker and B is listener.

G1=LoadAgentGrammar(A);

G2=LoadAgentGrammar(B);

for i=1:N{

Meaning=ChooseRandomMeaning; //Agent A to choose a meaning

//Can Agent A convey the meaning? If yes, speak.

[b1 min_difference speech ]=Invent(Meaning, ’S’);

if(~b1){

//Agent A needed to invent speech, needs to generalize new example.

AddNewRule(Meaning-->speech,G1);

InductionAlgorithm(G1);}

//Agent B : listener

b2 = CanIParse(s, speech, G2);

3The new data tuple (meaning,signal) is incorporated in the agent’s grammar in the form of a new

production rule: New Category Symbol/ meaning −→ signal
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if(~b2){

//Agent B could not parse new speech, needs to generalize new example.

AddNewRule(Meaning-->speech,G2);

InductionAlgorithm(G2);}

}

At this juncture, we observe that there is an implicit assumption of meaning trans-

ference in the model of the language game. In other words, the listener always knows

exactly what the speaker’s intended meaning was. This is the classical ‘gavagi’ problem,

illustrated by Quine [41]. The context of the illustration is a speaker pointing in the

direction of a rabbit, and making the utterance ‘gavagi’. The problem is that ‘gavagi’

could refer to the rabbit, its gait, color or shape; or any other object in the context.

Hence, the issue is inferring the meaning of an unknown signal from a set using the

context.

3.3 Induction algorithms

The acquisition of I-language given examples of E-language revolves around inductively

learning ‘good generalizations’ which correctly map phonetic strings to semantic mean-

ings. In this section, we explain the induction mechanisms in our model, and how they

modify an agent’s grammar.

In our formalism, new data is incorporated by a learner as a pairing of a sentence

(string of terminals), and the associated semantic structure. However, agents have powers

to modify existing rules to subsume new linguistic examples. Rule subsumption in the

model operates greedily, in the sense that rules can be modified or created based on

observing a single new example at a time, without a provision of a look-ahead or a roll-

back mechanism. Essentially, there are three basic operations to generalize rules in a

grammar:
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3.3.1 Rule merging

Rule merging operates by merging two category symbols as one, if they are seen to have

identical usage under any context. For instance, consider the case where there are two

rules which are identical except in the occurrence of two category symbols. A simple

example is shown below.

M/Rhinos −→ abc

N/Rhinos −→ abc

In this case, the rule merging operation unifies the two categories in the grammar. This

is done by replacing all occurrences of one, say N, by the other. Thus, the rule merging

operation is a simplistic way of combining word categories, based on overlap in usage.

In a sense, this simple merging model highlights a shortcoming in the generic model,

namely that it is ungrounded in perception and the treatment of meanings as discrete,

atomic concepts leads to a slightly impoverished treatment. A more realistic scenario

would allow merging of category symbols or the categorization of a new meaning to a

symbol, based on perceptual similarities between the meanings that they represent, and

not just observed usage. For example, if the current grammar has a rule like ‘M/Cow −→

cow ’, and a new observation leads to the incorporation of the following rule ‘N/Buffalo

−→ xyz ’ with a new category symbol N, similarity of perceptual features of the meanings

‘Cow’ and ‘Buffalo’ can lead to identification of N as category M. In this case, the category

symbols would be closer to semantic categories, rather than just linguistic units, as in

the current case, and such a model can lead to facilitation of propositional queries based

on first order logic.

Additionally, the rule merging operation ensures deletion of duplicate rules.

3.3.2 Rule chunking

Rule chunking operations are provided to enable the agents to generalize. Essentially, the

chunking operation considers pairs of rules, and looks for the least general generalization
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that could be made, and which still subsumes the rules within prespecified constraints.

The following two examples illustrate the situation.

Example 1:

S/likes(Mary, Gavin) −→ lykesmarygav

S/likes(Mary, John) −→ lykesmaryjon

In this case, there is a lexical as well as a semantic similarity in the two linguistic

examples. Hence, this gets subsumed by replacing the meanings ‘Gavin’ and ‘John’ by

a semantic variable, and by introducing a new category symbol which can represent

‘Gavin’ or ‘John’ by corresponding phonetic subsequences learnt from these examples.

After chunking:

S/likes(Mary, 1) −→ lykesmaryN/1

N/Gavin −→ gav

N/John −→ jon

The original rules are replaced by the above in the agent’s grammar. The new set of

sentences the agent can parse is now a superset of what it could parse previously.

Example 2:

S/knows(Peter, 1) −→ peteknowsA/1

S/knows(Peter, Heather) −→ peteknowsheath

As before there is a co-occurring lexical and semantic similarity, but the mismatch

in this case is between a fully specified terminal and a category symbol. So, the second

rule is treated as an instantiation of the first and is removed from the grammar. At the

same time, the symbol category A is expanded so as to subsume the other rule.

After chunking:

S/knows(Peter, 1) −→ peteknowsA/1
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A/Heather −→ heath

The deliberate mapping of parts of a meaning to parts of phonetic sequences also

denotes an explicit bias of the learning algorithm towards compositionality. More signif-

icantly for our purpose, the rule chunking mechanism provides agents with the power of

generalization.

3.3.3 Generalization

A further important operation is allowed to further assist generalization of rules. When-

ever possible, the induction algorithm tries to simplify rules using smaller rules already

present in the grammar. For example, assume that the following rules are part of an

agent’s grammar at some point.

Example:

S/hates(Gavin, John) −→ petehatzjon

A/John −→ jon

In this case, there exists a smaller rule such that its semantic structure is consistent

with a part of the semantic structure of the first rule. At the same time, the phonetic

sequence corresponding to its meaning occurs as a subsequence in the utterance of the

larger rule. The induction algorithm simplifies the larger rule, while the smaller rule

remains unchanged.

After generalization

S/hates(Gavin, 1) −→ petehatzA/1

A/John −→ jon

These rule subsumption procedures in the induction algorithm are repeatedly called

until the grammar cannot be subsumed further.
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3.3.4 Evaluating Kirby’s stand

At this point, it would be worthwhile to debate Kirby’s claim that compositionality and

recursion are natural artefacts due to pressures of a transmission bottleneck, that emerge

independent of the learning algorithm. It is indeed true that fewer training examples

favour compositional rather than holistic language models and also that linguistic rules

and replicators that are more general and show compositionality are more likely to

persist. However, in this case at least, compositionality and recursion seem to be heavily

favoured by the induction algorithm itself. This is most explicit at two junctures, the

first being the rule subsumption mechanism where the least general generalization is

used to map parts of the semantic space to parts of the signal space. Such a mechanism,

by its very definition, entails compositionality.

Secondly, there is undeniably a strong bias towards compositionality in the invention

mechanism used by speakers. In choosing part of the utterance with the ‘most similar’

meaning as a component in the new signal, the formulation guarantees that the induc-

tion algorithm can generalize due to simulataneous overlap of phonetic and semantic

structure. While the bias seems natural and quite intuitive, the partisan nature of the

induction algorithm means that it can itself be construed as the biologically innate LAD,

that Kirby argues against. Indeed, it is difficult to conceive how Kirby’s claims of natural

emergence of compositionality and recursion might work for a general cognitive model.

Additionally, the formulation makes strong assumptions about a meaning represen-

tation that is already in place, without any suggestions about how such a representation

might evolve. Also, it is not clear how languages would evolve if the meaning space

was differently structured. However, what is undeniable is that the formulation does

replicate complex features of natural languages such as compositionality and recursion,

even if within a limited framework. Still more importantly, as far as we are concerned,

it shows potential for languages adapting and evolving, emergence of competing word

orders, and word categories, such as nouns, verbs and fillers, corresponding to semantic

categories in the internal representations. In terms of investigating these features for

human languages this model is sufficiently powerful, while being tractable since the lin-
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guistic hypothesis of any agent at any point can be recorded conveniently as its grammar

at that point.

3.4 Extension to a population

3.4.1 Single agent runs

In an Iterated Learning setting with a single agent in each generation, the model de-

scribed above develops compositional and occasionally recursive languages over many

generations. Kirby starts with a meaning space with 5 relational concepts each requiring

two distinct arguments, and 5 arguments. The total size of the meaning space is thus

5 × 5 × 4 = 100. Each agent receives only 50 linguistic examples from its parent in its

listening phase. Thus a holistic language can never express more than half the possible

meanings. The progression of the simulation is marked by an initial phase of mostly

holistic rules, and an expanding grammar size. Eventually however, most grammars col-

lapse to about 12 rules, and show compositional structure with clearly identifiable noun

and verb classes. The following graph shows progression of several runs in these settings,

as documented by Kirby.

Figure 3.1: Progression of single agent runs in Kirby model (figure from [1])
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The compositional languages are marked by a smaller size of I-language (fewer rules),

and higher expressivity in the E-language(more conveyable meanings). Most simulation

runs reach compositional languages relatively quickly (generally within 20 generations).

Figure 3.2: Example of an emergent grammar from a single agent population

However, even with a single agent, the stochastic nature of the meaning generation,

and the random string generator can lead to different convergence times for different

runs 4.

3.4.2 Multiple agents and probabilistic production

The above-mentioned model,as proposed by Kirby, is restricted in several ways. Most

significantly, the rudimentary ILM suffers from an impoverished treatment of population

dynamics. Realistic populations consist of relatively large communities of agents. Mul-

tiplicity of meaning-to-signal mappings within a single agent, as well as and the variety

of interactions due to a significant population can lead to significantly different language

acquisition compared to learning from a single parent. Secondly, agents in a population

dont interact uniformly, i.e. social networks are not homogenous. As surveyed in Section

4In our runs, several simulations reached convergence after a couple of hundred generations. In the

graph shown, one of the runs (which has a larger grammar size at the end of the simulation than others)

reaches a stable grammar after several thousand generations.
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1, the structure of social topology can significantly affect the acquisition and evolution of

language. Investigating heteregeneous populations can afford intriguing scenarios such

as multiple prevalent linguistic hypothesis in a community, and a simultaneous existence

of overlapping yet distinct linguistic behaviours. We seek to extend the basic ILM to

more realistic population sizes and structures.

3.4.2.1 Population model

In the extended model, let us suppose there are N niches in a social community. Each

niche is inhabited by two agents : a parent (belonging to generation i) and a child

(belonging to generation i + 1). However, a listener can receive its linguistic input not

just from its parent, but from several speakers in the previous generation. This is dictated

by the social topology, which imposes a distribution for communication for each agent.

In general, the distribution is not uniform, i.e. each agent is more likely to communicate

with some agents than others. Let pk denote the distribution for the kth agent, where

the jth component of the pmf denotes the probability of the agent interacting with the

jth agent of the previous generation, when acting as listener.

The simulation still follows an Iterative setting, and there is a turnover of the entire

population after each agent has received the specified number n(50) of linguistic examples

for induction. The following procedure illustrates the simulation process in a population

with N agents in each generation.

proc PopulationSimulation(start_gen,end_gen, n, N, P);

//P is a N*N matrix with the i th row equal to p_i.

//n is the number of training interactions for each agent in a generation.

for i=start_gen:end_gen{

//For each generation:

parent_gen= i;

child_gen= i+1;
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for j=1:N{

//Each agent acquires linguistic input consisting of n examples.

for k =1:n/m{

//m is number of linguistic examples in a basic unit of interaction.

Sample a number l from the set [1,2,...N] from distribution p_j.

//Agent l interacts with Agent j

Interact(l_{i}, j_{i+1}, m);

}

}

}

In our experiments, we represent different social communities as graphs. A node

denotes a social niche, and an edge from one node to another signifies that an agent

from one node can listen to or speak to an agent on the other node. All nodes are taken

to be self-connected (edge not shown) indicating that a child can always learn from its

biological parent. The following simple graph illustrates the situation.

Figure 3.3: Graphical representation of a social community.

Here, a listener at position 2 for example ,receives on an average 1
3

rd
of its linguistic

input from interactions with its mature parent at node 2, 1
3

rd
with a speaker at node 1,

and the remaining 1
3

rd
from interaction with the mature agent at node 3.
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3.4.2.2 Production model

A more subtle nuance that is seemingly hidden in Kirby’s simulations is the issue of

deterministic production. In Kirby’s world, speakers use the same meaning-to-signal

mapping to convey meanings. Even if an agent’s grammar allows for several ways to

produce a meaning, the same utterance is always used in the speaking process. 5 A pos-

sible treatment would be to maintain several competing production mechanisms to con-

vey a meaning, and choose the mechanism for production probabilistically from among

these. The components of the probability mass function could be functions of some

fitness function of the production mechanisms, such as the probability of an utterance

produced from the mechanism of being understood by a listener. Alternative fitness

functions could target simplicity of the signal produced , or the number of rules involved

in the production (limiting production cost).

Within the Iterated Learning setting however, all interactions are between fully devel-

oped speakers and listeners whose linguistic hypothesis are still nascent. Since listeners

always start with blank grammars, no production mechanism can possibly show much

success, other than by chance. In such a scenario, weighting a production mechanism

on the basis of communicative success doesn’t make sense, though it would be the nat-

ural choice if the interactions were primarily horizontal. Instead, we weight competing

hypothesis on the basis of signal simplicity. As we shall see in the next section, in

fact, a bias towards shorter productions is required by the model to entertain multiple

hypotheses.

3.4.3 Word length and the issue with multiple hypotheses

The induction algorithms described previously allow the length of phonetic utterances

to increase as linguistic evolution proceeds. This is because the greedy nature of the

induction algorithms can lead to inappropriate generalizations, but in the absence of a

roll back mechanism, the generalization can only be corrected through future subsump-

5Kirby does this by imposing an ordering on the rules of a grammar, and always using the first set

of rules the speaking algorithm can find, which can produce the intended meaning.
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Parent 1 Parent 2

S/likes(Mary, 1) −→ marylykA/1 S/likes(Mary, Gavin) −→ avn

A/Pete −→ pete S/hates(Pete, Gavin) −→ petehatzgav

A/John −→ jon

A/Heather −→ heath

tions. This process can potentially lead to monotonic increments in word size, which can

disappear only through stochastic non-transmission or word-chunking.

The following examples illustrate the possibility:

Child:

Input examples:

S/likes(Mary, John) −→ marylykjon (from Parent 1)

S/likes(Mary, Gavin) −→ avn (from Parent 2)

Inductions made:

S/likes(Mary, 1) −→ A/1n

A/John −→ marylykjo

A/Gavin −→ av

Here, the child learns from two parents, one of whom shows compositional production

similar to English. However, due to a coincidental match between the single phoneme

‘n’ in jon and abn; the child learns a longer signal marylykjo for the meaning ‘John’,

than its parents. The situation can be further aggravated if the child now hears ‘S

/hates(Pete, Gavin) −→ petehatzgav ’ as an example from Parent 2. Since the child has

a rule A/Gavin −→ av, whose semantic and phonetic components are both present in

this example, the generalization procedure operates to give the grammar of the child

agent the following form:
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S/likes(Mary, 1) −→ A/1n

A/John −→ marylykjo

A/Gavin −→ av

S/hates( Pete, 1) −→ petehatzgA/1

Now, if the child is to produce the meaning ‘hates(Pete, John)’, the produced utter-

ance is the sesquipedalian petehatzgmarylykjo. Subsequently, if the listener for the child

has a rule such as ‘M/John −→ j ’, the generalization procedure will again operate to

form a production mechanism ‘S/hates( Pete, 1) −→ petehatzgmarylykM/1o’; making

possible further expansion of sentence length.

Rules once expanded are usually persistent, and can only be truncated occasionally

by chunking, or die out stochastically due to non-transmission. It must be noted that the

catalyst for the expansion is usually inconsistent input, which is due to the presence of

two distinct sources of linguistic input in the case here. The probability of making such

inappropriate generalizations would increase with an increase in the number of linguistic

hypotheses an agent is exposed to.

On the other hand, if an agent is exposed to consistent linguistic examples, such as

from a single source (as in the basic ILM), the nature of the invention algorithm almost

certainly precludes an explosion in word length. Interestingly, the scenario of extending

the basic ILM to a population and having a probabilistic production mechanism both

imply exposure of a listener to multiple linguistic behaviours, and at times inconsistent

training examples. Thus, issue of occasional increases in word length will arise especially

for larger populations.

In isolation the issue may seem no more than a practical inconvenience, but in context

of the simulation it violates practical constraints such as limited memory and processing

power in agents, suggesting that these physical constraints need to be specified within the

system. Moreover, the notion of unlimited word length is unnatural and non-intuitive,

as it goes against the general principle of least effort. Thus, it would seem that it is not

only convenient for tractability, but natural to impose a bias against long utterances;
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since the least effort principle is innately embedded in all biological systems.

3.4.4 Zipf’s law, bias for brevity and memory constraints

As discussed earlier, the induction and production models need realistic constraints such

as limited memory and processing speed, as also a bias towards the least effort paradigm.

Here we discuss possible mechanisms which can achieve the same.

3.4.4.1 Zipf’s law

In the context of word-lengths and word-frequencies, several mathematical formulations

have been proposed, as well as empirically corroborated in both natural languages as

well as random text. Most of these approaches, more or less, adhere to a general Zipf’s

like relationship [43, 42].

In our formulation, let us assume that the frequency of usage of a word and its length

are functionally related. Let y be the length of all words having frequency x. The Zipfian

assumption is that the relative rate of increase of word length is directly proportional to

the relative change in word frequency. In other words,

dy

y
= −γdx

x
(3.1)

⇒ y = kx−γ (3.2)

Hence, x is of the form

x = Ay−B (3.3)

Hence, the frequency of occurrence of a word is inversely proportinonal to the Bth

power of its length. Now, the probability of finding a word is directly proportional to its

frequency. Hence, the probability p(y) of finding a word will have a similar form.

p(y) ∝ y−B (3.4)
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The value of B has been empirically measured by several studies. The value of B

is theoretically a positive constant greater than unity. For most natural languages, the

value is between 1 and 2 (According to Strauss et al. [44], the value is around 1.04 for

the Russian text of ‘Anna Karenina’, 1.20 for the original English rendition of ‘Portrait

of a Lady’, and 1.98 for the German ‘Hansel and Gretel’. Only for two Slovenian and

Indonesian texts in his study is the value larger than 2 ). 6

The motivation behind following this derivation is that these Zipfian probabilities can

be used as the fitness function to choose signals when several mechanisms can produce

the meaning. The probabilities of occurrence of signals of different lengths follows the

form shown in Equation 3.4

Hence, the relative probabilities of using different possible signals can be calculated

simply by considering all possible signals, and normalizing by summing all probabilities

to 1. Using this mechanism, longer signals are penalized and there is a bias towards

signal brevity. For example, suppose that the value of B is 2 , and the meaning to be

conveyed can be generated by three mechanisms which produce signals of one, two and

three phoneme lengths. Thus, the probabilities of these three mechanisms being used

are in the ratio 1
12

: 1
22

: 1
32

, and the components of the probability mass function can be

calculated to be 36
49 , 9

49 and 4
49 .

In our simulations, we used intermediate values of B, and found that signal growth

can only be avoided for values of B greater than 3. When the value is lower, the

bias is insufficient to prevent growth in signal length. However, with a sufficient value

of B, unnecessary signal-growth, as well as non-compositional islands in the resulting

grammars are usually avoided.

6The value is in the same generic range,but closer to 1, even for the classical interpretation of Zipf’s

law as relating word frequency and its rank in a text corpus, which follows a similar derivation. In fact,

this is found to be true not just for natural languages, but also random English text.
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3.4.4.2 Truncation

Another heuristic to constrain memory usage, and assist in containing word length in

case of large populations is to enforce a maximum size of word length that a terminal

meaning can expand to (In this study, this was kept at four). If the terminal mapping

gets excessively complicated, and the size of a terminal word expands to greater than the

limit, it is automatically shortened by a deterministic approach which always shortens

the name to only its first four phonemes. For example, the rule ‘M/Mary −→ marianne’

in the grammar gets replaced by ‘A/Mary −→ mari ’. This can be considered as a

policy akin to promoting nick-names to avoid remembering longer mappings. Crucially,

the nickname is adopted by deterministic procedure meaning that the issue of global

consensus on renaming is avoided through this approach.

However, truncation can frequently result in loss of information, due to which con-

vergence may be delayed for long periods of time. In our simulations, this heuristic failed

to work for large population sizes.

3.4.4.3 Shortest production

This is the simplest approach to choosing shorter signals in a population of agents. In

this approach, the signal production process simply chooses the smallest possible signal

at each step of the production process, effectively choosing the production mechanism

which produces the shortest signal. This simple bias adequately avoids increase in word

length even with large population sizes. However, this defeats the goal of probabilistic

production, since only one signal gets chosen every time to convey a meaning, as in case

of the basic ILM. As expected, simulations following this approach normally converge

the fastest, due to exposure to fewer linguistic behaviour.

The Zipf’s law production mechanism approximately tends to this simplistic mecha-

nism in the limit of B increasing to large values. However, if there are two signals with

the shortest length, the Zipf production mechanism is equi-likely to choose both, and

thus can never be completely deterministic.
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3.5 Social Topologies

We explore the model on several different types of topologies. Namely, the following

types of networks are investigated:

1. Fully connected topology

2. Random graphs

3. Loosely connected components

4. Linear topology

5. Ring topology

6. Social graphs

We observe the effect of social structure on language acquisition through both individ-

ual and population-level statistics. These parameters include rate of convergence, sizes

of grammars (number of production rules), expressivity (fraction of the entire meaning

space which can be conveyed by an agent’s grammar), global coherence (average com-

munication accuracy between two randomly picked agents in a population) and local

coherence, which measures average communicative accuracy between an agent and its

immediate neighbours. The meaning and significance of these performance measures is

explained in the next chapter.
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Chapter 4

Results

In this chapter, we present results of the experiments conducted, and attempt to analyze

and interpret them. All simulations are run upto 500 generations, and repeated to verify

convergence.

4.1 Performance measures

In our simulations, we use the following terminology for evaluating agents’ languages:

• Grammar size: This measures the size of the I-language for an agent, and is

simply the number of production rules in the grammar. Typically, compositional

grammars have a smaller number of rules than non-compositional ones. However,

compositional grammars may be larger when an agent holds multiple conflicting

hypotheses, for example an agent that has to interact with speakers of two mutually

distinct languages.

• Expressivity: This value signifies the fraction of the entire meaning space which

can be conveyed by an agent’s grammar at a give point.

If this value is low, it suggests that the agent usually has to invent new words

to communicate. It also implies that the agent cannot parse signals for most

meanings. If this value is high (close to 1), it suggests that the linguistic system

41



of the agent can always produce a signal for a meaning. However, it does not

guarantee that listeners would be able to parse these signals, i.e. expressivity does

not imply communicative accuracy.

• Global coherence: This value signifies the average communication accuracy be-

tween any two randomly picked agents in a community. Thus it is a feature of an

entire population, rather than any individual agent. A high value indicates that

the language is homogenous throughout the entire community.

• Average local coherence: This signifies the average communicative accuracy

between an agent and its immediate neighbours. This is a more realistic indicator

of communicative accuracy since agents in the model react with socially adjacent

agents. The value of global coherence can be low even if local coherence is high

due to continuous but changing face of language in the social/geographical fabric.

• Convergence time: This is simply the number of generations after which average

grammar size and global coherence don’t change by more than a threshold.

4.2 Fully connected topology

Figure 4.1: Fully connected networks

This is the most basic population model, where all speakers can interact with all listeners.

In this case, in a community of N nodes (N agents per generation) a listener, on an

average, receives 1
N

th
of its linguistic input from each speaker in the previous generation.
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We observe that the our model does , in fact, quite successfully extend the basic iterated

learning model to community scenarios. In fact, highly structured, compositional and as

well as coherent languages are seen to emerge in the communities.

Figure 4.2: Example of an emergent grammar from population of size 6

N Mean Grammar Size Mean Expressivity Coherence Convergence(generations)

1 11.0 1.00 1.00 20.3

2 12.3 1.00 0.92 42.7

3 12.3 0.92 0.87 55.3

4 11.7 1.00 0.91 72.0

5 11.3 1.00 0.81 134.7

6 12.0 0.92 0.77 184.0

7 68.7 0.70 0.24 —

Table 4.1: Results for fully connected networks

We observe the effect of increasing population size on linguistic evolution, and note

that for all runs on small population sizes, the grammars that emerge always show almost

complete expressivity, compositionality and high values of intra-generational coherence.

However, the convergence time increases with the number of nodes in the clique, and the

communities fail to reach coherent linguistic systems beyond a certain population size.

In the present forumulation this limit is reached with a community size of 6.
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Figure 4.3: Effect of population size on convergence

The failure of large cliques to converge may be because each listener has N sources

from where it receives its primary linguistic input (PLI). However, the total amount

of information it receives is fixed. If there are too many different sources of linguistic

examples, there would be too few examples from any individual linguistic system, and

the learner would be hard pressed to find similarities to generalize. In fact, such a learner

would never move beyond purely holistic mappings. For a child agent to generalize from

multiple existing linguistic systems, there must be adequate representative examples

from each. Thus, the result from this experiment is quite intuitive, since it simply states

that for effective linguistic acquisition there must not be too many teachers.

4.3 Random graphs

As just seen, our induction algorithm (quite realistically) fails to lead to structured

languages if PLI for an agent comes from too many distinct sources. At first sight,

this suggests a problem in extending the model to large populations. Real world social

topologies, however, do not resemble fully connected cliques. In fact, the number of

linguistic sources for any learner is far fewer than N .

We can more accurately simulate real word topologies by replicating our experiments
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on random graphs, where the average degree of the graph gives us a handle on the

number of linguistic sources that an average agent in the community learns from. We

vary this value between 1 and 5, since experiments with a fully connected network

already suggested that 6 linguistic sources are too many. For our simulation, we choose

a community size of 10 nodes.

We construct the graph by considering all pairs of nodes, and add an edge to each

pair selected from a uniform distribution. Note that there is always an edge between

a node and itself to start with, indicating that the lineal bond between a parent and

its child is always present. We add additional edges till we reach the required value of

average degree. Figure 4.4 shows a representative graph used for the simulation.

Figure 4.4: Representative sample of a synthetic random graph

Results of the runs for five random graphs of different degrees are summarized in Table

4.2. Most significantly, reducing the number of linguistic sources leads to the emer-

gence of structured and compositional languages in this larger population (10 agents per

generation), and possibly suggests a key to scaling the extended model to even larger

populations (as we shall see in the section on real world networks).

The crux of the approach is that while the community population maybe large, each

agent gets its linguistic input from relatively few sources, such that the data from each
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Avg Degree d Avg Grammar Size Avg Expressivity Global Coherence Local coherence

0.0 11.5 1.00 0.09 1.00

1.6 16.9 1.00 0.65 0.95

2.0 19.1 1.00 0.81 0.91

3.4 24.3 0.97 0.54 0.87

4.4 32.7 1.00 0.29 0.54

Table 4.2: Results for random networks

individual source is adequate to make generalizations. While it could be worthwhile to

explore whether increasing exposure in the homogenous case would lead to convergence;

in reality, the amount of primary linguistic input can be assumed to be approximately

constant, which would need to be shared in case of multiple linguistic parents.

An observation of note here is the difference between the global and average local

coherence (This is a departure from homogenous topologies, where the two, by definition,

are the same). In this case, while local interactions lead to emergence of significant global

coherence; there can be loosely connected features such as small length chains or sub-

communities (due to random nature of the social graph) that are relatively isolated

(especially for low degree random graphs), and can develop local linguistic traits such as

word-orders not prevalent elsewhere in the community. 1 This is a generic feature of non-

homogenous networks, since heterogeneity allows for different parts of the community

to develop local non-overlapping traits incomprehensible to agents from other parts of

the community. For higher degree graphs, the difference between the global and local

connectivity is expected to be less significant, as the random graph approaches full

connectivity (Figure 4.5).

The runs with different values of the average degree lead to a more interesting obser-

vation. In the first case,(d = 0), the social graph consists of isolated nodes and listeners

only learn from their parents at the same node. Figure 4.5 suggests that there is an

1In this sense, we look at random graphs as a first approximation to social netweorks. However,

random graphs lack characteristics of social networks such as small-worldness and scale-freeness.
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Figure 4.5: Effect of average degree on grammar size and coherence

optimum level of diversity of linguistic sources that an agent should have for a globally

coherent language to develop most effectively and quickly. An agent with too many

linguistic sources finds it hard to generalize; and takes a long time to converge. On the

other hand, with too few teachers, there is too little variety in exposure; the language

learnt is primarily lineal; and is not useful for social interaction outside the family, as

indicated by the low global coherence. In fact, this situation is akin to each family having

a language of its own, and no significant community language as such.

The intermediate sweet-spot indicates a situation where the number of sources is not

too high as not to be easily generalizable, while at the same time a learner is exposed to

a variety of prevalent linguistic behaviours. In this scenario, a coherent global language

evolves in the community.

4.4 Chain topologies

4.4.1 Linear topology

Figure 4.6: Linear topology
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This social topology is shown in the Figure 4.6. The community size is 10 (10 agents

in each generation), which forms a chain where each node has two neighbours. Thus,

a listener receives its linguistic input from three agents, namely its biological parent

(resident at the same node) and speakers from the two adjacent nodes. However, listeners

at end nodes have only two linguistic sources.

In this case as well, compositional structures emerge , and emergent languages show

high communicative potential between neighbours. However, the linguistic hypotheses

show a dynamic continuum with respect to topology, and languages at both ends of the

chain are widely disparate, with only marginally overlapping vocabulary. The spatial

change is exhibited in Figure 4.7, which plots average intra-generational communicative

accuracies of Agents at nodes 2 to 10, with the agent at the first node, at the end of

one particular simulation run. In all cases, the graph followed a very similar pattern.

Results in Table 4.3 are averages for three different runs.

Avg Grammar Size Avg Expressivity Global Coherence Local coherence

22.9 0.94 0.54 0.87

Table 4.3: Results for linear topography

Communicative coherence decreases steadily as social distance increases, and soon

dips to near zero-level. However, as seen in the table, local coherence between any two

neighbours is high. The situation is not unlike regional dialects of a natural language;

where geographically closer regions share more features, while the same language at a

distant locale might take an entirely different form. This is true for instance in the case

of English in the British Isles, where from North to South the language shows strong

Gallic, Scottish and traditional British features in both syntax and diction.

48



Figure 4.7: Graph of coherence vs social distance in linear topology

Figure 4.8: Ring topology

4.4.2 Ring topology

The ring is similar to the linear topology, except that the end points are connected

with each other. While the language changes as we move spatially, there is smooth

metamorphosis underlying high local coherence. Thus any two agents at opposite ends

of the ring are almost mutually unintelligible.

Avg Grammar Size Avg Expressivity Global Coherence Local coherence

20.9 1.00 0.67 0.84

Table 4.4: Results for ring topography
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Figure 4.9: Graph of coherence vs social distance for Agent 1

4.5 Weakly connected subgraphs

Figure 4.10: Weakly connected communities

The context of this population structure is of a social structure of size N divided into

two communities. Agents mostly interact within their own community, but with a small

probability p, they occasionally interact with a random member from the external com-

munity . In our runs, N equals 10 and each smaller community is a random graph of

size 5. In 3 separate runs of this experiment, the value of p is varied between 0.0 and

0.5. Average results of the simulations are summarized in the table below.
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p Coherence in Community 1 Coherence in Community 2 Global coherence

0.1 0.83 0.80 0.41

0.2 0.81 0.84 0.43

0.3 0.84 0.80 0.49

0.4 0.84 0.79 0.76

0.5 0.79 0.85 0.82

Table 4.5: Results for two weakly connected communities

Figure 4.11: Effect of community inter-communication on coherence

Both communities develop strongly compositional and largely coherent languages

within communities. Inter community coherence increases with the value of p. Since the

two communities are equal in size, if the value of p is close to 0.5, the agents are interacting

outside the community exactly as much as they would if there was no distinction between

communities, and hence we expect no distinction in language of the two communities.

On the other hand, when p is close to 0, there is effectively no interaction between the

communities, and we expect the two languages to evolve independently.

However, the interesting observation in this case is that the pattern suggests an

intermediate value of p, after which global coherence increases quickly. A study of the

grammar-productions of individual agents showed that for values of p greater than this

threshold, the dominant word order in both communities always becomes the same.
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4.6 Real World networks

While we have attempted to simulate realistic models of population through several

topologies, and have in some measure succeeded in extending our model to realistic

community sizes, the endeavour would be very much incomplete without testing the

formulation on real world social graphs. Real world graphs exhibit several interesting

phenomenon such as the small world property(small shortest distance between any two

nodes), an adherence to a Power law in degree distribution, scale-freeness (exhibiting

similar structure at all resolutions), high clustering coefficients, and the presence of

community structure; that are hard to replicate in synthetic graphs.

Moreover, these networks are typically considerably larger than the communities we

have experimented with till now. In this section, we present results of our simulations

on two well known real world social networks. 2

4.6.1 Krackhardt Office CSS

This network, where edge relations denote friendship, was compiled by David Krack-

hardt. The data consists of social structure data, collected from 21 management per-

sonnel in a high-tech, machine manufacturing firm. The data was collected to study the

effect of an intervention strategy by the firm management. Each person in the survey

was asked for every person X in the office:‘Who is a friend of X?’ Thus, every person re-

vealed his or her friendship relationships, and perceived friendship relationships between

others.

For our study, we take the input given by each person, which consists of a 21 × 21

2The power law distribution of degrees implies that some nodes in large graphs have very high degrees

(> 15). Agents at these nodes would have difficulty in making generalizations, because of too many

linguistic sources. For these nodes, the language game is modified to constrain linguistic input from

5 randomly selected neighbours (since 6 was the maximum feasible number of linguistic sources for a

listener in a fully connected topology). However, the chosen neighbours can differ for every new listener

to ensure that the structure of the topology is respected.

Additionally, we have used graph datasets where the structure is not extreme in this sense, and high-

degree nodes are relatively few.
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matrix A, where a non-zero entry for Aij signifies that person j was perceived to be a

friend of person i . We take a majority decision on the friendship relations. An edge is

considered to be present if a majority of the 21 participants (11 persons) perceive the

friendship relation to exist. Also, self edges are added for every node, as before.

Figure 4.12: Krackhardt’s Office Cognitive Social Structure (figure from [46])

Next we generalize the given data such that if X is a friend of Y, then Y is a friend of

X. This yields a symmetric adjacency matrix, with more than a hundred edge relations.

The consensus structure so obtained (shown in Figure 4.12) is used for the language

simulation.

4.6.2 Zachary Karate network

The Zachary Karate club data is a famous social network showing friendship relations

between 34 members of a university Karate club. Wayne Zachary (1977) used the data

and a conflict resolution model to explain polarization in the group following a dispute.

The data is already in form of an undirected graph, with 78 edge relations between the

nodes.

4.6.3 Results

Three simulation runs were made on both networks upto 1000 generations. In both cases,

some general trends were noteworthy. Most significantly, the large majority of agents

developed small stable compositional grammars (around 15 production rules). In spite
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Figure 4.13: Topology of Zachary Karate club network

of the large populations, the networks developed relatively effective languages, as seen

by the high average value of local coherence.

However, if agents were allowed to interact with all neighbours, agents with larger

number of sources (hubs, such as Node 33 of the Zachary network) showed very large

grammars (>40 rules of production), including a few holistic mappings. These nodes also

exhibit relatively lower values of local coherence, as expected due to excessive linguistic

variety at these nodes.

Avg Grammar Size Avg Expressivity Global Coherence Local coherence

19.8 0.96 0.63 0.82

Table 4.6: Results for the Krackhardt Cognitive Social Structure

Avg Grammar Size Avg Expressivity Global Coherence Local coherence

16.4 1.00 0.55 0.86

Table 4.7: Results for Zachary Karate Network

A closer investigation of the individual grammars reveals several interesting proper-

ties. Table 4.8 gives an individual analysis of agents’ grammars in the Zachary Karate
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network for one particular interesting run. While the table shows that all nodes eventu-

ally reach relatively compositional languages, it also suggests some non-trivial observa-

tions.

While the SOV and SVO word orders become prevalent ubiquitously throughout

the community, the appearanace of OVS and VSO type productions shows a clustering

within the community. This is apparent in Figure 4.14 showing the spatial emergence

of these two word orders in the community graph. There is a clearly an OVS speaking

community to the east of the graph, whereas there is also a community exhibiting the

VSO order located more to the west. The fringes are largely untouched by these linguistic

features.

Figure 4.14: Emergence of two word orders in Zachary Karate club network

We also note that there is a partial overlap in the two communities, and Node 3

and Node 9 show developed compositional production rules with both OVS and VSO

word forms. Consequently, these nodes also have slightly larger grammars than their

immediate neighbours.
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Agent Grammar Size Expressivity Preferred word order

1 14 1.00 SOV,SVO,OVS

2 13 1.00 SVO,OVS

3 17 1.00 SVO,SOV,OVS,VSO

4 16 1.00 SVO,SOV,OVS

5 13 1.00 SVO,SOV

6 13 1.00 SVO,SOV

7 13 1.00 SVO,SOV

8 14 1.00 SVO,OVS

9 19 1.00 SVO,SOV,OVS,VSO

10 17 1.00 SVO,VSO,SOV

11 12 1.00 SVO,SOV,OVS

12 11 1.00 SVO

13 12 1.00 SVO,SOV,OVS

14 14 1.00 SVO,SOV,VSO

15 23 1.00 SVO,SOV,OSV

16 19 1.00 SOV,SVO,OVS

17 11 1.00 SOV

18 12 1.00 SVO,SOV,OVS

19 15 1.00 SVO,SOV,VOS

20 15 1.00 SOV,OVS,SVO

21 18 1.00 SOV,SVO

22 11 1.00 SVO

23 16 1.00 SVO,SOV,OSV

24 25 1.00 SOV,SVO,OSV

25 19 1.00 SVO,VSO,SOV

In fact, these nodes represent overlap between two natural communities in the Zachary
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Agent Grammar Size Expressivity Preferred word order

26 20 1.00 SVO,SOV,VSO

27 19 1.00 SVO,VSO,SOV

28 21 1.00 SVO,SOV

29 15 1.00 SVO,VSO,SOV

30 22 1.00 SOV,SVO

31 18 1.00 SOV,SVO,VSO,OSV

32 23 1.00 SOV,SVO,OSV,VSO

33 28 1.00 SVO,VSO,SOV,OSV

34 27 1.00 SVO,SOV,OSV,VSO

Table 4.8: Individual agent results for Zachary Karate Network

network. As discussed earlier, the Zachary network was documented with a polarization

of agents into two communities supporting the manager and the coach of the club re-

spectively. This is shown in Figure 4.15. Since this is a rare case where ground-truth is

conclusively known, the Zachary network has been widely studied in works on overlap-

ping communities. As is clear from Figures 4.14 and 4.15, the particular run remarkably

shows almost the same cluster boundaries as the ground truth on polarization. 3

In fact, a seminal community overlap algorithm by Wang et al identifies nodes 3, 9

and 10 as the overlap between communities. Our set of nodes showing both prevalent

word orders is contained within this. However, the social network used in the simulation

is not identical to Zachary’s graph, since we add self edges to all nodes to ensure lineal

descendence of language traits.

The basic observation still is that a community to the right follows OVS type word

productions, while VSO type productions are restricted within a community of the left.

The identified set of nodes forms the interface between the two communities, serving to

transfer linguistic behaviour from one community to the other, and at the same time

3While there was some level of polarization in two of three simulation runs on the Zachary network,

in the other case the effect was not as distinct and remarkable.
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Figure 4.15: Ground truth for Zachary Karate club network

needing to comprehend both word orders. These boundary-nodes hence seem to be

linguistically crucial, since they represent a transfer from one language form to another.

Still more significantly, the observation underscores the role that physical topology

plays in language evolution. In this case, a non-trivial partition in the physical structure

of the graph acts as a seed to bifurcate linguistic behaviour, and eventually leads to the

development of two distinct language forms, rather than a single one.

In conclusion, the experiment suggests that the induction model is generalizable to

realistic social graphs with a large number of agents, provided the degree of most vertices

is not high . The suggested corrective heuristic in the language game is seen to avoid

the problem due to the power law property, and agents at nodes with high degrees show

similar levels of compositionality as other nodes. Secondly, the structure of the social

graph that determines relative interactions of agents can be crucial in creating linguistic

divergence.
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Chapter 5

Conclusion and Future work

5.1 Conclusion

In this thesis, we have extended an inductive learning model proposed by Kirby to real-

istic populations and social structures. We have developed a framework where multiple

agents can interact in an iterated learning setting, and each agent can receive its pri-

mary linguistic input from a set of speakers according to a distribution specified by the

existing social topology. We also try to extend the deterministic production model to

a probabilistic one. In doing so, we have identified how scenarios maintaining multiple

distinct hypotheses can lead to the problem of increasing word size due to the greedy

nature of the induction algorithm, and have identified the need to impose physical con-

straints on memory and processing power. We have suggested how a bias towards brevity

can be used as a fitness function for the probabilistic production model, using a Zipfian

approach.

An investigation of the extended model on different social topologies led to several

insights. It was observed that coherent language develops most effectively in communities

that are well connected, but when learners do not get their primary linguistic data

from too many sources. This observation led to an extension of the approach to large

population sizes. While most simulations on language have focused on the evolution of a

coherent lexicon, the current model shows promise in incorporating several aspects such
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as syntax and context-dependency at a population level. In chain-like topologies where

average shortest distance between two randomly picked nodes is large, the model showed

continuous change through the social fabric, while exhibiting local coherence. The model

was also extended to real world social networks, leading to interesting observations,

and vindicating the significance of social topology in guiding the course of language

development.

However, the greedy generalization built into the induction algorithm leads to in-

evitable problems in scenarios of probabilistic production, unless restricted with a heavy

bias. A heavy bias, on the other hand, partly defeats the purpose of having a probabilis-

tic production in first place. Also, while compositional grammars develop in population

scenarios, grammars are not as concise for all agents, as in the case of a single agent

population. Occasionally, an agent’s grammar does not converge (reduce further in size)

after becoming fairly compositional. Also, the induction mechanism frequently leads to

production rules developing non-compositional islands, especially in intermediate gener-

ations.

5.2 Future work

The suggested framework shows promising directions to investigate the development

of simple syntax in communities. In simulations in this study, social networks and the

interactions they led to were symmetric. The possibility of asymmetric interactions needs

to be be investigated. Such a situation may happen due to differences in agents such as

social rank, status, age and gender. Within the same framework, it would be worthwhile

to investigate the effect of a ubiquitous speaker, which can act as a normalizing agent,

similar to the TV or media. Lastly, while we considered scenarios of co-development in

two communities, scenarios of evolution of language in merging of two communities can

also be studied in the framework.

The framework can also be extended from being purely iterative to a more generic

model by adding intermediate stages to the life of an agent. In this way, horizontal
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interactions can be accommodated in an incremental manner.

The induction mechanism may also be modified to accommodate look-ahead and

roll-back mechanisms, and avoid problems of accidental incorrect generalizations. Al-

ternatively, improvements in the induction mechanism could involve moving from the

current greedy mechanism of hypothesis selection (as opposed to the MDL mechanism

proposed by Brighton), which is in the flavour of genetic algorithms, towards more con-

crete mathematical formulations based on optimization approaches.

Finally, to reduce the length of simulation runs we only use meanings with a single

relation and two arguments, although the framework allows for more complex meanings.

It is worth knowing whether the same behaviour is seen with larger meanings and larger

meaning spaces.
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