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Motivation Scalable Learning
Hierarchies are ubiquitous — Yahoo! Directory, Open Directory Project for webpages, | A. Variational Inference: Computationally intensive due to matrix inversions.
International patent taxonomy for patents etc. How to classify incoming data into an Applicable for small-scale data with hundreds of features and classes.
existing hierarchy. Specifically, B. Partial MAP Inference: The computationally intensive part can be substituted
1. How to leverage the hierarchical dependencies between class-labels to improve with an MLE estimation followed by a MAP approximation for the posterior.
classification ? argmaxyE[log P(D|W,a)P(W, a)]
2. Howto doitin a scalable manner for hierarchies with thousands of classes ? Applicable for large-scale data with several hundreds of classes and tens of
thousands of features.
Hierarchical Bayesian Modeling C. Parallel Partial MAP Inference: By replacing the soft-max function with multiple
binary logistic functions, the MLE estimation can be parallelized by optimizing
A hierarchical Bayesian model where the prior Root the parameters at odd (red) and even (blue) levels in parallel. Applicable to very
distribution for the parameters at a node is a Gaussian W,, 2 large-scale data with tens of thousands of classes and millions of features.
centered at the parameters of its parent node. Given

training data D = {x;,t;}/5{', a parent function 7, nodes ‘Science Recreation Setting Prior Parameters
A data dependent way to set prior parameter based on asymptotic covariance of
Wy | Weny Zriy ~ N(Way) Zriy)) P Y PHOT'D ymp

t; | x; ~ Multinomial(softmax(W, x)) the MLE estimator i.e. Fisher Information matrix. For class-label y, the Fisher
Sports Autos | |nformation is given by,
Modeling the covariance structures gives different Wa S Z
3, 23 Wy, 24 I = x)(1 — x))xxT!
ways of sharing information in the hierarchy. ) pLy )( pLy ))
— . \ Set the priors a,, b,, to be the observed | (y)~?! from the data. For example, for
MODEL M1 : Node-specific covariance parameter. _1
1 Model M2, a,,= 1, by,=I(y)™".
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MODEL M2 : Feature-specific covariance. Sub-topics baseball and Hockey might be |s15 60 1000 -
similar along features like ‘players’, ‘Game’ but dissimilar along puck’, pitch’ etc. 808_; ) N 575'2 100 -
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MODEL M3 : Learns how the individual children nodes differ from the parent node. 85 B M1-map
For e.g under a topic mammals’, the subtopic ‘whales’ is very distinct the other 75 B M2-map
typical subtopics like ‘carnivores’, ‘herbivores’. 65 % M3-map
55 - B Hierarchical SVM
Wy ‘ Wrc(y): Zy ~ N( Wn(y): Zy) 45 M Orthogonal Transfer
2—1 = .l e . l - - B Top-down SVM
3/( , 3)’ e B l - W Binary Log-reg
a., ~ I'la ) Vy : - ~ m Multiclass Log-reg
y Y=y 15 - l l l - - w Binary SVM
CLEF NEWS20 LSHTC-small LSHTC-large IPC ® Multiclass SVM




