

Bayesian models for Large-scale Hierarchical Classification

Siddharth Gopal*, Yiming Yang*, Bing Bai†, Alexandru Niculescu-Mizil†

*Carnegie Mellon University †NEC Labs, Princeton

Motivation

Hierarchies are ubiquitous – Yahoo! Directory, Open Directory Project for webpages, International patent taxonomy for patents etc. How to classify incoming data into an existing hierarchy. Specifically,

1. How to leverage the hierarchical dependencies between class-labels to improve classification ?
2. How to do it in a scalable manner for hierarchies with thousands of classes ?

Hierarchical Bayesian Modeling

A hierarchical Bayesian model where the prior distribution for the parameters at a node is a Gaussian centered at the parameters of its parent node. Given training data $D = \{x_i, t_i\}_{i=1}^{i=N}$, a parent function π , nodes Y ,

$$W_y | W_{\pi(y)}, \Sigma_{\pi(y)} \sim N(W_{\pi(y)}, \Sigma_{\pi(y)})$$

$$t_i | x_i \sim \text{Multinomial}(\text{softmax}(W, x))$$



Modeling the covariance structures gives different ways of sharing information in the hierarchy.

MODEL M1 : Node-specific covariance parameter.

$$\Sigma_y^{-1} = \alpha_y \mathbf{I}$$

$$\alpha_y \sim \Gamma(a_y, b_y) \quad \forall y$$

MODEL M2 : Feature-specific covariance. Sub-topics *baseball* and *Hockey* might be similar along features like '*players*', '*Game*' but dissimilar along '*puck*', '*pitch*' etc.

$$\Sigma_y^{-1} = \text{diag}(\alpha_y^1, \alpha_y^2, \dots, \alpha_y^d)$$

$$\alpha_y^{(i)} \sim \Gamma(a_y^{(i)}, b_y^{(i)}) \quad \forall y$$

MODEL M3 : Learns how the individual children nodes differ from the parent node. For e.g under a topic '*mammals*', the subtopic '*whales*' is very distinct the other typical subtopics like '*carnivores*', '*herbivores*'.

$$W_y | W_{\pi(y)}, \Sigma_y \sim N(W_{\pi(y)}, \Sigma_y)$$

$$\Sigma_y^{-1} = \alpha_y \mathbf{I}$$

$$\alpha_y \sim \Gamma(a_y, b_y) \quad \forall y$$

Scalable Learning

- Variational Inference**: Computationally intensive due to matrix inversions. Applicable for *small-scale data* with hundreds of features and classes.
- Partial MAP Inference**: The computationally intensive part can be substituted with an MLE estimation followed by a MAP approximation for the posterior. $\text{argmax}_W E[\log P(D|W, \alpha)P(W, \alpha)]$ Applicable for large-scale data with several *hundreds of classes and tens of thousands of features*.
- Parallel Partial MAP Inference**: By replacing the soft-max function with multiple binary logistic functions, the MLE estimation can be parallelized by optimizing the parameters at odd (red) and even (blue) levels in parallel. Applicable to very large-scale data with tens of thousands of classes and millions of features.

Setting Prior Parameters

A **data dependent** way to set prior parameter based on asymptotic covariance of the MLE estimator i.e. **Fisher Information** matrix. For class-label y , the Fisher Information is given by,

$$I(y) = \sum p(y|x)(1 - p(y|x))xx^T$$

Set the priors a_y, b_y to be the observed $I(y)^{-1}$ from the data. For example, for Model M2, $a_y = 1$, $b_y = I(y)^{-1}$.

Results

