We present a robust distributed algorithm for approximate probabilistic inference in dynamical systems,
such as sensor networks and teams of mobile robots. Using assumed density filtering, the network nodes
maintain a tractable representation of the belief state in a distributed fashion. At each time step, the nodes
coordinate to condition this distribution on the observations made throughout the network, and to advance
this estimate to the next time step. In addition, we identify a significant challenge for probabilistic inference
in dynamical systems: message losses or network partitions can cause nodes to have inconsistent beliefs
about the current state of the system. We address this problem by developing distributed algorithms that
guarantee that nodes will reach an informative consistent distribution when communication is re-established.
We present a suite of experimental results on real-world sensor data for two real sensor network deployments:

Robust Probabilistic Filtering in Distributed
Systems

Stanislav Funiak Carlos Guestrin Mark Paskin*
Rahul Sukthankar**

January 2007
CMU-ML-07-102

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

one with 25 cameras and another with 54 temperature sensors.

* Google

This research was supported by grants NSF-NeTS CNS-0625518 and CNS-0428738 NSF ITR. S. Funiak was supported
by the Intel Research Scholar Program; C. Guestrin was partially supported by an Alfred P. Sloan Fellowship.

** Intel Research

Keywords: Graphical Models; Sensor Networks

1 Introduction

Large-scale networks of sensing devices have become increasingly pervasive, with applications ranging from
sensor networks and mobile robot teams to emergency response systems. Often, nodes in these networks
need to perform probabilistic dynamic inference to combine a sequence of local, noisy observations
into a global, joint estimate of the system state. For example, robots in a team may combine local laser
range scans, collected over time, to obtain a global map of the environment; nodes in a camera network
may combine a set of image sequences to recognize moving objects in a heavily cluttered scene. A simple
approach to probabilistic dynamic inference is to collect the data to a central location, where the processing
is performed. Yet, collecting all the observations is often impractical in large networks, especially if the
nodes have a limited supply of energy and communicate over a wireless network. Instead, the nodes need to
collaborate, to solve the inference task in a distributed manner. Such distributed inference techniques are
also necessary in online control applications, where nodes of the network are associated with actuators, and
the nodes need estimates of the state in order to make decisions.

Probabilistic dynamic inference can often be efficiently solved when all the processing is performed cen-
trally. For example, in linear systems with Gaussian noise, the inference tasks can be solved in a closed form
with a Kalman Filter [3]; for large systems, assumed density filtering can often be used to approximate
the filtered estimate with a tractable distribution (c.f., [2]). Unfortunately, distributed dynamic inference
is substantially more challenging. Since the observations are distributed across the network, nodes must
coordinate to incorporate each others’ observations and propagate their estimates from one time step to
the next. Online operation requires the algorithm to degrade gracefully when nodes run out of processing
time before the observations propagate throughout the network. Furthermore, the algorithm needs to ro-
bustly address node failures and interference that may partition the communication network into several
disconnected components.

We present an efficient distributed algorithm for dynamic inference that works on a large family of
processes modeled by dynamic Bayesian networks. In our algorithm, each node maintains a (possibly ap-
proximate) marginal distribution over a subset of state variables, conditioned on the measurements made by
the nodes in the network. At each time step, the nodes condition on the observations, using a modification
of the robust (static) distributed inference algorithm [7], and then advance their estimates to the next time
step locally. The algorithm guarantees that, with sufficient communication at each time step, the nodes
obtain the same solution as the corresponding centralized algorithm [2]. Before convergence, the algorithm
introduces principled approximations in the form of independence assertions in the node estimates and in
the transition model.

In the presence of unreliable communication or high latency, the nodes may not be able to condition their
estimates on all the observations in the network, e.g., when interference causes a network partition, or when
high latency prevents messages from reaching every node. Once the estimates are advanced to the next time
step, it is difficult to condition on the observations made in the past [10]. Hence, the beliefs at the nodes may
be conditioned on different evidence and no longer form a consistent global probability distribution over the
state space. We show that such inconsistencies can lead to poor results when nodes attempt to combine their
estimates. Nevertheless, it is often possible to use the inconsistent estimates to form an informative globally
consistent distribution; we refer to this task as alignment. We propose an online algorithm, optimized
conditional alignment (0CA), that obtains the global distribution as a product of conditionals from local
estimates and optimizes over different orderings to select a global distribution of minimal entropy. We also
propose an alternative, more global optimization approach that minimizes a KL divergence-based criterion
and provides accurate solutions even when the communication network is highly fragmented.

We present experimental results on real-world sensor data, covering sensor calibration [7] and distributed
camera localization [4]. These results demonstrate the convergence properties of the algorithm, its robustness
to message loss and network partitions, and the effectiveness of our method at recovering from inconsistencies.

Distributed dynamic inference has received some attention in the literature. For example, particle filtering
(PF) techniques have been applied to these settings: Zhao et al. [11] use (mostly) independent PFs to track
moving objects, and Rosencrantz et al. [10] run PFs in parallel, sharing measurements as appropriate. Pfeffer
and Tai [9] use loopy belief propagation to approximate the estimation step in a continuous-time Bayesian
network. When compared to these techniques, our approach addresses several additional challenges: we do
not assume point-to-point communication between nodes, we provide robustness guarantees to node failures

Figure 1: A temperature monitoring sensor network with 54 nodes; the callout shows a dynamic Bayesian network for a subset
of the sensors. Each sensor i observes the temperature Ti<t) at its location with a fixed additive bias B; and white Gaussian
noise. The transition model for the temperatures factors as p(Tl(t) |T1(t71)) X p(TQ(t) |T1(f271)) X p(T?Et) |T2(f§1)) x ---. The
observation model factors as], p(Z]it) | T,ét), Byg).

and network partitions, and we identify and address the belief inconsistency problem that arises in distributed
systems.

2 The distributed dynamic inference problem

Following [7], we assume a network model where each node can perform local computations and communicate
with other nodes over some channel. The nodes of the network may change over time: existing nodes can
fail, and new nodes may be introduced. We assume a message-level error model: messages are either received
without error, or they are not received at all. Only the recipient is aware of a successful transmission; neither
the sender nor the recipient is aware of a failed transmission. The likelihood of successful transmissions (link
qualities) are unknown and can change over time, and link qualities of several node pairs may be correlated.

We model the system as a dynamic Bayesian network (DBN). A DBN consists of a set of state processes,
X ={Xj,..., X} and a set of observed measurement processes Z = {71, ..., Zx}; each measurement
process Zj, corresponds to one of the sensors on one of the nodes. State processes are not associated with
unique nodes. A DBN (Figure 1) defines a joint probability model over steps 1...T as!

T T
p(XUT), Z0D) = p(x) x [p(X@ |XD) <] p(z|X0)
t=2 t=1
initial prior transition model measurement model

The initial prior is given by a factorized probability model p(X™)) o I, z/;(Agll)), where each A, C X is a
subset of the state processes. The transition model factors as

L
(X X0) = [T p(x}" | Palx("]),

i=1

where Pa[Xi(t)] are the parents of XZ-(t) in the previous time step. The measurement model factors as

K
p(z"|X) = T] p(2" | Palz")),
k=1

where Pa[Z]it)] C X® are the parents of Zlit) in the current time step.

In the distributed dynamic inference problem, each node n is associated with a set of processes Q,, C X;
these are the processes about which node n wishes to reason. The nodes need to collaborate so that each
node can obtain (an approximation to) the posterior distribution over ng) given all measurements made in
the network up to the current time step ¢: p(QEt) | z(1:1)). We assume that node clocks are synchronized, so
that transitions to the next time step are simultaneous.

I Throughout this paper, we assume that the DBN has arcs from X®) to X(*#+1) and Z(!)| but nowehere else.

(a) Junction tree (b) Markov network

Figure 2: Assumed density filtering for a network of seven temperature sensors. (a) A junction tree for the approximate
posterior distribution p, with cliques XY% 3 X;t; 4> ngté)l 5 Xit% 6> and Xét% (time indices were omitted for brevity in the

figure). Each Xi(t) = (Ti<t), B;) is a vector consisting of both the temperature and the bias at location ¢. (b) The corresponding
Markov network; dashed edges indicate the edges of the exact distributionin p that are not present in the projection p.

3 Filtering in dynamical systems

The goal of (centralized) filtering is to compute the posterior distribution p(X® |z()) for t = 1,2,...
as the observations z(1), z(?) ... arrive. The basic approach is to recursively compute p(X(H‘l) |z(1:t)) from
p(X® | z1#=1) in three steps:

1. Estimation: p(X(t) \z(l:t)) o p(X(t) |z(1:t_1)) X p(z(t) |X(t));
2. Prediction: p(X®) X+ |z(1:0)) = p(X®) | z(1:0)) x p(XE+D) | XB));
3. Roll-up: p(X#+1) |z(8)) = [p(x®) XEFD | z(1:0)) 4x®).

Thus, in the estimation step we multiply the current belief by the observation likelihood p(z(t) |X(t)), in
the prediction step we multiply in the transition model p(X+1) | X®)) and finally, in the roll-up step, we
marginalize out the state variables X®.

Exact filtering in DBNs is usually expensive or intractable because the belief state rapidly loses all con-
ditional independence structure. An effective approach, proposed by Boyen and Koller [2], hereby denoted
“B&K9I8”, is to periodically project the exact posterior to a distribution that satisfies independence assertions
encoded in a junction tree [3]. Given a junction tree T', with cliques {C;} and separators {8, ;}, the projec-
tion operation amounts to computing the clique marginals, hence the filtered distribution is approximated

as
[Tien, 15(05” | z(L:t=D))
T —,
H{i,j}EET p(SE,J) |Z(1.t 1))

where Nt and Ep are the nodes and edges of T', respectively. For example, given the junction tree in
Figure 2 for a temperature monitoring network with seven nodes, the filtered distribution is approximated
as

p(X(t) |Z(1:t—1)) ~ f)(X(t) |Z(1:t—1)) —

(1)

_ P(X1, X2, X3) x p(Xa, X3, X4) x p(X3, Xy, X5) x p(Xy, X5, X6) x (X5, X7)

pX) (X2, Xa) x (X, Xa) x p(Xa, X5) x p(Xs)

. 2)

(time indices and the conditioning on z(*=1 were omitted for brevity). With this representation, the esti-

mation step is implemented by multiplying each observation likelihood p(z,(:) |Pa[Z lit)]) to a clique marginal;
the clique and separator potentials are then recomputed with a message passing dynamic programming algo-
rithm, so that the posterior distribution is once again written as a ratio of clique and separator marginals:

HieNT f)(cl(»t) ‘Z(l:t))
[jyen D(ST) 120)

pX21) =

The prediction step is performed independently for each clique CEtH): we multiply f)(X(t) |z(1:t)) with the
transition model p(Xt+D | Pa[X(t+D]) for each variable X(t+1) ¢ ¢{*+V
1)

e C; and, using variable elimination,
compute the marginals over the clique at the next time step p(C(t+ | 2(1:0)),

i

4 Approximate distributed filtering

In principle, the centralized filtering approach described in the previous section could be applied to a dis-
tributed system, e.g., by communicating the observations made in the network to a central location that
performs all computations, and distributing the answer to every node in the network. While conceptually
simple, this approach has substantial drawbacks, including the high communication bandwidth required to
scale to a large number of observations, the introduction of a single point of failure to the system, and the
fact that nodes do not have valid estimates when the network is partitioned. In this section, we present a
distributed filtering algorithm where each node obtains an approximation to the posterior distribution over
subset of the state variables. Our estimation step builds on the robust distributed inference algorithm of
Paskin et al. [7, 8], while the prediction, roll-up, and projection steps are performed locally at each node.

4.1 Estimation as a robust distributed probabilistic inference

In the distributed inference approach of Paskin et al. [8], the nodes collaborate so that each node n can
obtain the posterior distribution over some set of variables Q,, given all measurements made throughout the
network. In our setting, Q,, contains the variables in a subset L,, of the cliques used in our assumed density
representation. In their architecture, nodes form a distributed data structure along a routing tree in the
network, where each node in this tree is associated with a cluster of variables D,, that includes Q,,, as well as
any other variables, needed to preserve the flow of information between the nodes, a property equivalent to
the running intersection property in junction trees [3]. We refer to this tree as the network junction
tree, and, for clarity, we refer to the junction tree used for the assumed density as the external junction
tree.

Using this architecture, Paskin and Guestrin developed a robust distributed probabilistic inference
algorithm, RDPI [7], for static inference settings, where nodes compute the posterior distribution p(Qy, |z)
over Q,, given all measurements throughout the network z. RDPI provides two crucial properties: conver-
gence, if there are no network partitions, these distributed estimates converge to the true posteriors; and,
smooth degradation even before convergence, the estimates provide a principled approximation to the
true posterior (which introduces additional independence assertions).

In RDPI, each node n maintains the current belief 3, of p(Q, |z). Initially, node n knows only the
marginals of the prior distribution {p(C,;) : i € L, } for a subset of cliques L,, in the external junction tree,
and its local observation likelihood p(z, |PalZ,]) for each of its sensors. For example, in Figure 3, node 4
initially starts with the prior marginal p(Xs, X3, X4) and the observation likelihood p(z4 | T4, Bs) based on
its local observation Z; = z,. We assume that Pa[Z,] C C, for some clique i € L,, assigned to node n; thus,
B,, is represented as a collection of priors over cliques of variables, and of observation likelihood functions
over these variables. Messages are then sent between neighboring nodes, in an analogous fashion to the sum-
product algorithm for junction trees [3]. However, messages in RDPI are always represented as a collection
of priors {m;(C,;)} over cliques of variables C;, and of measurement likelihood functions {};(C;)} over these
cliques. This decomposition into prior and likelihood factors is the key to the robustness properties of the
algorithm [7]. With sufficient communication, §,, converges to p(Q,, | z).

In our setting, at each time step t, each prior Wi(CEt)) is initialized to p(CEt) | z(1:¢=1)). The likelihood
functions are similarly initialized to /\i(CZ(-t)) = p(zi(t) | Cgt))7 if some sensor makes an observation about
these variables, or to 1 otherwise. Through message passing [3,, converges to p(S) |z(1:t)). An important
property of the RDPI algorithm that will be useful in the remainder of the paper is:

Property 1. Let (3, be the result computed by the RDPI algorithm at convergence at node n. Then the
cliques in (3, form a subtree of an external junction tree that covers Q.

We will revisit the RDPI algorithm in more detail in Section 5.2.

4.2 Prediction, roll-up and projection

The previous section shows that the estimation step can be implemented in a distributed manner, using
RDPI. At convergence, each node n obtains the calibrated marginals f)(CZ(-t) |z(10), for i € L,. In order
to advance to the next time step, each node must perform prediction and roll-up, obtaining the marginals

p(z [Xy) P(z3 | X3) p(zs | Xs) p(z; | X7)

P(Xy, Xo0 Xs3) P(Xg, Xg, Xs) p(Xs, X7) p(Xs, X7)
10X, X5, X5 3: XZ’ Xs Xp X 5. Xg, X, 7 X5, X,
2: X5, X5 X,y 4: Xy Xgy Xy,)_(5 6: X,, X5, Xg
P(Xp Xgr Xg) P(Xz Xgr Xg) P(Xy, Xs, Xg)

P(z, | Xp) P(z4 [Xy) P(Zs | Xe)

Figure 3: Initialization of the RDPI algorithm. Each network node is assigned one or more prior marginals and local observation
likelihoods (in this case, exactly one of each). Nodes then build a network junction tree, shown in bold; the underlined variables
indicate the variables that were introduced to satisfy the running intersection property. Note that, for each clique C; in
Figure 2, the marginal p(C,) is carried by at least one node in the network. Furthermore, the cluster of variables at each node
is a superset of the cliques assigned to that node.

p(C) | 20:) Recall from Section 3 that, in order to compute a marginal p(C{""™ |z(1), this node
needs p(X® |z(Y)). Due to the conditional independencies encoded in p(X® |z(1)), it is sufficient to
obtain a subtree of the external junction tree that covers the parents Pa[Cz(-tH)] of all variables in the clique.
The next time step marginal f)(CEtH) |z(1:t)) can then be computed by multiplying this subtree with the

transition model p(X 1) | Pa[X *+1]) for cach X+ € C"*Y and eliminating all variables but C{"™"
(recall that Pa[X(+1)] € X®),

This procedure suggests the following distributed implementation of prediction, roll-up, and projection:
after completing the estimation step, each node selects a subtree of the (global) external junction tree that
covers Pa[CEtH)] and collects the marginals of this tree from other nodes in the network. Unfortunately,
this algorithm has substantial drawbacks. First, there may be several subtrees that cover the nodes’ parents
and, depending on how the cliques are assigned to nodes in the network, some may be easier to obtain
than others. More importantly, it is unclear how to allocate the running time between estimation and
collection of marginals in time-critical applications, when the estimation step may not run to completion.
Instead, we propose a simple approach that performs both steps at once: run the distributed inference
algorithm, described in the previous section, to obtain the posterior distribution over the parents of each

clique maintained at the node. This task can be accomplished by including these parent variables in the
(t+1)

%

] € Qn,Vi € L,,. For example, given the DBN in Figure 1, the query
variables at node 4 need to include Pa[Xz(tH), ?(,Hl),XitH)] = {X{t),XQ(t), ?()t),Xit)}. In this manner,
at convergence, the belief 8, at node 4 represents the posterior distribution over (potentially a superset of)
{Xl(t), Xét), Xa(,t)7 Xit)}, and the node can compute the marginal f)(Xz(gfi) | z(1:).

When the estimation step cannot be run to convergence within the allotted time, the variables Scope[3,,]

query variables of node n: Pa[C

covered by the distribution 3, that node n obtains may not include the entire parent set Pa[CEtH)]. For
example, if the nodes are only allowed to communicate once in each time step, node 4 does not receive the prior
marginal p(Xl(t), X;t), X?Et))7 and will thus not have any information about Xft) € Pa[Xg;i)]. Instead, the

belief 5, will only cover the variables Xz(t)7 X?()t), Xit) (and, potentially, Xét)). In this case, multiplying in the
standard transition model is equivalent to assuming a uniform prior for the missing variables, which can lead
to very poor solutions in practice. When the transition model is learned from data, p(X*+1D | Pa[X (¢+1)])
is usually computed from the empirical distribution p(X ¢+, Pa[X#+1)]), e.g., pMLE(XQ(t'H) \ Xft), XQ(t)) =
f)(Xz(tH),X{t),Xz(t))/f)(Xft),XQ(t)). Building on these empirical distributions, we can obtain an improved
solution for the prediction and roll-up steps, when we do not have a distribution over the entire parent set
Pa[CEHl)]. Specifically, we obtain a valid approximate transition model p(X“+) | W®), where W) =
Scope[B,,]NPa[X (“+1)], online by simply marginalizing the empirical distribution p(X **1, Pa[X (¢+1)]) down
to p(X (t+1), W(t)). This procedure is equivalent to introducing an additional independence assertion to the
model: at time step ¢ 4 1, X#+1) is independent of Pa[X*1] — W®) | given W®),

4.3 Summary of the algorithm

Our distributed approximate filtering algorithm can be summarized as follows:
e Using the architecture in [8], construct a network junction tree s.t. the query variables Q,, at each
node n cover (UieL CZ(-t)> U (UZEL Pa[CZ(-tH)]).
e Fort=1,2,..., at egch node n, '
— run RDPI [7] until the end of time step ¢, obtaining a (possibly approximate) node belief 3,,;
— for each X(+D ¢ CZ(-H_U, i € L,, compute an approximate transition model p(X*+1 |Wg§)),
where Wg? = Scope|3,] N Pa[X (*+1)];
t+1)7 ieL
each p(X 1 |Wg§)), locally, using variable elimination.
Using the convergence properties of the RDPI algorithm, we prove that, given sufficient communication,
our distributed algorithm obtains the same solution as the centralized B&K98 algorithm:

— for each clique CZ(- compute the clique marginal f)(CZ(-tH) |z(1:Y)) from 3, and from

n’

Theorem 1. For a set of nodes running our distributed filtering algorithm, if at each time step there is
sufficient communication for the RDPI algorithm to converge, and the network is not partitioned, then, for
each node n, for each clique i € L,, the distribution f)(Cl(-t) | 2(1:4=1)) obtained by node n is equal to the
distribution obtained by running the B&KI8 algorithm on the same sequence of observations, with assumed
density given by T'.

5 Robust distributed filtering

In the previous section, we introduced an algorithm for distributed filtering with dynamic Bayesian networks
that, with sufficient communication, converges to the centralized B&K98 algorithm. In some settings, for
example when interference causes a network partition, messages may not be propagated long enough to
guarantee convergence before nodes must roll-up to the next time step. Consider the example, illustrated in
Figure 4, in which a network of cameras localizes itself by observing a moving object. Each camera ¢ carries
a clique marginal over the location of the object M (t), its own camera pose variable C;, and the pose of
one of its neighboring cameras: 1 (C1 2, M®), w2 (Ca3, M®), and 5 (C3.4, M®). Suppose communication
were interrupted due to a network partition: observations would not propagate, and the marginals carried
by the nodes would no longer form a consistent distribution, in the sense that 7,792,735 might not agree
on their marginals, e.g., m (CQ,M(t)) + WQ(CQ,M(t)). The goal of alignment is to obtain a consistent
distribution p(X® |z(1*=1) from marginals 7y, o, 73 that is close to the true posterior p(X® |z(1:t=1)) (as
measured, for example, by the root-mean-square error of the estimates). For simplicity of notation, we omit
time indices ¢t and conditioning on the past evidence z(*=1) throughout this section.

5.1 Optimized conditional alignment

One way to define a consistent distribution p is to start from a root node r, e.g., 1, and allow each clique
marginal to decide the conditional density of C; given its parent, e.g.,

}51(01:4,M) = ﬂ-l(cl,?aM) X 7T2(O3 ‘ CQvM) X 7'1'3(04 | C3aM)'

This density p; forms a coherent distribution over C'i.4, M, and we say that p, is rooted at node 1. Thus,
my fully defines the marginal density over Cy 2, M, m defines the conditional density of C'3 given Cy, M,
and so on. If node 3 were the root, then node 1 would only contribute 71 (C1 | Ca, M), and we would obtain
a different approximate distribution.

In general, given a collection of marginals m; (C,;) over the cliques of a junction tree T', and a root node
r € Np, the distribution obtained by conditional alignment from r can be written as

f)r(X) = ﬂ—?”(cr) X HiE(NTf{T}) ™ (Cz - Sup(i),i | Su;o(i),i)7 (3)

where up(i) denotes the upstream neighbor of i on the (unique) path between r and .

1 2 3 OA 1 2 3 Agj 1 2 3 4 1 2 3

IS

(a) BK solution (b) alignment rooted at 1 (c) alignment rooted at 4 (d) min. KL divergence

Figure 4: Alignment results after partition (shown by vertical line). The circles represent 95% confidence intervals in the
estimate of the camera location. (a) The exact solution, computed by the BK algorithm in the absence of partitions. (b)
Solution obtained when aligning from node 1. (c¢) Solution obtained when aligning from node 4. (d) Solution obtained by joint
optimized alignment.

The choice of the root r often crucially determines how well the aligned distribution p,. approximates the
true prior. Suppose that, in the example in Figure 4, the nodes on the left side of the partition do not observe
the person while the communication is interrupted, and the prior marginals 71, w2 are uncertain about M.
If we were to align the distribution from o, multiplying 73(Cy | C's, M) into the marginal 73 (C'2 3, M) would
result in a distribution that is uncertain in both M and C4 (Figure 4(b)), while a better choice of root could
provide a much better estimate (Figure 4(c)).

One possible metric to optimize when choosing the root r for the alignment is the entropy of the resulting
distribution p,. For example, the entropy of p, in the previous example can be written as

Hp, (Cr.4, M) = Hy, (Co3, M) + Hyy (Cy | O3, M) + Hy, (Cy | Co, M), (4)

where we use the fact that, for Gaussians, the conditional entropy of C4 given Cs,M only depends on the
conditional distribution py(Cy|C3, M) = m3(Cy|C3, M). A naive algorithm for obtaining the best root
would exploit this decomposition to compute the entropy of each p,, and pick the root that leads to a lowest
total entropy; the running time of this algorithm is O(|N7|?). We propose a dynamic programming approach
that significantly reduces the running time. Comparing Equation 4 with the entropy of the distribution rooted
at a neighboring node 3, we see that they share a common term H,, (C1|Cq, M), and

Hp3(01147 M) - HﬁQ (01:47M) = HTF3 (S2,3) - H7T2 (82,3) £ A2,3'

If Ay 3 is positive, node 2 is a better root than 3, A, 3 is negative, we have the reverse situation. Thus,
when comparing neighboring nodes as root candidates, the difference in entropy of the resulting distribution
is simply the difference in entropy their local distributions assign to their separator. This property generalizes
to the following dynamic programming algorithm that determines the root r with minimal Hp (X) in O(|Nr|)
time:

e For any node ¢ € Np, define the message from i to its neighbor j as

Y

I EoTX if my_; <0, Vk#j
7 A\; j + maxyx; my—,; otherwise

where A; j = Hy (S, ;) — Hx, (S, ;), and k varies over the neighbors of i in T'.
o If maxy my—; < 0 then 7 is the optimal root; otherwise, up(i) = argmax; mg_,;.

Intuitively, the message m;_,; represents the loss (entropy) with root node j, compared to the best root on
1’s side of the tree:

Lemma 1. Let T;; denote the subtree rooted at node i, away from node j. Then m;_.; is the difference
between the entropy of p; and the entropy attained by the best root among the nodes in T; ;:

mi—; = Hp (X) — min Hp (X).

kETi,j

From Lemma 1, it immediately follows that, if the optimal root is unique, the optimized conditional
alignment (OCA) algorithm determines the correct root and the upstream neighbors up(i) for each clique i.
Ties between root nodes can be resolved locally, by augmenting each entropy message m;_,; with the ID of
the best root in T; ;.

5.2 Distributed optimized conditional alignment

In the absence of an additional alignment procedure, RDPI can be viewed as performing conditional alignment.
However, the alignment is applied to the local belief at each node, rather than the global distribution, and
the nodes may not agree on the choice of the root r. Thus, the network is not guaranteed to reach a globally
consistent, aligned distribution. In this section, we show that RDPI can be extended to incorporate the
optimized conditional alignment (0CA) algorithm from the previous section.

By Property 1, at convergence, the priors at each node form a subtree of an external junction tree
for the assumed density. Conceptually, if we were to apply OCA to this subtree, the node would have an
aligned distribution, but nodes may not be consistent with each other. Intuitively, this happens because the
optimization messages m;_,; were not propagated between different nodes.

In RDPI, node n’s belief 3, includes a collection of (potentially inconsistent) priors {m;(C,;)}. In the
standard sum-product inference algorithm, an inference message p,,,_,,, from node m to node n is computed
by marginalizing out some variables from the factor u} . £, x]] ktn Mk—m that combines the messages
received from node m’s other neighbors with node m’s local belief. The inference message in RDPI involves a
similar marginalization, which corresponds to pruning some cliques from g\, [6, 7]. When such pruning
occurs, any likelihood information A, (C,) associated with the pruned clique 7 is transferred to its neighbor j.

Example 1. Consider the example in Figure 5(a) that illustrates the process, in which the RDPI algorithm
obtains the posterior distribution over X3,X4,Xs5,X7 at node 5. When computing an inference message fiy_g,
node 4 combines the incoming messages from its neighbors 2 and 3 with its local belief, by taking a union
of the corresponding priors and likelihoods. The resulting factor ,uj[ﬂfs contains priors and likelihoods over
three cliques, {X1, X2, X3}, { X2, X3, X4}, and { X3, X4, X5}. Of these cliques, { X35, X4, X5} is sufficient to
compute the conditional distribution over the variables that node 6 reasons about (see Figure 3), given the
measurements z1, ..., 24. Specifically, if we were to form the prior distribution over Xi, ..., X7 using all of
the clique marginals held by the nodes in the network (Equation 2) and multiply in the observation likelihoods
at each node, we would obtain the posterior distribution

p(X1, X2, X3) -+ p(Xs5, X7)
p(X2, X3) -+ p(Xs)

prior marginals

p(X1,..., Xr | z17) x p(z1]|X1) x -+ x p(zr| X7).

likelihoods

Marginalizing out X1 amounts to removing the clique marginal p(Xi, Xo, X3) and passing the observation
likelihood p(z1| X1) onto the clique { X, X3, X4}:

Zp(x17"'aX7|Z1:7)
T

o > e, D(@1, Xo, X3)p(21 | 1) " p(Xo2, X3, X4) - p(Xs, X7)
p(Xo, X3) p(X3,X4) - p(Xs)

new likelihood remaining prior marginals
A(X2, X3) = p(21 | X2, X3)

X p(ZQ‘XQ)X"'Xp(Z7|X7).

remaining likelihoods

Similarly, marginalizing out Xo amounts to removing the clique marginal p(Xo, X3, X4) and passing the
observation likelihood \(Xa, X3, X4) = p(21| X2, X3) X p(22 | X2) X p(24 | X4) onto the clique {X3, X4, X5}.
The prior marginal p(X3, X4, X5), along with the resulting likelihood p(z1,2 3.4 | X3:5), form the message from
node 4 to node 6. Eventually, node 5 obtains the prior marginals p(Xs, X4, X5),p(X5, X7) and the likelihoods
p(z1,234,6 | X3:5),0(25 | X5),p(27 | X7), which are locally combined to form the posterior p(Xs, X4, X5, X7 | 21.7).

In general, if we restrict our attention on messages sent towards a particular node (e.g., 5), whenever
a node sends a message to its neighbor, the RDPI algorithm computes one or more new likelihoods A and

p(z, | X)) p(z, | X7)
X, Xoy X, Xs, X

M. .i? ") pruned by node 4

W

P(Xy, Xo, X3) Pz, | X)) p(ng x4' xs) 123m123a234234m234H345.—‘
p(X3| X4, XS) p(Za |X3) p(21,2,3.4,6 | XS:S)
E |_4_I |_6 | pruned by node 6 { (\"'\XA’ X, Xe:}

————

PO X, X,) P(Xs, Xy X5)
p(z [X3) P(Z1234 [Xss)
(a) inference messages (b) optimization messages

Figure 5: (a) The messages sent towards node 5 at convergence. Each node combines the incoming messages with its local
prior marginals and likelihoods (not shown), and prunes redundant cliques not needed by the downstream nodes. For example,
in sending a message to its neighbor 5, node 6 combines its local prior and likelihood p(X4, X5, X¢),p(26 | X6) with the incoming
message p(X3, X4, X5),p(#1,2,3,4 | X3:5). Since node 5 does not need to reason about the variable X¢, node 6 marginalizes out
X, thus pruning the clique {X4, X5, X6}. (b) Entropy messages computed in the direction towards node 5. The cliques that
were pruned are drawn with dashed line; the remaining cliques {X3, X4, X5} and {X5, X7} form the belief 85 at node 5.

removes one or more leaf cliques from external junction tree. Note that while the pruning operation has a
global interpretation (removing leaf cliques from the external junction tree), it can be implemented locally,
using only the node’s local belief and the incoming messages (e.g., o, 4,/45_,4). For the specific procedure
that ensures that no clique is ever pruned too early, see [6, 7].

Our distributed ocA algorithm piggy-backs on the pruning operation, computing an optimization message
m;_,; whenever clique ¢ is pruned from clique j (see Figure 5(b)). The optimization message m;_,; is stored
in clique 7; to compute this message, cliques also carry their original, unaligned priors. At convergence,
each node will not only have a subtree of an external tree, but also the incoming optimization messages
that result from pruning of all other cliques of the external tree. In Figure 5(b), node 5 obtained a subtree
X3X4 X5 —X5X7 of the external junction tree, and the incoming optimization messages mao34—345,M456—345
have already been computed (by nodes 4 and 6). Node 5 can now locally compute the remaining optimization
messages between the cliques {X3, X4, X5} and {X5, X7} and determine if one of its cliques is the root of
the conditional alignment. If the optimal root is determined to be {X5, X7} then node 5 is the root and, in
particular, {X5, X7} is the root of the conditional alignment. The alignment, rooted at {X5, X7}, is then
propagated throughout the network. If the optimal root is { X3, X4, X5} (or another clique upstream) then
node 5 aligns itself with respect to clique {Xs3, X4, X5}. In general, at convergence, each node n is able
to determine locally if the optimal root is one of the initial cliques L, associated with this node or if the
alignment ought to be rooted at a different node in the network.

Unfortunately, the algorithm, as described so far, does not guarantee that the nodes in the network
will make consistent decisions about the optimal root. While the pruned cliques are always leaves of some
external junction tree for the assumed density, the external junction trees traced by the pruning operations
may differ from one node to another. Continuing Example 1, if we consider the messages sent towards
node 1 (Figure 6(a)), we see that the cliques are pruned according to a different junction tree (Figure 6(b)):
When node 6 receives the message p(Xs, X7),p(#5,7 | X5, X7), it combines this messages with its local belief
and prunes the clique {X5, X7}, passing the likelihood p(zs 7| X5, X7) onto the clique {X4, X5, X¢}. Hence,
{X5, X7} is connected to {X4, X5, X6} in 6(b), rather than to {X3, X4, X5}. While the external junction
trees in Figures 5(b) and 6(b) are equivalent for inference (in the sense that they have the same cliques and
separators), they are not equivalent for the root optimization in OCA. For example, if the distribution of
X, given X5 is peaked in the prior marginal 75(X3, X4, X5) but not in 7g(Xy4, X5, Xg), the entropy of the
distribution rooted at { X5, X7} may be smaller in 5(b) than in 6(b).

In order to ensure that the nodes agree on the choice of the external junction tree, we modify the RDPI
algorithm as follows. First, we explicitly remove any nondeterminism in the process of forming junction
trees in the algorithm. This modification can be implemented simply by defining a lexicographical ordering
over the pairs of neighboring clique IDs. In this manner, if two or more pairs of cliques have the same
separator, the maximum spanning tree algorithm, used to form the junction tree, connects the pairs with a
higher lexicographical order. Second, whenever a network node m sends a message f,,,_,,, to its neighbor n
in the network junction tree, it includes the clique priors from p,,_,,,, in y,,_,,, omitting any likelihoods and

P(Z, 3456 | %2.0) p(z; 1X;)
P(X5 X3 Xy) P(Xs: X7)

| P(Xa X3, Xg) P(Z2.4 | X2:) I P(Xs, X7) Myay g0 node 6

P(Xg X5, Xe) P(Z56 | Xee) P(Z57 1 %57) AL
D] X Xy Xg it X X
2 |_4_| |_6 456m:1;5757
P(X5 X3 Xy) P(Xy, X5, Xo)
P(z, | X;) P(Zs6 | Xs6)

(a) messages (b) pruned cliques

Figure 6: (a) The messages sent towards node 1 at convergence. (b) The external junction tree formed in the order prescribed
by the messages in (a). Note that this tree differs from the tree in Figure 6(b).

OCA messages. The prior cliques of p,,_,,, are included in g, . and do not get pruned. By Property 1,
given sufficient communication, each node n obtains a subtree of some external junction tree for the assumed
density p. Furthermore, it is easy to see that neighbors in the network junction tree will have overlapping
subtrees of the external tree and hence, will have subtrees of a unique external junction tree. Combining
these properties, we prove that distributed OCA yields a consistent global belief:

Theorem 2. Given sufficient communication and in the absence of network partitions, nodes running dis-
tributed OCA reach a globally consistent belief based on conditional alignment, selecting the root clique that
leads to the joint distribution of minimal entropy. In the presence of partitions, each partition will reach a
consistent belief that minimizes the entropy within this partition.

5.3 Jointly optimized alignment

While conceptually simple, there are situations where such a rooted alignment will not provide a good aligned
distribution. For example, if in the example in Figure 4, cameras 2 and 3 carry marginals w5 (C2 3, M) and
7o (C'a,3, M), respectively, and both observe the person, node 2 will have a better estimate of C's, while node
3’s estimate of C's will be more accurate. If either node is chosen as the root, the aligned distribution will
have a worse estimate of the pose of one of the cameras, because performing rooted alignment from either
direction effectively overwrites the marginal of the other node. In this example, rather than fixing a root,
we want an aligned distribution that attempts to simultaneously optimize the distance to both mo(C3 3, M)
and my (Ca,3, M).

We propose the following optimization problem that minimizes the sum of reverse KL divergence from
the aligned distribution to the clique marginals m; (C,):

p(X) = argmin D(q(C, i (C.)),
POX) = argmin 37 D(a(C,) |1%(C))
where q = T denotes the constraint that p factorizes according to the junction tree T'. This method will
often provide very good aligned distributions (e.g., Figure (d)). For Gaussian distributions, this optimization

problem corresponds to

min‘uci’gci ZiENT B log |Ecz‘ + <2i_1’ Eci> + ZiENT (NJZ o ’LLCz)TZl_l(Ml - 'LLCi)’
subject to Yc, = 0, Vi e Nrp, (5)

where He, s ZCi are the means and covariances of q over the variables C;, and p;, X; are the means and
covariances of the marginals 7;. The problem in Equation 5 consists of two independent convex optimization
problems over the means and covariances of g, respectively. The former problem can be solved in a distributed
manner using distributed linear regression [5], while the latter can be solved using a distributed version of
an iterative methods, such as conjugate gradient descent [1].

10

04 045
__—Camera?7
03 04
N Camera 10 _
5 &
5 = 0.35
n 0.2 n
E Camera 3 E 03
0.1
.y 0.25
0.
GO 50 100 150 200 250 300 20 20 .40 60
time step epochs per time step
(a) 25-camera testbed (b) Convergence, cameras (c) Convergence, temperature

Figure 7: (a) Testbed of 25 cameras used for the SLAT experiments. (b) Convergence results for individual cameras in one ex-
periment. Horizontal lines indicate the corresponding centralized B&K98 solution at the end of the experiment. (c) Convergence
versus amount of communication per time step for a temperature network of 54 real sensors.

6 Experimental results

We evaluated our approach on two applications: a camera localization problem [4] (SLAT), in which a set of
cameras simultaneously localizes itself by tracking a moving object, and temperature monitoring application,
analogous to the one presented in [7]. Figure 7(a) shows some of the 25 ceiling-mounted cameras used to
collect the data in our camera experiments. We implemented our distributed algorithm in a network simulator
that incorporates message loss and used data from these real sensors as our observations. Figure 7(b) shows
the estimates obtained by three cameras in one of our experiments. Note that each camera converges to the
estimate obtained by the centralized B&K98 algorithm. In Figure 7(c), we evaluate the sensitivity of the
algorithm to incomplete communication on data from the temperature network of 54 real sensors. We see
that, with a modest number of rounds of communication performed in each time step, the algorithm obtains
a high quality of the solution and converges to the centralized solution.

In the second set of experiments, we evaluate the alignment methods, presented in Section 5. In Fig-
ure 8(a), the network is split into four components; in each component, the nodes communicate fully, and we
evaluate the quality of the solution if the communication were to be restored after a given number of time
steps. The vertical axis shows the RMS error of estimated camera locations at the end of the experiment.
For the unaligned solution, the nodes may not agree on the estimated pose of a camera, so it is not clear
which node’s estimate should be used in the RMS computation; the plot shows an “omniscient envelope” of
the RMS error, where, given the (unknown) true camera locations, we select the best and worst estimates
available in the network for each camera’s pose. The results show that, in the absence of optimized align-
ment, inconsistencies can degrade the solution: observations collected after the communication is restored
are not sufficient to make up for the errors introduced by the partition.

The third experiment evaluates the performance of the distributed algorithm in highly-disconnected
scenarios. Here, the sensor network is hierarchically partitioned into smaller disconnected components by
selecting a random cut through the largest component. The communication is restored shortly before the
end of the experiment. Figures 8(b) shows the importance of aligning from the correct node: the difference
between the optimized root and an arbitrarily chosen root is significant, particularly when the network
becomes more and more fractured. In our experiments, large errors often resulted from the nodes having un-
certain beliefs, hence justifying the objective function. We see that the jointly optimized alignment described
in Section 5.3, min. KL, tends to provide the best aligned distribution, though often close to the optimized
root, which is simpler to compute. Finally, 8(c) shows the alignment results on the temperature monitoring
application. Compared to SLAT, the effects of network partitions on the results for the temperature data
are less severe. One contributing factor is that every node in a partition is making local temperature obser-
vations, and the approximate transition model for temperatures in each partition is quite accurate, hence all
the nodes continue to adjust their estimates meaningfully while the partition is in progress.

11

upper bound 1 0.5

~fixed root - - fixed root upper bound -3
— optimi upper bound _go-E--E-CE
03| —optimizedroot] - Y- 0.1 Optimized roof) PP 0.4 deE
5 ---unaligned ’ 5 ---unaligned o 5 ,,é’W
o : 509 S03 ===
33) g 33) = Fmeg--F--Fo-F-E--E--i
= g04 = 0.2 |ower bound |-~ fixed root
T o1 lower bound o —optimized root
02 . 0.1 min. KL
lower bound ---unaligned
0 0 0
50 100 0 2 4 6 8 10 5
Duration of the partition Number of partitions Number of partitions
(a) camera localization (b) camera localization (c) temperature monitoring

Figure 8: Comparison of the alignment methods. (a) RMS error vs. duration of the partition. For the unaligned solution,
the plot shows bounds on the RMS error: given the (unknown) true camera locations, we select the best and worst estimates
available in the network for each camera’s pose. In the absence of optimized alignment, inconsistencies can degrade the quality
of the solution. (b, ¢c) RMS error vs. number of partitions. In camera localization (b), the difference between the optimized
alignment and the conditional alignment from an arbitrarily chosen fixed root is significant. For the temperature monitoring
(c), the differences are less pronounced, but follow the same trend.

7 Conclusions

This paper presents a new distributed approach to approximate dynamic filtering based on a distributed
representation of the assumed density in the network. Distributed filtering is performed by first conditioning
on evidence using a robust distributed inference algorithm [7], and then advancing to the next time step
locally. With sufficient communication in each time step, our distributed algorithm converges to the central-
ized B&KI8 solution. In addition, we identify a significant challenge for probabilistic inference in dynamical
systems: nodes can have inconsistent beliefs about the current state of the system, and an ineffective handling
of this situation can lead to very poor estimates of the global state. We address this problem by developing
a distributed algorithm that obtains an informative consistent distribution, optimizing over various choices
of the root node, and an alternative joint optimization approach that minimizes a KL divergence-based
criterion. We demonstrate the effectiveness of our approach on a suite of experimental results on real-world
sensor data.

Acknowledgments

This research was supported by grants NSF-NeTS CNS-0625518 and CNS-0428738 NSF ITR. S. Funiak was
supported by the Intel Research Scholar Program; C. Guestrin was partially supported by an Alfred P. Sloan
Fellowship.

References

(1] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Athena Scientific; 1st
edition (January 1997), 1997.

[2] X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In Proc. of UAI 1998.

[3] R. Cowell, P. Dawid, S. Lauritzen, and D. Spiegelhalter. Probabilistic Networks and Expert Systems. Springer, New York,
NY, 1999.

[4] S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar. Distributed localization of networked cameras. In Proc. of Fifth
International Conference on Information Processing in Sensor Networks (IPSN-06), 2006.

[5] C. Guestrin, R. Thibaux, P. Bodik, M. A. Paskin, and S. Madden. Distributed regression: an efficient framework for
modeling sensor network data. In Proc. of IPSN, 2004.

[6] M. Paskin. Ezploiting Locality in Probabilistic Inference. PhD thesis, University of California, Berkeley, September 2004.
[7] M. A. Paskin and C. E. Guestrin. Robust probabilistic inference in distributed systems. In UAI 2004.

[8] M. A. Paskin, C. E. Guestrin, and J. McFadden. A robust architecture for inference in sensor networks. In Proc. of IPSN,
2005.

[9] A. Pfeffer and T. Tai. Asynchronous dynamic Bayesian networks. In Proc. UAI 2005, 2005.

[10] M. Rosencrantz, G. Gordon, and S. Thrun. Decentralized sensor fusion with distributed particle filters. In Proc. of UAI,
2003.

[11] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich. Collaborative signal and information processing: An information directed
approach. Proceedings of the IEEE, 91(8):1199-1209, 2003.

12

