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Motivation 
Hierarchies are ubiquitous – Yahoo! Directory, Open Directory Project for webpages, 
International patent taxonomy for patents etc. How to classify incoming data into an 
existing hierarchy. Specifically,  
1. How to leverage the hierarchical dependencies between class-labels to improve 

classification ? 
2. How to do it in a scalable manner for hierarchies with thousands of classes ? 
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 A hierarchical Bayesian model where the prior 
distribution for the parameters at a node is a Gaussian 
centered at the parameters of its parent node. Given 
training data 𝐷 = 𝑥𝑖 , 𝑡𝑖 𝑖=1

 𝑖=𝑁, a parent function 𝜋, nodes 
𝑌,  

𝑊𝑦   𝑊𝜋 𝑦 , Σ𝜋 𝑦  ~ 𝑁  𝑊𝜋 𝑦 , Σ𝜋 𝑦  
𝑡𝑖    𝑥𝑖 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾, 𝑥))  

 
 
 

 Modeling the covariance structures gives different 
ways of sharing information in the hierarchy. 

Scalable Learning 

MODEL M1 : Node-specific covariance parameter.  

Σ𝑦
−1 = 𝛼𝑦𝐈 

                   𝛼𝑦 ∼ Γ 𝑎𝑦, 𝑏𝑦      ∀ 𝑦      

 
       MODEL M2 : Feature-specific covariance. Sub-topics baseball and Hockey might be 

similar along features like ‘players’, ‘Game’ but dissimilar along `puck’, `pitch’ etc. 
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     ∀ 𝑦      

 
       

A. Variational Inference: Computationally intensive due to matrix inversions. 
Applicable for small-scale data with hundreds of features and classes. 

B. Partial MAP Inference: The computationally intensive part can be substituted 
with an MLE estimation followed by a MAP approximation for the posterior. 
                                    𝑎𝑟𝑔𝑚𝑎𝑥𝑾𝐸[log 𝑃 𝑫 𝑾, 𝜶 𝑃(𝑾, 𝜶)]  
Applicable for large-scale data with several hundreds of classes and tens of 
thousands of features. 

C. Parallel Partial MAP Inference: By replacing the soft-max function with multiple 
binary logistic functions, the MLE estimation can be parallelized by optimizing 
the parameters at odd (red) and even (blue) levels in parallel. Applicable to very 
large-scale data with tens of thousands of classes and millions of features. 

Hockey 

MODEL M3 : Learns how the individual children nodes differ from the parent node. 
For e.g under a topic `mammals’, the subtopic ‘whales’ is very distinct  the other 
typical subtopics like `carnivores’, ‘herbivores’. 

𝑊𝑦   𝑊𝜋 𝑦 , Σ𝑦 ~ 𝑁  𝑊𝜋 𝑦 , Σ𝑦  

Σ𝑦
−1 = 𝛼𝑦𝐈 

𝛼𝑦 ∼ Γ 𝑎𝑦, 𝑏𝑦      ∀ 𝑦 

       

Setting Prior Parameters 
 A data dependent way to set prior parameter based on asymptotic covariance of 
the MLE estimator i.e. Fisher Information matrix.  For class-label y, the Fisher 
Information is given by,  

𝐼(𝑦) =  𝑝 𝑦 𝑥 1 − 𝑝 𝑦 𝑥 𝑥𝑥𝑇 

Set the priors 𝑎𝑦, 𝑏𝑦 to be the observed 𝐼(𝑦)−1 from the data. For example, for 

Model M2, 𝑎𝑦, = 1, 𝑏𝑦 = 𝐼 𝑦 −1. 
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