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Abstract

This thesis presents an online approach for controlling humanoid robots using

hierarchical optimization. While our primary focus is to develop a fast and robust

walking controller that is able to follow desired foot steps, full body manipulation

capability is also achieved. The proposed hierarchical system consists of three levels:

• a high level trajectory optimizer that generates nominal center of mass and

swing foot trajectories, together with useful information such as a local value

function approximation and a linear policy along the nominal trajectory;

• a middle level receding-horizon controller that tracks the nominal plan and

handles large disturbances by rapidly replanning for a short horizon;

• a low level controller that computes joint level commands by solving full body

inverse dynamics and kinematics using quadratic programming.

Using just the high level and the low level controller, we achieved rough terrain

walking and close to human walking speed and stride length in simulation. Walking

and manipulation controllers were also developed for the Atlas robot based on the

same architecture, and performed reliably during the DARPA Robotics Challenge.

The full hierarchy with the middle level controller is implemented afterwards, and

dynamic walking with strong perturbations is successfully demonstrated on the Atlas

robot.
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Chapter 1

Introduction

Humanoid robots have been promoted for being able to traverse rough terrain, suitable for

human-centric environments, and facilitating human robot interactions. Despite increasing in-

terests and attention in academia and popular culture over the past decade, especially with the

recent DARPA Robotics Challenge (DRC) focusing on disaster response, state-of-the-art hu-

manoid robots are still not ready for field deployment. In this thesis, we explore potential solu-

tions to these control challenges that block humanoid robots from becoming a truly useful mobile

platform: low reliability and tendency to fall, slow and lack of compliance. Due to the large num-

ber of degrees of freedom, humanoid robots typically have a bigger workspace with a smaller

footprint comparing to conventional platforms. However, this complexity makes planning and

control harder for humanoids. Unlike statically stable platforms, maintaining balance is a much

harder problem for humanoids, and dynamics matter for planning as well. When operating in a

complex and dynamic environment, such as any typical human occupied environment, the robot

needs to replan using sensor feedback within a reasonable time window. It also needs to be fast

and agile. Speed is important for usefulness as well as for certain recovery behaviors. With com-

pliant behaviors, the robot can deal with unexpected perturbations better, and is safer for human

robot interaction.

Originally targeted at rough terrain bipedal walking, we first developed a walking controller

1
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Figure 1.1: Subscript r indicates nominal values optimized by the trajectory optimizer, and
d denotes commands generated by the full body controller. P and L stand for system linear
and angular momentum, and e stands for modeling errors. The value function approximation,
denoted by Vx and Vxx, is generated by the trajectory optimizer, and it guides the lower level
controllers. x and q stand for Cartesian and joint space positions, τ stands for joint torques, and
λ stands for all the contact wrenches.

that can follow a sequence of foot steps and walk on level ground at close to human speed and

step length. The approach is rooted in model-based optimal control. A center of mass (CoM) tra-

jectory that follows the foot steps is first optimized, which is then tracked using inverse dynamics

formulated as a convex optimization problem. Trajectory optimization uses a simplified model

that only reasons about the CoM to speed up computation, and the inverse dynamics modules

manages the details about physics and constraints but only for one time step. This architecture

separates the behavior level design process and full body control problem. It offers a versatile

and powerful platform for rapidly developing behaviors especially in the context of the DRC,

where we were required to solve a wide range of mobility and manipulation tasks in a very lim-

ited time frame. After the DRC, we implemented a third level that uses the high level plan as a

guide to solve a short trajectory optimization problem in a receding-horizon fashion. By rapidly

replanning using sensor feedback based on the original plan, it adds robustness to the overall

controller.

2



1.1 Overview of Walking Systems

Generally speaking, existing walking controllers can be categorized as either offline or online

solutions. The former usually has a few parameters that can be altered during execution, or

a selection of discrete behaviors to choose from. It is often nontrivial to achieve the desired

behaviors by manipulating these parameters. Online approaches are usually more flexible on the

behavior level, since they are designed to recompute solutions based on different inputs. Building

the policies (behaviors) by hand typically requires a great deal of insight into the specific situation

and much trial and error for tuning. For simple systems, very robust and dynamic behaviors have

been achieved with this approach on real hardware [71]. Inspired by limit cycle walking and

running research [12, 21, 52], controllers [6, 24, 102] have been developed. Simple policy based

controllers have also been applied to animated figures [96, 105] in the graphics community.

Once designed, policy optimization [81, 96] or online learning [42, 48, 57] can be used for

tuning. Optimization is another powerful tool for generating reference trajectories and controllers

offline. Dynamic programming [5] generates a globally optimal policy for a large region of the

state space, but it suffers from the “curse of dimensionality”. Relaxations [3, 4, 99] can be made

to enable applications to larger problems. Nominal walking patterns can be found with trajectory

optimization [13, 55, 69]. Feedback controllers are then used to stabilize the system around the

trajectories. Trajectories can be combined into a library [50, 101] to cover larger regions of the

state space. Many of these offline solutions are impressively capable and robust at what they are

designed for, but they typically have limited abilities in terms of adaptation. Most of them are

incompatible with achieving desired foot steps, which limits their application for more general

purposes.

A typical setup for a complete online walking solution is presented in [107], where a higher

level foot step planner such as [11, 28] generates a plan using perception, and the walking con-

troller follows it to the best of its ability. Directly planning walking motions with the full model

in an online setting is unrealistic due to model complexity. A more practical approach is to plan

3



using simple models. For example, a center of mass trajectory is first planned using a point mass

model, and full body motions are then computed with inverse kinematics. Some of the most suc-

cessful humanoids such as Honda’s Asimo [26], the HRP series [2, 31, 36, 37, 91], and HUBO

[67] use this method for walking. This approach requires accurate joint level motion tracking,

and is often achieved through stiff position control, which is more vulnerable to external per-

turbations and impacts. On the other hand, by taking recovery steps, they are capable of robust

dynamic walking even with strong perturbations [92, 93]. Rapid advancement in inverse dynam-

ics algorithms [8, 14, 19, 25, 29, 30, 39, 44, 47, 49, 66, 72, 74, 78] and hardware development

of force controlled humanoids such as PETMAN and Atlas built by Boston Dynamics and many

other research platforms [10, 40, 65, 77, 89, 90] open up a viable alternative for full body motion

generation. These new platforms are attractive for inverse dynamics approaches because they

can all be force controlled, and some of them have built-in compliance. The inverse dynamics

algorithms are typically formulated as one step constrained convex optimization problems us-

ing the full dynamic model. They track planned trajectories and enforce constraints on ground

reaction forces and actuation at the same time.

1.2 Thesis Contribution

The core of this thesis is dividing a hard planning and control problem into different levels that

consider progressively shorter time horizons but use more complete dynamics and constraints so

that the overall problem can be solved online. Using the proposed scheme, we have achieved

human-like walking speed and stride length in simulation. We are also able to achieve robust

dynamic walking on rough terrain or with strong perturbations on a real humanoid robot. A

variety of mobility and manipulation tasks were successfully demonstrated throughout the entire

DARPA Robotics Challenge. The main contribution is to synthesize existing concepts of tra-

jectory optimization, receding-horizon control and full body inverse dynamics and kinematics

into one versatile system and its implementation on real hardware solving real life tasks. Other
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contributions include lessons learned and practical solutions to address modeling errors on the

real robot.

1.3 Hardware Overview

We use the Atlas humanoid robot built by Boston Dynamics for all hardware experiments, and a

large amount of experimental results are shown in the context of the DARPA Robotics Challenge

(DRC), which was a DARPA sponsored program aimed at developing semi-autonomous robots

for disaster response. Roughly six months prior to the DRC Finals, our Atlas robot went through

a major upgrade to enable tetherless operation. Shoulder joints were also reconfigured to increase

arm manipulability. Most of the experimental data in this thesis were collected after this upgrade.

Four months later, the robot went through another upgrade to replace the last two joints on the

forearms with three electric joints. This gave Atlas seven degrees of freedom arms for much

better manipulability. On the other hand, because of the tight testing timeline, these electric

forearms suffered greatly from hardware reliability issues. This upgrade brings the total number

of actuators from 28 to 30: six for each leg, seven for each arm, three for the spine, and one for

the neck.

For all the hydraulic joints, position and torque are measured pre-transmission on the actuator

side. The back roll and pitch joints and all the leg joints are linear hydraulic actuators. For these

joints, position is measured with Linear Variable Differential Transformers (LVDT), and force

is measured with piston pressure sensors. Transmission information is used to compute joint

position and torque. Joint velocity is generated by low-pass filtering finite differences of joint

position. The arm joint position can be measured with encoders after transmission. Velocity and

torque signals are generated similarly to the legs. For each foot, there is a 3-axis force torque

sensor measuring the vertical force and roll and pitch torque. Two 6-axis force torque sensors

are mounted at the wrists. A sensor head that includes a pair of stereo cameras and a spinning

Hokuyo laser range finder is attached to the upper body through a single axis (pitch) neck joint.
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A high precision 6-axis IMU is attached to the pelvis link, providing linear acceleration, angular

velocity and orientation measurements. Most of the joint sensors do not directly measure joint

position or torque, which makes accurate forward kinematics and torque tracking difficult.

For the hydraulic actuators, the joint level servo computes valve command i based on

i = Kp(qd − q) +Kd(q̇d − q̇) +Kf (τd − τ) + c, (1.1)

where qd, q̇d, τd are desired joint, velocity and torque values, q, q̇, τ are the measured values, and

c contains other auxiliary feedback and feedforward terms and a constant valve bias term. This

servo runs at 1kHz, and we can update all the gains and desired values at the same rate.

1.4 Outline

We focus on high level trajectory optimization in Chapter 2, which generates a nominal CoM

trajectory and other useful information that guides the lower level controllers. The current im-

plementation of the low level full body controller is presented in Chapter 3. This full body

controller is responsible for generating joint level control signals that best track the nominal plan

while managing all the physical constraints. Our walking and manipulation controllers for the

DARPA Robotics Challenge are implemented based on these two modules, and experimental

results are presented in Chapter 4. Chapter 5 describes recent work on developing a middle level

component that replans rapidly over a short horizon in a receding-horizon fashion. Robot and

simulation results for a foot placement controller and an angular momentum controller are also

shown. Directions for future work and conclusion are presented in Chapter 6.
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Chapter 2

Center of Mass Trajectory Generation for

Walking

2.1 Simple Models for Online Planning

It is computationally prohibitive to use full dynamics models for planning walking motions on-

line. The common approach is to plan with simplified models that approximate the overall dy-

namics, and reconstruct full body motion afterwards. The Linear Inverted Pendulum Model

(LIPM) [33, 34] was introduced for this purpose. LIPM combined with Zero Moment Point

(ZMP) [94] have been widely used in center of mass (CoM) motion generation. Preview Control

[35] is one of the most successful applications. Capture point [70] can also be generalized to gen-

erate walking patterns [45, 46]. Similarly, divergent component of motion [27, 83] is introduced

to encode the unstable part of the LIPM dynamics and used for walking pattern generation. For

dynamic behaviors, especially balancing with limited foot placement, angular momentum plays

an important role. LIPM was then extended to include angular momentum [43, 70], which is

generated by applying a torque around the CoM. These simple linear models are useful for an-

alytical solutions and fast computation, particularly when used in receding-horizon controllers

[15, 18, 22, 62, 93, 100]. [64] connected both linear and angular momentum, generalized ve-
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locity of the system and net external wrench by introducing the centroidal momentum matrix,

which influenced many later approaches for balancing and walking.

Our high level controller for dynamic walking is similar in spirit to Preview Control in the

sense that we use a CoM model, reason about ZMP, and use future information to guide the

current trajectory. On the other hand, our formulation can be easily generalized to nonlinear

models as opposed to LIPM used in Preview Control. Given a sequence of desired foot steps,

we plan a CoM trajectory that minimizes stance foot ankle torque and deviation from the desired

states with trajectory optimization. Currently, we approximate the entire robot as a point mass,

without considering angular momentum or effects of the swing leg. These can be reintroduced

without changing the rest of the algorithm, but computation will take longer. We explicitly add

the vertical dimension into our CoM model to capture terrain heigh changes on rough terrain.

The dynamics of this simple model are


ẍ

ÿ

z̈

 =


(x−px)Fz

mz

(y−py)Fz

mz

Fz

m
− g

 . (2.1)

The state, X = (x, y, z, ẋ, ẏ, ż), is the position and velocity of the CoM. The control u =

(px, py, Fz) is the commanded center of pressure (CoP) and force in the z direction. The current

high level controller is not aware of step length limits, and we are relying on the foot step planner

to produce a reasonable foot step sequence.

2.2 Differential Dynamic Programming

Differential Dynamic Programming [32] is an iterative trajectory optimization technique that has

two passes for each iteration:
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• The backward pass updates the current control signals based on the spatial derivatives of

the value function.

• The forward pass uses the updated controls to generate a trajectory for the next iteration.

It can find globally optimal trajectories for problems with linear dynamics and quadratic costs,

and rapidly converge to locally optimal trajectories for problems with nonlinear dynamics or

nonquadratic costs. The Linear Quadratic Regulator (LQR) can be treated as a special case of this

algorithm. DDP can also be extended to handle stochastic systems [87, 88]. It is also possible to

use DDP in a receding-horizon fashion with the full dynamics [16, 84], but it is typically slower

than real-time. Combining coordinated locally optimized trajectories as an approximation of

the globally optimal solution is shown in [3]. Instead of optimality, LQR-Tree [85, 86] uses

DDP-like trajectories to cover the state space and achieve asymptotic stability.

This approach modifies (and complements) existing approximate Dynamic Programming ap-

proaches in these ways:

• We approximate the value function and policy using many local models (quadratic for the

value function, linear for the policy) along the trajectory.

• We use trajectory optimization to directly optimize the sequence of commands and states.

• Refined local models of the value function and policy are created as a byproduct of the

trajectory optimization process.

We represent value functions and policies using Taylor series approximations at each time

step along a trajectory. For a state X t, the local quadratic model for the value function is

V t(X) ≈ V t
0 + V t

X(X −X t) +
1

2
(X −X t)TV t

XX(X −X t), (2.2)

where t is the time index, X is some query state, V t
0 is the constant term, V t

X is the first order

gradient of the value function with respect to the state evaluated at X t, and V t
XX is the second
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order spatial gradient evaluated at X t. The local linear policy is

ut(X) = ut0 −Kt(X −X t), (2.3)

where ut0 is a constant term, and Kt is the first derivative of the local policy with respect to state

evaluated at X t, and is also the gain matrix for a local linear controller. V t
0 , V t

X , V t
XX and Kt are

stored along with the trajectory.

The one step cost function is

L(X, u) = 0.5(X −X∗)TQ(X −X∗) + 0.5(u− u∗)TR(u− u∗), (2.4)

where R is positive definite, and Q is positive semi-definite. X∗ and u∗ are the desired state and

control trajectories. The simplest version of X∗ is a square wave that instantly switches between

the desired foot steps and remains stationary for the entire stance phase. u∗ is specified in a

similar way for p∗x and p∗y, and F ∗z = mg.

Q =



1× 10−4 0 0 0 0 0

0 1× 10−4 0 0 0 0

0 0 10 0 0 0

0 0 0 1× 10−2 0 0

0 0 0 0 1× 10−2 0

0 0 0 0 0 1× 10−2



R =


1 0 0

0 1 0

0 0 1× 10−6



(2.5)

For each iteration of DDP, we propagate the spatial derivatives of the value function V t
XX and

V t
X backward in time, and use this information to compute an update to the control signal. Then
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we perform a forward integration pass using the updated controls to generate a new trajectory.

Although we are performing nonlinear trajectory optimization, due to analytical gradients of the

dynamics of the model we use, this process is fast enough in an online setting.

Initialization: Given the last desired center of mass location and desired center of pressure,

(X∗, u∗) in the foot step sequence, we first compute a Linear Quadratic Regulator (LQR) solu-

tion, and use its policy to generate an initial trajectory from the initial state X0. VXX of this LQR

is also used to initialize the backward pass.

Backward pass: Given a trajectory, one can integrate the value function and its first and

second spatial derivatives backwards in time to compute an improved value function and pol-

icy. We utilize the “Q function” notation from reinforcement learning: Qt(X, u) = Lt(X, u) +

V t+1(f(X, u)). The backward pass of DDP can be expressed as

Qt
X = LtX + V t

Xf
t
X

Qt
u = Ltu + V t

Xf
t
u

Qt
XX = LtXX + V t

Xf
t
XX + f tTX V t

XXf
t
X

Qt
uX = LtuX + V t

Xf
t
uX + f tTu V t

XXf
t
X

Qt
uu = Ltuu + V t

Xf
t
uu + f tTu V t

XXf
t
u

Kt = (Qt
uu)
−1Qt

uX

δut = (Qt
uu)
−1Qt

u

V t−1
X = Qt

X −Qt
uK

t

V t−1
XX = Qt

XX −Qt
XuK

t.

(2.6)

Derivatives are taken with respect to the subscripts, and evaluated at (X, u).
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Forward pass: Once we have computed the local linear feedback policy Kt and updates for

controls δut, we integrate forward in time using

utnew = (ut − δut)−Kt(X t
new −X t) (2.7)

with X t0
new = X0. We terminate DDP when the cost-to-go at X0 does not change significantly

across iterations. This approach can be thought of as a generalized version of Preview Control.

Figure 2.1 shows trajectories of the CoM generated with LQR policy and after DDP optimization.

Another example is shown in Figure 2.2. In both cases, we set the desired CoP at the support

stance foot, and it can instantaneously switch to the next stance foot. A smoother desired CoP

trajectory can be specified to represent double support.

2.3 Summary

Center of mass motion is arguably the most important aspect of walking. Using our formulation,

a globally optimal CoM trajectory can be generated with linear models and quadratic cost func-

tions, and a locally optimal solution can be achieved for more complex problems. In addition to a

nominal trajectory, our approach also generates a quadratic approximation of the value function

and a linear policy along it. The value function approximation encapsulates information about

the future, and can provide useful guidance for the lower level controllers that have much shorter

planning horizons in Chapter 3 and Chapter 5.

The policy produced by DDP is not suitable for handling large disturbances. When the state

is far from the planned trajectory, DDP’s policy can generate large invalid controls. Although it is

possible for DDP to handle unilateral constraints [32], we have not implemented ground reaction

force constraints. Instead, they are treated as high weight terms in the cost function during the

optimization procedure. When using ankle torque alone is insufficient for balancing, the local

policy performs poorly after saturating the control. The purpose of the high level controller is to
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Figure 2.1: The desired CoP in the X and Y directions and CoM height are plotted with solid
red lines from top to bottom, and are referred to as pxd, pyd, zd in the legends. The desired
CoP is at the middle of the stance foot, and the sharp changes are the contact switching events.
Trajectories shown in dashed lines are generated by the LQR policy. The state trajectories are
x0, y0, z0, and the control trajectories are px0, py0, Fz0

mg
respectively. These are used to initialize

DDP. The optimization results are x1, y1, z1 and px1, py1, Fz1
mg

.
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(a) Planned CoM trajectory in the XY plane
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(b) Planned trajectory against time

Figure 2.2: Figure 2.2(a) shows a top down view of the desired CoP, planned CoM and CoP
trajectories in the XY plane. Figure 2.2(b) plots these traces against time.

generate a nominal CoM trajectory and useful information for the lower level controllers, which

replan at a much higher rate, and are better at disturbance rejection. The high level controller

replans per step. With this arrangement, we can afford to use more complex nonlinear models

that better capture the overall dynamics.

The computation time scales roughly cubicly with respect to model dimensionality for each

iteration. It is also important to mention that without analytical derivatives of the model dynamics

and cost function, the process will be much slower due to numerical differentiation. This is one

of the main reasons why this technique is used to optimize full body models offline [50] but is

not applicable in an online setting. Although [16, 84] is a promising attempt at online trajectory

optimization with the full dynamics, it is has not quite achieved real-time performance.
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Chapter 3

Full Body Controller

3.1 Introduction

This chapter focuses on the full body controller, which uses quadratic programming to solve

inverse dynamics and inverse kinematics. Inverse dynamics based approaches have gained pop-

ularity because they provide compliant motions and robustness to external perturbations such

as impacts. On the other hand, using inverse dynamics alone performs poorly when facing in-

evitable modeling errors on real systems. So for robot implementation, it is still necessary to

provide kinematic targets to generate accurate motions.

For the DARPA Robotics Challenge Trials, we implemented a low level controller using

independent inverse kinematics (IK) and inverse dynamics (ID) modules [20], which was suitable

for the quasi-static motions in the Trials, and was preferred for easy implementation. However,

we were concerned about inconsistency between the two modules due to their different sets

of constraints and gains. For the DRC Finals, two versions of the full body controllers are

implemented. During walking, we no longer use IK for joint level kinematic targets. For the

leg and spine joints, desired velocities are numerically integrated from the joint accelerations

computed by ID. Desired arm motions are always specified in joint space during walking, so they

are used directly in the joint level controllers. For manipulation, IK is used to generate the full

15



state that best tracks the desired Cartesian commands. ID is then used to track the IK’s full state.

Although IK does not enforce dynamic constraints, we argue that by properly positioning the

CoM, running into a dynamic constraint is very unlikely during slow manipulation for a strong

robot like Atlas. These design choices are motivated by the observation that the legs on Atlas

are much better engineered than the arms, and the leg joints have less sensor noise and friction.

For the arm joints, we were unable to use higher velocity gains and failed to achieve decent joint

tracking without the position control loop. An explicit IK is also preferred as opposed to double

integration for stability and accuracy reasons.

Using full body inverse dynamics for force control has become a popular topic recently.

This direction of research originates from [39]. Within this broad category, control designers

can directly specify reference motions in task space, then rely on convex optimization to han-

dle constraints and solve for controls that best track the reference motions. Although detailed

formulations differ, most active research have converged to formulating the floating base inverse

dynamics as a quadratic programming (QP) problem. [14, 17, 25, 29, 30, 75, 97] explore us-

ing a hierarchical approach to resolve redundant degrees of freedom in humanoid robots. These

approaches typically ensure low priority objectives are within the null space of higher priority

ones. A generic solution to hierarchical quadratic programs is presented in [17] that enforces

equality and inequality constraints at all hierarchies, and is significantly faster than previous

methods [14, 38]. Although the method is currently applied to solve inverse kinematics, the au-

thors claim it is also applicable to inverse dynamics. Another hierarchical framework designed

for humanoid robots to handle constraints and objectives using virtual linkages is presented in

[78, 79]. Contrary to these hierarchical approaches that have hard priorities, we prefer using

weighted cost terms to specify preferences among the objectives. We gain numerical stability

by sacrificing a small fraction of precision. There is also much interest in formulating a smaller

optimization problem to reduce computation time. Contact forces can be removed from the equa-

tions of motion using orthogonal decomposition [54, 73, 74]. Balancing is demonstrated on a

torque controlled humanoid in [66], where simple PD servos are used to generate a desired net
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ground reaction wrench, which is then distributed among predefined contacts using optimization.

Decoupled dynamics are used to speed up inverse dynamics calculations in [51, 72]. [49] has a

two stage optimization setup. The first optimizes individual ground reaction forces and center

of pressure (CoP) for each contact and the resulting admissible change in centroidal momenta.

A second least square problem is then solved for state acceleration. Joint torques are generated

explicitly afterwards. In [44, 46], desired centroidal momenta change is generated based on the

instantaneous capture point, and accelerations and contact forces are simultaneously optimized.

Joint torques are then generated with explicit inverse dynamics. [47] is similar in terms of op-

timization variables and torque generation, but a novel QP solver is implemented to exploit the

observation that inequality constraints rarely change in this context. [106] applies QP based in-

verse dynamics to a quadruped robot on a slippery surface. Without using constrained optimiza-

tion, a novel approach to generate full body torques with a combination of gravity compensation

and task dependent attractors is proposed in [58]. We continue to use the formulation previously

developed in our group [82, 98, 99] that is similar to [8, 9]. We directly optimize a quadratic cost

in terms of state accelerations, torques and contact forces using the full robot model. This design

choice gives us the most flexibility in terms of trading off directly among physical quantities of

interest. It also allows us to easily add extra terms into the dynamics equations for compensating

modeling errors.

Inverse kinematics with stiff joint position tracking is another traditionally popular approach

to controlling humanoid robots. Similar to inverse dynamics, we also formulated the IK problem

as a quadratic program, where the unknown is the generalized velocity q̇ik. At each time step, we

solve for a set of q̇ik that obeys kinematic constraints and minimizes a combination of costs. qik

is computed by integrating q̇ik. Contacts are handled as soft constraints in our inverse kinematics

QP. Our approach is an extension to the damped least squares method used by [60, 95]. In a

similar work [53], the generalized velocity is computed by inverting a matrix composed of end

effector and contact constraint Jacobian. Computing q̇ik and integrating it to compute qik con-

verges to local minima, but it produces continuous results. Another advantage for this gradient
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based method is that it can be very reactive to changes in the desired motions since computation

is spread out to many time steps.

3.2 Floating Base Position-Velocity State Estimator

The state estimator used in this work is based on [103, 104]. For a floating base humanoid, the

base has three translational and three rotational degrees of freedom. We designate the pelvis as

the base link. For the Atlas robot, there is a 6-axis IMU attached to the pelvis. The IMU measures

angular velocity and linear acceleration, and also provides an estimate of the pelvis orientation in

the world frame. We use the orientation estimate from the IMU without modification. The pelvis

state estimator estimates the global pelvis position px and linear velocity pv. It is a multiple

model Kalman filter with contact switching. We design a steady state Kalman filter for each

possible contact state in advance. The current contact state can be specified by the controller or

estimated from vertical forces measured by the foot force torque sensors. The IMU has known

position and orientation offsets relative to the pelvis origin. These offsets have already been

taken into account, so the following equations are offset free.

The prediction step (process dynamics) of the pelvis Kalman filter is simply

x−k =

 p−x,k
p−v,k

 = f(x+k−1) =

 p+x,k−1 + p+v,k−1dt

p+v,k−1 + ak−1dt

 , (3.1)

where xk is the state estimate. The subscript k is the step index, and the superscript “−” and “+”

represent before and after the measurement update. The net linear acceleration of the IMU a is

transformed from the IMU frame to the world frame using the IMU orientation. It is straightfor-
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ward to linearize the process dynamics to get the state transition matrix Fk

Fk =

 I dtI

0 I

 . (3.2)

The measurement update step is slightly more complicated. There is no sensor directly mea-

suring the position and velocity of the pelvis in world coordinates. We use the following as-

sumptions in place of an actual measurement: we know the contact points, and we know how the

contact points move in Cartesian space. These assumptions are not limited to walking, but we

will use walking as an example. Let the point of the ankle joints of the left and right feet be cl

and cr in Cartesian space, and the corresponding velocities be ċl and ċr. In the double support

phase (DS), we assume the feet are not moving to obtain the following measurements

zk,DS =



cl,k

cr,k

ċl,k

ċr,k


=



cl,ηl

cr,ηr

0

0


. (3.3)

The time index η is the time step when the foot is detected to be firmly on the ground using the

force sensors.

To write the measurement equations, we need the prediction to be a function of pelvis position

and velocity. We use the floating base forward kinematics FK(·):

yk,DS =



FKcl(qk)

FKcr(qk)

FKċl(qk, q̇k)

FKċr(qk, q̇k)


(3.4)
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The observation matrix Hk is computed by linearizing Eq. 3.4, and it turns out to be the identity.

Hk,DS = I12×12 (3.5)

The stance foot is assumed to be fixed in the single support phase, so Eq. 3.3, Eq. 3.4, and

Eq. 3.5 are modified to account for contact switching.

3.3 Full Body Controller as Quadratic Programs

For many tasks, we specify desired Cartesian motions for specific locations on the robot (e.g.

foot, hand and CoM) in the high level controller. The full body controller takes these motions

as inputs, and computes physical quantities for individual joints such as joint position, velocity,

acceleration, and torque. Some of these outputs are directly used as targets in the joint level

servos on the robot in Eq. 1.1. Figure 3.1 shows block diagrams for the walking and manipulation

controllers. Both IK and ID are formulated as quadratic programming problems that share a

general form of Eq. 3.6.

min
X

0.5X TGX + gTX

s.t. CEX + cE = 0

CIX + cI ≥ 0

(3.6)

The unknown X and constraints CE, cE, CI and cI are problem specific, and will be discussed

in detail. Both QP problems are solved at each time step in a 2ms control loop with a standard

solver. For both problems, we optimize a cost function of the form 0.5‖AX − b‖2, and for Eq.
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Figure 3.1: For walking, in addition to tracking desired joint torques, the lower body joint level
controllers have velocity control loops whose targets are the integrated accelerations optimized
by inverse dynamics. The arm joints have position and velocity control loops, and the desired
values come directly from the high level plan. For manipulation, a desired full state is first solved
using inverse kinematics, which is then tracked by inverse dynamics.

3.6, G = ATA, g = −AT b. A and b can be decomposed into smaller blocks as

A =



w0A0

w1A1

...

wnAn


, b =



w0b0

w1b1
...

wnbn


. (3.7)

Through this cost function, we specify a set of desired behaviors according to the high level con-

troller’s goal, and penalize the robot’s deviation from the desired behaviors. Each row in Eq. 3.7

emphasizes a certain desired behavior. wi are weights that express the relative importance among

often overly constrained and potentially conflicting goals. During implementation, finding rea-

sonable weights is fairly straight forward, and takes fewer than one day of robot experiments.
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3.4 Centroidal Momentum Matrix

Introduced in [63, 64], the centroidal momentum, which consists of the system’s linear momen-

tum P and angular momentum L, is linear with respect to the generalized velocity q̇.

P
L

 = Cq̇

Ṗ
L̇

 = Cq̈ + Ċq̇

(3.8)

C is the so called centroidal momentum matrix. C is 6×N , where N is the degrees of freedom

for the system. C is particularly useful for our inverse dynamics and inverse kinematics con-

troller because it provides a linear relationship between the motion of the system centroid and

the generalized state variables. Eq. 3.8 enables us to map costs on P , L, Ṗ , and L̇ to costs on q̇

and q̈. Since Ṗ and L̇ has to equal to the net external force and torque, C also relates net external

wrench with q̈.

We can compute C with

C = PJ , (3.9)

where P is 6× 6M , J is 6M ×N , and M is the number of links.

P =

T 03×3M

U V


T =

[
m1I3×3 m2I3×3 . . . mMI3×3

]
U =

[
m1[r1]× m2[r2]× . . . mM [rM ]×

]
V =

[
R1I1R

T
1 R2I2R

T
2 . . . RMIMR

T
M

]
(3.10)

mi is mass of the ith link, ri is the vector from the system CoM to the ith link’s center of mass,
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and [ri]× is the cross product matrix such that

[ri]×b = ri × b

ri = xcomi − xCoM ,
(3.11)

where xcomi and xCoM are the center of mass for the ith link and the overall system. Ri is the

rotation matrix representing the orientation of the ith link, and Ii is the moment of inertia matrix

for the ith link in its body frame.

J =



Jp1

Jp2
...

JpM

Jr1

Jr2
...

JrM



(3.12)

Jpi and Jri are the position and rotation part of the Jacobian matrix for the ith link computed at

its center of mass.

Since P =
∑M

i miẋCoM , we can define the Jacobian for CoM, JCoM , as

JCoM =
1∑M
i mi

Cp, (3.13)

where Cp consists of the top three rows of C.
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3.5 Inverse Dynamics

Let M be the inertia matrix, h be the sum of gravitational and Coriolis and centrifugal forces, τ

stand for a vector of joint torques, J be the stacked Jacobian matrix for all the contacts, and λ be

a vector of all contact wrenches in the world frame. As pointed out by Herzog, et al. [25], the

equations of motion can be decoupled into two parts:

Muq̈ + hu = JTu λ

Mlq̈ + hl = τ + JTl λ,

(3.14)

where the top represents the six rows of the floating base, and the bottom corresponds to the

actuated DoF. τ is thus linearly dependent on q̈ and λ,

τ =Mlq̈ + hl − JTl λ. (3.15)

The top six rows of Eq. 3.14 can be rewritten as

[
Mu −JTu

]q̈
λ

+ hu = 0. (3.16)

Let X =

[
q̈ λ

]T
. Given a state, the equations of motion are linear in terms of X . In addition,

Cartesian motions and centroidal momentum are also linear with respect to X given by

ẍ = Jq̈ + J̇ q̇ (3.17)

and Eq. 3.8. Thus, inverse dynamics can be formulated and solved efficiently as a quadratic

program. We used to included τ as part of X as well, which incurred unnecessary computation.

The current implementation replaces all occurrences of τ in the cost function and inequality

constraints with Eq. 3.15. The cost function consist of mainly momentum and motion tracking
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terms and various regularization terms. Eq. 3.16 is enforced as equality constraints, and the

inequality constraints mostly deal with contact wrench and joint torque limits.

3.5.1 Structural Change Smoothing

In the previous implementation, the inverse dynamics QP changes dimension based on the num-

ber of contacts. Discrete changes can also happen due to constraint manifold changes, e.g. shrink

foot support polygon to be at the toe during toe-off. Such changes cause large changes in the

outputs that can induce undesired oscillations on the physical robot. These jumps are caused by

different problem specifications, and cannot be smoothed by just adding cost terms that penalize

changes. Our solution is to maintain the same QP dimension and gradually blend the constraints

over a short period of time. We always assume the largest number of possible contacts, but heav-

ily regularize the magnitude of the contact wrench and relax the acceleration constraints for the

unused contacts. When a change is required in hard constraints, we gradually blend it using a

low pass filter.

3.5.2 Cost Function

The cost function is essentially a weighted sum of many quadratic terms penalizing X for devi-

ating from some desired X ∗. It can be rewritten in a block form as in Eq. 3.7, and we list a few

examples in the following subsections.

Cartesian Space Acceleration Tracking

Given Eq. 3.17, we can penalize deviation from the desired Cartesian acceleration using

Acart =

[
J 0

]
bcart = ẍ∗ − J̇ q̇.

(3.18)
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The input ẍ∗ is computed by

ẍ∗ = Kp(x
∗
d − x) +Kd(ẋ

∗
d − ẋ) + ẍ∗d, (3.19)

where x∗d, ẋ
∗
d and ẍ∗d are specified by a higher level controller, and x and ẋ are computed by for-

ward kinematics based on the estimated current robot state. Many objectives such as CoM, hand,

foot and torso motions are specified with this form. JCoM is defined by Eq. 3.13. Depending on

the tasks, we can drop rows in Eq. 3.18 that correspond to dimensions that we do not want to

track.

We maintain contact acceleration constraints using high weight cost terms (soft constraints)

as opposed to hard constraints. For these cost terms, we set ẍ∗ = 0 in Eq. 3.19. We think using

high weight soft penalties is much more forgiving when given conflicting desired motions and

numerically more stable.

Centroidal Dynamics

In the previous implementation, the desired change in centroidal momentum was expressed as

a cost term using the net external wrench from the contact forces. On the other hand, it is also

linear with respect to the generalized acceleration in Eq. 3.8. In the current implementation, the

latter form is preferred since we can then freely add virtual forces in the generalized coordinates

or in the Cartesian space that are useful for handling modeling errors.

ACM =

[
C 0

]

bCM =

Ṗ ∗
L̇∗

− Ċq̇, (3.20)

where Ṗ ∗ and L̇∗ are desired change in linear and angular momentum. In the current implemen-

tation, Ṗ ∗ is generated by plugging in the output of DDP’s linear policy into the same point mass
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model, and L̇∗ is set to damp out angular momentum. Optimization for L̇∗ is part of the future

work.

Approximated Value Function for the CoM

A new term is added to the cost function to approximate the value function of the CoM state with

a pure quadratic. Let XCoM =

xCoM
ẋCoM

 be the current CoM state, and we can approximate the

state for the next time step with

X ′CoM =

x+ ẋCoMdt+ 0.5(JCoM q̈ + J̇CoM q̇)dt
2

ẋCoM + (JCoM q̈ + J̇CoM q̇)dt


=

0.5JCoMdt2
JCoMdt

 q̈ +
xCoM + ẋCoMdt+ 0.5J̇CoM q̇dt

2

ẋCoM + J̇CoM q̇dt

 .
(3.21)

We can also approximate the cost-to-go for the next time step with

V (X ′CoM) ≈ 0.5(X ′CoM −X∗CoM)TV ∗XX(X
′
CoM −X∗CoM), (3.22)

where V ∗XX and X∗CoM are the value function’s second order derivative and the setpoint. These

are generated by CoM trajectory planning with DDP. Finally, we can write the term for the value

function as

AV =

V ′
0.5JCoMdt2

JCoMdt

 0


bV = −V ′

xCoM + ẋCoMdt+ 0.5J̇CoM q̇dt
2 − x∗CoM

ẋCoM + J̇CoM q̇dt− ẋ∗CoM

 ,
(3.23)

where V ∗XX = V ′TV ′
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Center of Pressure Tracking

Directly specifying CoP for each contact can be especially useful during transitions such as toe-

off. The stacked contact wrench λ is defined as

λ =



F0

M0

F1

M1

...


, (3.24)

where Fi and Mi are the ith contact force and torque. For the current implementation, the first

two contacts correspond to the left and right foot. This term can be written as

Acop =

0
. . .

0 0 p∗x 0 1 0

0 0 p∗y −1 0 0


Rb

w 0

0 Rb
w

 . . .




bcop = 0,

(3.25)

where p∗xx and p∗y are desired CoP in the body frame, and Rb
w is the rotation from world frame to

body frame.

Weight Distribution

In the current implementation, weight is only distributed between two feet, and this term is active

only in double support. Desired weight distribution is specified by w∗ = FL
z /(F

L
z + FR

z ), where

FL
z and FR

z are the vertical forces at the left and right foot. We add this term to the cost function

with

Aweight =

[
0

[
Sweight 0

]]
bweight = 0.

(3.26)
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Sweight is a 1× 12 vector with zeros, except Sweight(3) = 1− w∗ and Sweight(9) = −w∗.

Direct Tracking and Regularization

We can also directly specify desired values for q̈, τ and λ:

Aqdd∗ =

[
I 0

]
bqdd∗ = q̈∗

Aλ∗ =

[
0 I

]
bλ∗ = λ∗

Aτ∗ =

[
Ml −JTl

]
bτ∗ = −hl + τ ∗.

(3.27)

Zero is used if no target value is specified except for the vertical forces, which are regularized

using gravitational forces weighted by the weight distribution. Similar to Eq. 3.19, target joint

acceleration can be computed based on the desired joint position, velocity and acceleration. This

term is useful for directly controlling specific joints or forces. It also regularizes X to make the

problem well conditioned.
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Change in Torque and Contact Wrench

To avoid high frequency oscillations in the outputs, we penalize changes in τ and λ similarity to

Eq. 3.27.

Adλ =

[
0 I

]
bdλ = λprev

Adτ =

[
Ml −JTl

]
bdτ = −hl + τprev

(3.28)

where τprev and λprev are torque and contact wrench computed in the last time step.

3.5.3 Constraints

F and M in Eq. 3.24 are defined in the world frame. They can be rotated into the body frame

with

F b = Rb
wF

M b = Rb
wM,

(3.29)

where Rw
b is the rotation matrix representing the foot’s orientation in the world frame. Friction

constraints are approximated by

|F b
x| ≤ µF b

z

|F b
y | ≤ µF b

z .

(3.30)
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The forces and torques at the feet need to obey CoP constraints,

d−x ≤ −M b
y/F

b
z ≤ d+x

d−y ≤M b
x/F

b
z ≤ d+y ,

(3.31)

where F b and M b denote forces and torques in the foot frame, and d− and d+ are the sizes of

foot. The vertical force also needs to be positive

0 ≤ F b
z . (3.32)

Eq. 3.16 is used as equality constraints. Torque limits can be easily added into the inequality

constraints using Eq. 3.15.

3.5.4 Parameters

Weights for the walking controller are summarized in Table 3.1. wqdd is for joint acceleration.

wcomdd is for CoM acceleration. wutorsowd and wpelviswd are for upper torso and pelvis angular

acceleration. wfootdd is for tracking foot linear and angular acceleration, and it is multiplied

by 100 during stance. wregF and wregTau are regularization weights for contact force and joint

torques. ww is for weight distribution. wcop is for center of pressure. wdF and wdτ penalize

changes in contact force and joint torques between two consecutive time steps. wV is for value

function.

For upper body orientation tracking,Kp andKd in Eq. 3.19 are 50 and 5.66 for roll and pitch,

and 10 and 3.16 for yaw. For swing foot tracking, Kp and Dd are 100 and 8 for X and Y , 70 and

13.39 for Z, 50 and 11.31 for roll and pitch, and 30 and 8.76 for yaw. For joint tracking, Kp and

Kd are 5 and 2. Parameters are task dependent, but do not change much. These parameters are

for the walking controllers on the physical robot.
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Table 3.1: Weights for ID cost function (walking controller)
wqdd wcomdd wutorsowd wpelviswd wfootdd wcop
0.1 1 0.3 0.3 1 10−4

ww wregF wregTau wdF wdτ wV
0 10−3 0 10−2 3× 10−2 0

3.6 Inverse Kinematics

We took a static approach to all the manipulation tasks for the DARPA Robotics Challenge. The

motions were designed to be slow enough such that we do not need to explicitly reason about

dynamics for motion planning and actual robot execution. On the other hand, the robot is more

likely to run into kinematic constraints when performing manipulation tasks, So we introduced

an explicit inverse kinematic module to maintain a feasible full body kinematic state that best

tracks the objectives while obeying constraints. The inverse dynamics controller was used to

stabilize the robot around this full state.

We use a gradient based approach to the inverse kinematics problem. A generalized veloc-

ity is solved on every control cycle using quadratic programming. Configuration is numerically

integrated from the optimized velocity. For this quadratic program, X = q̇ik. The numerically in-

tegrated configuration is denoted by qik, and all the internal states such as position and orientation

computed by forward kinematics are denoted with subscripts ik.

3.6.1 Contact Adaption

Since our current state estimator does not incorporate exteroceptive sensor information, it can not

correct for absolute position drift. Any desired Cartesian positions for long term tracking need to

be properly updated because such drift is not present in IK’s internal model. In the IK controller,

we use high weight and high gain tracking terms to maintain stationary contacts. These contacts

are initialized based on forward kinematics when they are first established. One intuitive way to

compensate for the state estimator drift is to slowly update IK’s desired contact poses toward the
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current estimated ones. We refer to these desired contact poses as “anchors”, x∗anchor.

x∗anchor = αxcontact + (1− α)x∗anchor. (3.33)

In Eq. 3.38, x∗anchor replaces x∗d, and ẋ∗d = 0.

3.6.2 Self Collision Avoidance

A lot of the fine adjustments for manipulation are done using human-in-the-loop tele-operation,

where small Cartesian corrections are directly commanded. In this case, motion planning is not

used because we want the system to be very responsive. So the controller has to be aware of

collisions. Even with planned collision free trajectories, it is possible that the controller needs

to modify the plan in unexpected situations during execution. There can be very little clear-

ance for the planned trajectories, so small variations can invalidate the collision free property.

Thus, built-in collision avoidance is beneficial. We focus on avoiding self collision because it is

computationally tractable, and is still very useful for tele-operation or visual servoing.

We use capsules as collision shapes for the major limbs and torso. Figure 3.2 shows the

collision shapes we use for the Atlas robot. Given the current configuration qik of the robot,

for any two capsules of interest, Ca and Cb, we first find the closest two points on their surfaces

respectively, ca and cb. Assuming ca and cb will remain the closest points on Ca and Cb for the

next time step, we can construct a frame Oa, whose origin is at ca, the Z axis has the same

direction as cb − ca, and the Y axis is perpendicular to both cb − ca and Ca’s principal axis da.

Za =
cb − ca
|cb − ca|

Ya = Za × da

Xa = Ya × Za

Ra =

[
Xa Ya Za

]
(3.34)

33



 

�� 

�� 

�� 

�� 

�� �� 

�� 
�� 

(a) Coordinate system for setting up a collision
constraint

(b) Simplified collision
shapes for the Atlas
robot

Figure 3.2: Figure 3.2(a) is an illustration for Eq. 3.34 and Eq. 3.35. Ca and Cb are the two
collision shapes of interest. ca and cb are the two closest points on Ca and Cb. da is a unit
vector that represents the principle axis of Ca. Xa, Ya and Za are defined in Eq. 3.34. Figure
3.2(b) shows the collision shapes we used for the Atlas robot (represented with transparent grey
capsules).

Let Ha =

Ra ca

0 1

 be the homogeneous transformation from the world frame to Oa, and we

use acb to denote the position of cb specified in frame Oa. Collision free between Ca and Cb can

be approximated by enforcing acb to keep a minimum value in its Z coordinate. Let ′ denote

variables for the next time step. Assuming the orientation for O′a is the same as Oa, we have

H ′a =

Ra ca + Jaq̇dt

0 1


c′b = cb + Jbq̇dtac′b

1

 = H ′a
−1

c′b
1


⇒ ac′b = R−1a (cb + Jbq̇dt)−R−1a (ca + Jaq̇dt)

= R−1a (Jb − Ja)q̇dt+R−1a (cb − ca),

(3.35)
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where Ja and Jb are Jacobian computed at ca and cb. Eq. 3.35 is linear with respect to q̇, and the

inequality constraint for avoiding collision is

ac′b[Z] ≥ ε, (3.36)

where [Z] takes only the Z component of ac′b, and ε is some positive safety margin.

Due to the kinematics of the Atlas robot and empirical observations, we only consider these

pairs for possible self collisions to speed up computation:

• left and right hand

• left and right forearm

• left (right) forearm and pelvis

• left (right) hand and right (left) forearm

• left (right) hand and torso

• left (right) hand and pelvis

• left (right) hand and left (right) thigh

• left (right) hand and right (left) thigh

• left (right) hand and left (right) shin

• left (right) hand and right (left) shin

3.6.3 Cost Function

We list a few example objectives for Eq. 3.7 for IK.
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Cartesian Space Velocity Tracking

We penalize deviation from the desired Cartesian velocity ẋ∗ with

Acart = J(qik)

bcart = ẋ∗,

(3.37)

where

ẋ∗ = Kp(x
∗
d − xik) + ẋ∗d. (3.38)

We use a different set of Kp here than in ID. Cartesian space tracking and contacts are both

handled with Eq. 3.37 and Eq. 3.38, although the weights and desired targets, x∗d and ẋ∗d are

different.

Direct Tracking and Regularization

Astate = I

bstate = q̇∗,

(3.39)

where q̇∗ can be a target joint velocity or zero for regularization. Similar to Eq. 3.38, target joint

velocity can be computed based on the desired joint position and velocity.

Change in Velocity

Adq̇ = I

bdq̇ = q̇prev,

(3.40)

where q̇prev is the result from the previous time step. This term is useful to eliminate high

frequency oscillations.
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Table 3.2: Weights for IK cost function
wqd wcomd wutorsow wpelvisw wfootd wdq̇
0.5 10 3 3 100 5× 10−3

3.6.4 Constraints

We do not impose equality constraints in the inverse kinematics QP. Inequality constraints mainly

consist of joint and Cartesian limits and self collision avoidance described in Section 3.6.2.

The joint limit constraints are

q− ≤ qik + q̇dt ≤ q+, (3.41)

where dt is the time step, and q− and q+ are the upper and lower joint limit. For Cartesian space

pose constraints,

x− ≤ xik + J(qik)q̇dt ≤ x+, (3.42)

where x− and x+ are the upper and lower limits. Velocity constraints in joint space can be easily

added, and Cartesian space velocity constraints need to be transformed by the Jacobian matrix.

Self collision avoidance is also achieved using inequality constraints, which is described in

Section 3.6.2 using Eq. 3.36.

3.6.5 Parameters

Weights are summarized in Table 3.2. wqd is for joint velocity tracking. wcomd is for CoM

velocity. wpelvisw and wutorsow are for pelvis and torso angular velocity. wfootd is for foot linear

and angular velocity. wdq̇ penalizes changes in velocity. The position gain Kp used in Eq. 3.38

is 5 along the diagonal for CoM, upper torso orientation tracking, 10 for foot tracking, and 2 for

joint tracking.
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3.7 Modeling Error and Disturbance Force Compensation at

the CoM Level

Depending on the configuration, our Atlas has up to 3cm of error in the measured CoP and the

CoM computed by forward kinematics when the robot is stationary. This indicates a significant

modelling error on the CoM level considering the foot is only 12cm wide. A CoM offset esti-

mator based on LIPM dynamics and IMU measurements is developed in [103] to estimate this

modeling error xerr.

xerr = xtruecom − xfkcom, (3.43)

where xfkcom is the model’s predicted CoM position, and xtruecom is the true CoM position assuming

LIPM dynamics. xerr’s Z coordinate is 0. The CoM offset can also be treated as a force, Ferr,

applied at the model’s CoM, and vice versa. Using LIPM dynamics,

Ferr =

∑M
i mig

z
xerr, (3.44)

where z is the height difference between model’s CoM and the support. We can lump all un-

planned horizontal external contact forces into Ferr, which is compensated in the ID controller.

The sum of gravitational and Coriolis and centrifugal forces is modified as:

h′ = h− JTCoMFerr. (3.45)

xerr can be used to offset the desired CoM in the nominal plans. This corresponds to a behavior

that leans into the external force, so that the CoP remains at the planned position.
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Table 3.3: Control modes for each joint
Back z Back y Back x Neck y

Kqd, Kτp, Fqd Kld, KFp, Fld Kld, KFp, Fld Kqp, Kqd, Kqi

Hip z Hip x Hip y Knee y Ankle y Ankle x
Kld, KFp, Fld Kld, KFp, Fld Kld, KFp, Fld Kld, KFp, Fld KFp, Fld KFp, Fld

Shoulder z Shoulder x Elbow y Elbow x 3 Elec. Wrists
Kqp, Kqd, Kτp Kqp, Kqd, Kτp Kqp, Kqd, Kτp Kqp, Kqd, Kτp Kqp, Kqd, Kqi

3.8 Robot Implementation

3.8.1 Joint Level Controllers

On the Atlas robot, all the leg, back and upper arm joints are hydraulic. The joint level controllers

compute valve commands based on

i = Kqp(qd − q) +Kqi

∑
(qd − q)dt

+Kqd(q̇d − q̇) + Fqdq̇ + Fqdd q̇d

+Kτp(τd − τ) + Fτdτd

+ Fconst.

(3.46)

In Eq. 3.46, K∗ stands for feedback gains, F∗ stands for feedforward gains, Fconst is a constant

bias term, and subscript d denotes the desired values. We use Kqp, Kqd, Kτp, Fqd and Fconst in

our implementation. The Fqd term is used to implement the velocity compensation scheme in

[7]. The electric forearms share the same interface, but we only use the Kqp, Kqd and Kqi terms.

During implementation, we found that for the linear actuators (all the leg joints and back pitch

and roll joint), specifying gains in actuator coordinates improved joint tracking performance.

Table 3.3 summarizes the set of gains we use for each joint on Atlas. For the subscripts, q

denotes joint space values, and l denotes actuator space values. The actual gains are listed in

Table 3.4, and the last three columns are gains specified in actuator space.

The actuator gains need to be transformed to fit the interface’s joint space specification. This

39



is done using the transmission information disclosed by Boston Dynamics. We use actuator gains

for all the linearly actuated joints, which are all the leg joints and spine pitch and roll joints. Let

l denote piston length, and e∗ for tracking error for the following equations. Valve commands

computed in either joint or actuator space should be the same. For the Kqd term, since q̇ = dq
dl
l̇,

Kqdeq̇ = Kldel̇

Kqd
dq

dl
el̇ = Kldel̇

Kqd =
dl

dq
Kld.

(3.47)

Similarly, Fqd = dl
dq
Fld.

For the torque feedback term, the virtual work produced in both spaces should be the same,

so τdq = Fdl. For Kτp,

Kτpeτ = KFpeF

Kτp
dl

dq
eF = KFpeF

Kτp =
dq

dl
KFp.

(3.48)

dl
dq

is a function of q and specified in a table by Boston Dynamics. Linear interpolation is used

for smoothing.

The ankle roll and pitch joints on Atlas are mechanically coupled. Let qy and qx stand for the

ankle pitch and roll joint angle, and ll and lr be the left and right piston length. The relationship

between the joint and actuator velocity is

 l̇l
l̇r

 = J

q̇y
q̇x

 , J =

 dll
dqy

dll
dqx

dlr
dqy

dlr
dqx

 . (3.49)

40



Internally, valve commands for the left and right ankle actuators are computed by

il
ir

 = J

i′qy
i′qx

+

Fqy
Fqx


const

, (3.50)

where i′qy and i′qx are computed with Eq. 3.46 without the Fconst term.

Thus for the velocity term,

Kldel̇ = JKqdeq̇ = JKqdJ−1el̇

⇒ Kqd = J−1KldJ
(3.51)

where Kld and Kqd are 2 × 2 gain matrices, and el̇ and eq̇ are 2 × 1 error vectors. Let Kqd =kyy kyx

kxy kxx

,

il
ir


qd

= JKqdeq̇

= J


kyy 0

0 kxx


eq̇y
eq̇x

+

kyxeq̇x
kxyeq̇y




⇒ Ky
qd = kyy

Kx
qd = kxx

F y
const +=

dll
dqy

kyxeq̇x +
dll
dqx

kxyeq̇y

F x
const +=

dlr
dqy

kyxeq̇x +
dlr
dqx

kxyeq̇y .

(3.52)

The components for Fqd terms are computed in the same way.
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Joint Name Kqp Kqi Kqd Kτp Fqd Kld KFp Fld
Back z 0 0 2.375 0.02 0.3 X X X
Back y 0 0 X X X 100 0.0005 20
Back x 0 0 X X X 100 0.000465 20
Neck y 35 0.05 0.6 0 0 X X X
Hip z 0 0 X X X 80 0.00025 8
Hip x 0 0 X X X 100 0.001 20
Hip y 0 0 X X X 100 0.002 40
Knee 0 0 X X X 100 0.002 40

Ankle y 0 0 X X X 0 0.0025 30
Ankle x 0 0 X X X 0 0.0025 30

Shoulder z 30 0 0.3 0.02 0 X X X
Shoulder x 30 0 0.3 0.02 0 X X X

Elbow y 30 0 0.3 0.02 0 X X X
Elbow x 30 0 0.3 0.02 0 X X X

Elec. Wrists 15 0.05 0.3 0 0 X X X

Table 3.4: Joint level gains. The last three columns are gains specified in the actuator side.

For deriving torque gains, the piston force and joint torque are related by

τττ = JTF, (3.53)

where τττ and F are vectors. The derivation is similar to Eq. 3.51,

KFpeF = JKτpeτ = JKτpJT eF

Kτp = J−1KFpJ−T ,
(3.54)

and the individual terms are computed same as in Eq. 3.52.

For the ankle joints, velocity tracking is achieved by adding a velocity term in the desired

torque as:

τd += k(q̇d − q̇), k =


20, if swing

10, if stance
(3.55)
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Figure 3.3: Comparison of the velocity traces of the left hip roll joint. Blue: position derivative
filtered by an acausal low pass filter (50Hz cutoff) with no phase shift. Green: second order
Butterworth filter with a cutoff frequency of 12.5Hz. Red: Boston Dynamics’ default filter.

3.8.2 Onboard Joint Velocity Filtering

Independent of user side state estimation, the Atlas robot generates joint velocity signals by

filtering the finite differences of the measured joint positions. These are also used in the onboard

joint level controllers in Eq. 3.46. In addition to Boston Dynamics’ default filters for joint

position, velocity, torque and error in torque, second and third order low pass filters with custom

parameters are also provided. We have the option to completely replace the default filters with

the custom ones in the joint level servos. We used second order Butterworth filters for joint

velocities and kept the default filters for the rest. We found that Boston Dynamics’ default

velocity filter was sensitive to sharp velocity changes, which easily resulted in high frequency

oscillations when we tried to use higher velocity gains. On the other hand, it filtered slow signals

more and introduced a larger delay. Figure 3.3 shows a comparison between the default velocity

filter and a second order Butterworth filter for the left hip roll joint. We were able to drastically

increase the velocity gains after we replaced the onboard velocity filters. The cutoff frequencies

are summarized in Table 3.5.
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Table 3.5: Cutoff frequencies for second order Butterworth joint velocity filters [Hz]
Back z Back y Back x Neck y

10 10 10 2
Hip z Hip x Hip y Knee y Ankle y Ankle x

10 12.5 15 15 15 15
Shoulder z Shoulder x Elbow y Elbow x 3 Elec. Wrists

7 7 5 5 10

Table 3.6: Elasticity compensation parameters for the leg joints
Hip z Hip x Hip y Knee y Ankle y Ankle x
1/7000 1/6000 0.0001 0.0001 0.0001 0.0001

3.8.3 Joint Elasticity Compensation

Due to pre-transmission joint position sensing and compliance in the mechanism, forward kine-

matics is not very accurate on Atlas. For stationary single stance, there can be up to 3cm offsets

between the model CoM from forward kinematics and the measured CoP. We implemented a

simple linear torque dependent heuristic to reduce the effects of joint compliance, which is pro-

posed in [46]. The corrected joint angle qc is computed with

qc = q −Keτ (3.56)

where q and τ are the measured joint position and torque. This correction is only applied to the

leg joints, and stiffness parameters are summarized in Table 3.6.

3.8.4 Control Loop Frequency

The joint level controllers run at 1kHz, and we can receive states and issue commands at the

same frequency. On the other hand, one control cycle can take up to 1.5ms. In the current

implementation, the state estimator runs within the robot communication loop run at 1kHz, and

the controller runs on a separate thread at 500Hz. We did not pursue a real-time operating system

in favor of easier development. Stock Ubuntu 12.04 was used on the control computers, and we
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observed consistent and uniform cycle time after disabling the X server (for graphical interface).

It is possible that the nonuniform cycle time had a negative impact on earlier attempts to integrate

ID accelerations to desired velocities [20].

3.9 Summary

The inverse dynamics controller was first developed and successfully applied on the simulated

Atlas robot. It greatly simplified high level controller design since the details of the physical

system was abstracted away. Different from other hierarchical formulations of inverse dynam-

ics, ours is build around a weighted sum of cost terms. We can easily accommodate physically

impossible desired targets or conflicting terms. This can be useful for tele-operation when feasi-

bility checks are hard to perform. During early robot implementation, we discovered that using

inverse dynamics alone worked reasonably well for the stance leg but not for the swing leg. In

particular, it lacked the necessary kinematic tracking accuracy for swing foot placement and arm

motion control. A main difficulty for controlling these lightly loaded joints using pure torque

control is that the unmodeled and unmeasured friction forces on such joints are comparable with

the torques generated by inverse dynamics. This necessitates additional compensatory torques

or some form of position or velocity control. For practical reasons, adding kinematic feedback

is more viable than directly compensating for modeling errors on the force level. We developed

two separate full body control schemes for walking and manipulation that generated joint level

kinematic targets differently. In addition to the torque feedback loops, the walking controller had

velocity loops whose targets were integrated from the accelerations computed by inverse dynam-

ics. For manipulation, inverse kinematics was used to generate the full state first, and inverse

dynamics was used for stabilization. These design choices were motivated by hardware limi-

tations and different task requirements for walking and manipulation. We successfully applied

these controllers to many tasks in the DARPA Robotics Challenge, and the details can be found

in Chapter 4. The same walking controller was later used for the push recovery and dynamic
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walking experiments in Chapter 5.
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Chapter 4

Two Level Controllers for Walking and

Manipulation

In this chapter, we will briefly present results for simulated walking, and then explain the walking

and manipulation controllers that we developed for the DARPA Robotics Challenge Finals in

detail. Pictures of Atlas performing various DRC mobility and manipulation tasks are shown in

Figure 4.4 and Figure 4.7. All of these controllers consist of a high level CoM planner and a

full body controller. After the DRC Trials at the end of 2013, we focused on implementing a

reliable walking controller on the Atlas robot. A large amount of energy was spent on tuning

gains and filter parameters on the hardware to improve joint level tracking performance. The low

level full body controller was also redesigned to address an inconsistency issue we encountered

during the DRC Trials [20]. With these changes, we gained significant improvements in terms

of performance and reliability. At top speed, our Atlas is able to walk over 20 times faster than

in 2013. We also completed two one hour long missions at the DRC Finals without any physical

human intervention.

All hardware experiments were conducted with the Atlas robot built by Boston Dynamics. It

has 30 actuated degrees of freedom, six for each leg, seven for each arm, three for the spine, and

one for neck pitch. Most joints have hydraulic actuators with the exception of the neck and the
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last three joints on each arm that are electric.

4.1 Simulated Walking

We first present results from the simulation phase of the DRC. The simulation environment was

based on Gazebo by the Open Source Robotics Foundation. The simulated Atlas robot had 28

joints that were pure torque sources: six for each leg and arm, three for the back joints, and one

for neck pitch. We could run simulation close to real-time on a computer with an Intel Xeon(R)

CPU E5-2687W CPU with 32G memory when simulating for the full task scenario including

environmental physics and sensors.

The walking controller had two threads: one thread was dedicated to the full body controller

solving inverse dynamics at 1kHz, and the other optimized the CoM trajectory for the next three

foot steps. For runtime, trajectory optimization usually completed within 50ms, and the full

body controller ran at roughly 1kHz. This walking controller replanned CoM trajectory per

foot step starting with the last planned rather than the measured CoM states. This design choice

was made so that we could preplan CoM trajectories in a separate thread before touchdown.

Although we were able to offset the computational cost of the nonlinear trajectory optimization,

it required high CoM tracking accuracy. It also required accurate swing foot tracking and terrain

sensing to meet the preplanned foot placement and touchdown timing. Due to these limitations,

this walking controller only worked well in simulation, which had few modelling errors and little

sensing uncertainty.

4.1.1 Fast Flat Ground Walking

We were able to demonstrate toe-off and heel-strike behaviors during flat floor walking by using

simple heuristics to guide the full body controller. For heel-strike, a desired touchdown pitch

angle was specified. For toe-off, we first changed the reference point (where the contact Jacobian
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(a) Snapshots for simulated fast walking (b) Simulated walking on rough terrain

Figure 4.1: Simulated Atlas walking on flat ground with 0.8m step length and 0.7s per step, and
the same controller tested in the Rough Terrain Task in DARPA’s Virtual Robotics Challenge.

is computed) to the toe, constrained the CoP to be at the toe, and then specified a short but large

pitch angular acceleration in the foot frame. With these heuristics, we achieved a maximum step

length of 0.8m and 0.7s per step. Figure 4.1(a) shows a sequence of snapshots of simulated fast

walking on flat ground.

4.1.2 Rough Terrain

The controller could handle up to 0.4 rad inclined slopes, and continuously climb steps that were

0.2m high and 0.4m apart. We were able to successfully walk on the rough terrain environment

provided in the Virtual Robotics Challenge as well. In order to traverse rough terrain, an A*

planner modified from [28] was used to provide sequences of foot steps, which were given as

inputs to the walking controller. The CoM trajectory was optimized based on these foot steps,

and the desired swing foot trajectory was generated using quintic splines. CoM and swing foot

tracking is shown in Figure 4.2.
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Figure 4.2: fl and fr denote left foot and right foot respectively. Desire CoM and foot trajec-
tories are denoted with subscript d, and plotted in dashed lines. Actual CoM acceleration in the
last plot is computed by finite differencing velocity and truncated at ±3m/s2.
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4.2 Walking Controller for the DARPA Robotics Challenge

For the DRC Finals, our approach to walking is “slow and steady”, and we aim for maximizing

reliability and avoiding falls. In general, going slower makes state estimation easier, and estimat-

ing total external force possible [103], with which we can achieve accurate CoM state tracking

and good CoP control. Walking slowly also enables us to design safety features that allows paus-

ing the walking cycle in unexpected scenarios. Figure 3.1(a) summarizes the overall structure of

the walking controller, which mainly consists of the CoM trajectory planner (Chapter 2) and the

full body controller based on ID (Section 3.5 and Section 3.8). A nonlinear point mass model

that includes the Z dimension is used for CoM trajectory optimization to take height changes

into account. The CoM trajectory is replanned during every single support phase for the next two

foot steps. The swing foot trajectory is generated by a quintic spline from the liftoff pose to the

desired touchdown pose.

Since ID alone can not generate accurate swing motions on the real robot due to various

modelling errors, joint level kinematic targets are necessary. On the leg and spine joints, we add

a velocity feedback loop in addition to the torque loop. The desired velocity q̇d is numerically

integrated from the output acceleration q̈d from ID:

q̇d = α(q̇d + q̈ddt) + (1− α)q̇, (4.1)

where α = 0.95, q̇ is the current estimated joint velocity. Since desired motions for the arms are

always specified in joint space during walking, we can directly use those as kinematic targets.

More implementation details about the joint level controller can be found in Section 3.8.

4.2.1 Contact Switching

Matching actual and planned contact states is important, since tracking a desired CoP outside

of the actual region of support is infeasible. In the current implementation, the planned CoM
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trajectory is not modified if the controller misses the planned touchdown event. Instead, we

introduce a large negative Z acceleration for the swing foot to bring the foot down as fast as

possible. If we miss touchdown by a significant amount of time, the robot will fall. The controller

only makes the transition from double support to single support when stability is achieved for a

fixed duration. Otherwise, it throws an exception and asks for the human operator’s intervention.

In the context of the DRC, this is typically caused by the robot pushing against the environment.

On the dress rehearsal day, the robot was caught on the door frame when sidestepping through,

and the walking controller stopped promptly for manual recovery. Figure 4.3 shows data from

this event. After the controller detected a large external force, it paused liftoff and remained in

double support.

4.2.2 Toe-off

For static walking, the CoM needs to be completely shifted to the next stance foot during double

support. When taking longer strides or stepping to a greater height, extending the rear knee

alone is often insufficient to move the CoM all the way. Toe-off is one solution to this problem.

It used to be triggered by detecting the stance leg approaching knee straight. However, this is

not a sufficient condition for toe-off. For some challenging terrain or more dynamic walking,

blindly switching to toe-off mode without considering dynamic feasibility can cause the robot

to fall backwards. Instead, we first prepare for toe-off when a near straight knee configuration

is detected. This is achieved by adding a high weight cost term in ID that moves the CoP to

the toe without changing the constraint. Once the optimized CoP is close to the toe, we then

start shrinking the CoP constraint to be exactly at the toe. During toe-off, we shift the rear foot

reference point (where the Jacobian is computed) to the toe. The contact cost term in Eq. 3.18

for the rear foot is also modified. Position terms remain the same, and for the rotational terms,
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Figure 4.3: Atlas was caught on the door frame when sidestepping through it during the dress
rehearsal at the DRC Finals. The walking controller properly delayed liftoff and remained in
double support when it detected an anomaly. Single support phase is shown by the shaded area,
and the black dashed lines indicate the planned liftoff time. Estimated CoM is the sum of the
model CoM and the estimated CoM offset.
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we first compute

ARot =

[
R−1JRot 0 0

]
bRot = R−1(ẍ∗Rot − J̇Rotq̇),

(4.2)

where R is the foot’s rotation matrix. Only the first and third rows in Eq. 4.2, that correspond to

roll and yaw motion are added to the cost functions. ẍ∗Rot is set to zero. We also set d−y = d+y = 0

in Eq. 3.31. This effectively turns the rear foot contact into an unactuated pin joint around its

pitch axis. A slightly bent knee angle is given in Eq. 3.27 to avoid singularity.

4.2.3 Offset on the Planned CoM Trajectory

In the current implementation, the CoM trajectory cannot be replanned within one control tick

due to computational costs. So it is not possible to simply replan a CoM trajectory at each

touchdown event to account for the inevitable foot placement errors. We choose to replan at

the middle of each single support phase when CoM motion is relatively small for low walking

speed. In order to reuse the outdated CoM trajectory after touchdown, we introduce a simple

offset when computing the desired CoM position and CoP for the low level controller.

xoff = xactualfoot − x
planned
foot

x∗com = xplannedcom + αxoff

x∗cop = xplannedcop + αxoff ,

(4.3)

where xactualfoot is the actual location for the touchdown foot, and xplannedfoot is the planned. x∗com and

x∗cop are the modified CoM and CoP targets. α ramps from zero to one gradually after touchdown.
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4.2.4 Compensating for CoM Offset and Small External Forces

On the real robot, we have observed a significant (up to 3cm) configuration dependent CoM off-

set. In order to develop a reliable static walking controller, we design an estimator that explains

this CoM level modeling error using LIPM dynamics [103]. In the LIPM context, this discrep-

ancy can be treated as a combination of an external force and a true CoM offset. We treat it as

an external force and compensate for it in the ID controller. When a substantial external force is

detected, the walking controller pauses and waits for operator intervention.

4.2.5 Mobility for the DARPA Robotics Challenge

Mobility is a central focus in the DARPA Robotics Challenge. Aside from transitioning between

tasks, the robot needs to perform several locomotion tasks such as traversing piled cinder blocks

and climbing a standard staircase. We also need to walk off a platform after egressing from

the vehicle. Pictures of our Atlas performing these tasks are in Figure 4.4. We also successfully

walked over 30m several times in an outdoor parking garage in case we needed to skip the driving

and egress tasks. Figure 4.5 shows data of our Atlas walking over cinder blocks with onboard

battery power for the first time. To our surprise, we did not notice any significant differences

between using the battery pack or the usual power tether. CoM position and velocity tracking is

reasonably well during walking. CoP tracking is less accurate during the initial weight transfer

phase. This is caused by a mismatch between the actual weight distribution and the one computed

by the full body controller.

The biggest challenges we encountered during the DRC Finals for all the mobility tasks were

actually caused by kinematic constraints. Walking down certain arrangements of cinder blocks

was hard due to limited ankle pitch range. When stepping down, the rear ankle sometimes hit

joint limit during double support and caused a large CoP tracking error and the robot falling. We

worked around this issue by deliberately stepping over the cinder block, so that the foot could

physically roll over the edge. For climbing the staircase, if we put the foot fully on the step,

55



Figure 4.4: Atlas stepping off the platform after egress, walking over terrain and climbing stairs
during the DARPA Robotics Challenge Finals

the shank would collide with the next step when stepping up and tip the robot backwards. Our

solution was to place the foot splayed and the back of the foot slightly off the step.

After the DRC Finals, we also achieved dynamic walking with the same walking controller.

By disabling the safety features (Section 4.2.1) and simply increasing the cadence, our Atlas

could walk at 0.4m/s with 0.8s per step. Data for this experiment is shown in Figure 4.6.

4.3 Manipulation Controller

The manipulation controller is used for a variety of tasks such as traditional pick-and-place, valve

and door handle turning, and cutting with power tools (Figure 4.7) for the DRC. For the manip-

ulation controller, the desired full state is solved by IK and stabilized using ID. A block diagram

for the manipulation controller is shown in Figure 3.1(b). This design decision is mainly mo-

tivated by the observation that during manipulation, the robot often runs into kinematic related

constraints such as joint limits or collisions. The controller needs to consider kinematic con-

straints properly to generate feasible motions. We could have used a similar approach as for the
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Figure 4.5: These plots show the Atlas robot traversing part of the terrain task for the DRC
Finals. X axis is the forward direction, Y points to the robot’s left, and Z points upward. Straight
lines in the top plot indicate the pitch angle at touchdown. The estimated CoM velocities are
shown in the middle plots against the desired velocities. The dashed lines indicate touchdown,
and the dot-dashed lines indicate liftoff events.
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the desired velocities in the next two plots.
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Figure 4.7: Atlas opening a door, turning a valve, and cutting with a power tool during the
DARPA Robotics Challenge Finals and when practicing.

walking controller: specify all the kinematic constraints in the ID controller on the acceleration

level, and integrate the resulting accelerations for position and velocity targets. However, this

has some practical drawbacks. First of all, it is slower to solve due to the additional inequality

constraints. When the real state penetrated some kinematic constraints, ID will generate large

accelerations to bring the state back to the constraint surface, which can cause oscillation and

instability around the constraint surface. Because of hardware limitations, velocity tracking is

much worse on the arm joints than the leg joints. Position feedback is necessary for accurate

motion tracking on the arms. On the other hand, because the robot moves so slowly during ma-

nipulation, it seldom runs into dynamic constraints such as CoP constraints or torque limits given

reasonable goals. So it is reasonable to decouple the problem into solving IK first then stabilizing

with ID. Eq. 3.19 is modified in the ID controller to:

ẍ∗ = Kp(xik − x) +Kd(ẋik − ẋ), (4.4)
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where x and ẋ are measured real robot states, and xik and ẋik are IK’s internal states. For joint

acceleration tracking,

q̈∗ = Kp(qik − q) +Kd(q̇ik − q̇), (4.5)

where q and q̇ are measured configuration and velocity, and qik and q̇ik are from the IK controller.

4.3.1 Nudging and Interpolated Desired End Effector Motion

Our manipulation strategy for the DRC relies heavily on visual servoing, which outputs ad-

justments for the desired Cartesian targets. This strategy works well with our gradient based

IK controller. When a big Cartesian target change is specified, we use spline interpolation for

smooth motions. Position and orientation are interpolated with quintic splines and slerp respec-

tively. However, this functionality was mostly replaced by full body motion planning towards

the end of the DRC Finals.

4.3.2 Full Body Trajectory Planning

For better quality and collision free trajectories, we use TrajOpt [76] to plan full body motions,

which returns a sequence of key frames. It is also useful for planning a constrained motion such

as turning a door handle. A typical planned trajectory has between 15 to 30 key frames. For each

key frame, Cartesian targets for important body parts such as CoM, pelvis, torso, and hands are

generated with forward kinematics. Linear interpolation is used to fill in the gap between two

key frames for all configuration and Cartesian targets. During execution, the IK controller tracks

all these targets, but has higher weights on the Cartesian targets. These key frames also need

timing information for interpolation. We can approximate the generalized velocity between two

consecutive key frames by taking their finite difference. Since the centroidal momentum is linear

with respect to this velocity in Eq. 3.8, we can compute the minimum duration between these

two frames by bounding the maximum magnitude of the centroidal momentum. Intuitively, the

trajectory slows down when it generates large whole body motions and speeds up otherwise.
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Figure 4.8 shows an example of planning a full body trajectory with TrajOpt to grab an object

and executing it using the manipulation controller. The IK controller is used to connect between

key frames while maintaining internal kinematic constraints. It also modifies the original tra-

jectory using information that is unavailable to the motion planner, such as the online estimated

CoM offset. Laser point clouds are used for object recognition and building collision models for

the environment. In this experiment, visual servoing with a wrist-mount depth camera was used

for the final approach, and the left arm was used for balancing during visual servoing.

4.3.3 Hand Force Torque Servoing

In order to make a reliable cut for the drill task in the DRC Finals, the robot needs to press the

drill firmly against the dry wall with a small amount of normal force. Since the arms are mostly

position controlled, this is achieved by changing the desired hand kinematic target for IK.

4.3.4 Fall Prevention

Fall detection is based on the Corrected Capture Point (CCP) [103]. It is essentially the capture

point combined with an estimated offset that represents the net effect of an external force and

the CoM modelling error using LIPM dynamics. The CCP is checked with the support region

computed by the convex hull of the foot corners. When the manipulation controller detects a near

falling scenario, it terminates all ongoing trajectories, maintains its current posture, and blocks

future commands until the operator attempts manual recovery.

During our second mission in the DARPA Robotics Challenge Finals, the right electric fore-

arm mechanically failed when the cutting motion was initiated for the drill task. The uncontrolled

forearm wedged the drill into the dry wall and applied a large backward force. The manipulation

controller quickly froze and saved the robot from falling, and the human operator was able to

recover and move on to the remaining tasks.
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(a) TrajOpt generated end configuration for picking
up a 2 by 4.

(b) Simulated Atlas executing the planned trajectory.

(c) Snapshots of Atlas picking up a 2 by 4.

Figure 4.8: The given task is to pick up the closest wooden piece. The last key frame in the
planned trajectory generated by TrajOpt is shown in Figure 4.8(a). The pink regions are convex
decompositions of the environment based on laser point clouds. The red bar represents the object
of interest segmented using template matching. After executing this trajectory in simulation, the
robot ends up like Figure 4.8(b). Figure 4.8(c) shows the Atlas robot picking up a 2 by 4 using
TrajOpt and visual servoing. The snapshots are taken every 7 seconds. Visual servoing starts
from the seventh picture, and visual feedback is provided by a depth camera mounted at the right
wrist.
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4.4 Summary

Both of the DRC walking and manipulation controllers have two components: a high level con-

troller that optimizes for task space trajectories into the future and a low level full body controller

that generates instantaneous joint commands to track those trajectories while satisfying physical

constraints. For the walking controller, a CoM trajectory is planned using a simple point mass

model to traverse the given foot steps. Long term behaviors are either planned using motion

planning or specified by a human operator for the manipulation tasks. This approach was suit-

able for our “slow and steady” strategy for the DRC. We had the capability to perform all eight

tasks in the DRC Finals, and scored 7 out 8 points twice during the two hour long missions. In

terms of reliability, our safety code promptly stopped the robot several times when it was close

to falling so that the human operators could successfully recover.

Besides being slow, the biggest disadvantage for these controllers is that they rely on good

tracking accuracy in general, and they are unable to deal with situations that are significantly

different from the plan. For walking, a typical failure case happens when the full body con-

troller can no longer track the original CoM plan either due to external disturbances such as

unplanned contacts, or the original plan becomes invalid, e.g. insufficient CoM acceleration due

to constrained ankle torque. We try to address some of these issues in Chapter 5 by introducing a

receding-horizon layer that replans much more rapidly to account for such unexpected situations.

Although the overall walking dynamics can be well captured and handled by this hierarchical

approach, kinematics can still be tricky. For more challenging steps, both the swing and stance

leg can run into configuration limits or singularity. For the DRC Finals, we had to handcraft a set

of special rules for the foot steps to avoid such situations. Although planned by the CoM planner,

height was more often constrained by leg configurations. All these indicate configuration space

trajectory planning is still necessary for more complicated problems. In retrospect, the control

benefit of planning for the Z dimension was marginal especially at our walking speed. But it is an

useful example of using nonlinear trajectory optimization to generate nominal CoM references.
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A more interesting model involving angular momentum should be more suitable for the high

level planner, which we will investigate it in the near future.
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Chapter 5

Receding Horizon Based Middle Level

Controllers

5.1 Introduction

For a typical hierarchical system that consists of a planner and a controller, handling tracking

errors has always been a key challenge. When large tracking errors occur, the plan can become

invalid, and the controller starts tracking an infeasible plan. Replanning is an intuitive and prac-

tical solution for this issue, but for unstable systems like walking robots, the time budget for

replanning is very limited. In this chapter, we will develop simple controllers that can rapidly

replan for a short horizon based on the long term information from the high level planner. For

the sake of computation time, linear models are used, and we only consider a limited preview

horizon.

There is a rich literature on using Receding Horizon Control [59] (also known as Model

Predictive Control) for online walking pattern generation and push recovery. Preview Control

[35] is a very popular walking pattern generation method based on LIPM. Capture point [70] is

another useful conceptual tool for balancing, and it can also be generalized to generate walking

patterns [45, 46]. Similarly, divergent component of motion [27, 83] is introduced to encode the
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unstable part of the LIPM dynamics and used for walking pattern generation. These methods are

typically used to compute reference CoM / ZMP trajectories, which are then open loop tracked by

some low level controller. To improve robustness, an online approach proposed by Nishiwaki et

al. rapidly adjusts the reference ZMP trajectory based on the measured robot state to account for

external perturbations [61]. It is further extended to vary foot placement or step timing [62] using

characteristics of Preview Control, in which timing can be resolved by a line search. Another

foot placement strategy based on Preview Control is proposed by Urata et. al [92, 93]. A special

form of Preview Control’s cost function is used to enable fast computation of the CoM / ZMP

trajectory, which is used as an evaluation function to optimize for the next foot step.

Foot placement and CoM trajectory can also be generated simultaneously by solving a linear

trajectory optimization problem using LIPM dynamics [18, 22, 23, 68, 100]. These approaches

are typically formulated as quadratic programs that optimize for foot placement and the time

derivatives of the ZMP. Piecewise linear acceleration is assumed to reduce the number of nec-

essary samples (optimization variables). Instead of following the desired foot steps, these ap-

proaches can track overall behavioral goals such as a desired average speed or reaching some

long term position [80]. It can also be extended to combine the ankle, hip and stepping strategies

[1] by using a linear model with angular momentum. Linear receding-horizon controllers are

also extensively used in [82] for push recovery with strong disturbances. Our receding-horizon

component is formulated similarly to this group, but the objective is to follow the nominal high

level plan.

In the following sections, we will present two receding-horizon controllers that use foot

placement and angular momentum respectively. The foot placement controller is implemented

on the real Atlas robot, with which we achieved faster and much more robust dynamic walking.
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5.2 Foot Placement Controller

During walking, when the CoM state tracking error can not be corrected by just using ankle

torque (controlling CoP) alone, it is necessary to either use angular momentum or take a recovery

step. In this section, we focus on using constrained optimization to generate new foot steps to

regain balance. At any time during the swing phase, we assume the nominal CoM trajectory

has already been planned for the next few foot steps. The basic idea is to optimize the next foot

placement so that the CoM state will track the nominal CoM trajectory as closely as possible

during the next swing phase. In order to reoptimize foot placement fast in a receding-horizon

fashion, several assumptions and simplifications are made:

• Linear Inverted Pendulum Model (LIPM)

• Fixed step timing

• Point foot

• Short double support phase and zero CoM acceleration during double support

• Foot orientation is not optimized

Linear dynamics and fixed timing are necessary to make the system dynamics linear with respect

to the optimization variable, so the problem becomes convex and fast to solve. The point foot

assumption forces the CoP to coincide with foot placement, so that we do not need to sample in

time to take into account variable CoP. With these assumptions, the time evolution of the CoM

state can be expressed as a linear function of the initial CoM state and the CoP (foot placement)

based on LIPM dynamics.
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5.2.1 Foot Step Optimization with Quadratic Programming

The CoM state X is defined as
[
x ẋ

]T
, and the foot placement is denoted by p. Given known

timing t, future CoM state can be expressed as:

X = A(t)X0 +B(t)p

A(t) = 0.5

 eωt + e−ωt eωt−e−ωt

ω

ω(eωt − e−ωt) eωt + e−ωt


B(t) =

1− 0.5(eωt + e−ωt)

0.5ω(e−ωt − eωt)

 ,
(5.1)

where ω =
√
g/z, and X0 is the initial state.

During swing, let tTD be the remaining duration of the current swing phase, pcur be the

current stance foot position, and X be the estimated current CoM state. Given by Eq. 5.1,

the CoM state at planned touchdown can be computed as XTD = A(tTD)X + B(tTD)pcur.

Assuming zero CoM acceleration during double support, the CoM state at liftoff is XLO =

XTD +

[
ẋTDTDS 0

]T
, where TDS is the duration of double support. For foot placement p and

any time t during the next swing phase, the CoM state can then be computed as

Xt = A(t)XLO +B(t)p. (5.2)

The cost function consists of two terms: one for foot placement deviation from the planned

location p∗, and another for CoM state tracking error during the next swing phase.

min
p

∑
t

(Xt −X∗t )
TVt(Xt −X∗t ) + w(p− p∗)2, (5.3)

where w is a weight, and X∗t and Vt are the nominal CoM state and the second order derivative

of the value function computed by DDP sampled at time t after liftoff. In the current implemen-
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tation, five equally timed X∗ and V are sampled in Eq. 5.3.

A set of linear inequality constraints are used to approximate the allowed stepping region.

The simplest box constraint relative to the current stance foot is used in this implementation.

The swing foot has to be placed within±0.5m in the X direction and between [0.17, 0.6]m away

from the current stance foot in the Y direction. Ideally, the foot step planner will generate these

constraints in addition to the nominal foot step taking sensor inputs into account. The foot step

planner can also produce a cost map which can substitute the first term in Eq. 5.3. The orientation

of the foot step is not optimized, and the desired orientation is used for the swing foot.

5.2.2 Simple Example

In this simple example, we use the same LIPM for both planning and simulation. There is no

double support phase, and the leg swings perfectly. All the parameters are the same as for robot

experiments. CoM height is set to 0.88m. The overall task is to walk in place, and the desired

foot steps are 0.34m apart laterally. Upon touchdown, the desired next step is updated based on

the current stance foot location, and a new nominal CoM trajectory is planned with DDP. During

simulation, we allow some control over CoP, which is generated by the DDP policy and bounded

by the size of the stance foot (±0.12m for X , and ±0.04m for Y ).

Figure 5.1 shows plots of a push recovery scenario in the coronal plane. At 3.2s, the CoM

velocity is increased by 0.4m/s, which is equivalent to an impulse of 72Ns. In this case, the

robot is pushed towards the left during left single support, and it needs a two step strategy to

recover: put down the right foot as close as possible to the left, then take a second large left side

step to recover. The stance CoP control immediately saturates at the boundary of the foot. The

next foot placement is set to put down as closely as possible to the current stance foot, followed

by a large left side step in the next swing phase.
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(c) CoP and optimized foot step

Figure 5.1: In this plot, the lateral CoM velocity is instantaneously increased by 0.4m/s, which
is equivalent to an impulse of 72Ns during left single stance at 3.2s. The controller takes two
steps to recover. Nominal CoM trajectory is replanned at every touchdown. Stance CoP control
can be varied within the foot.
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5.2.3 Robot Implementation

With little parameter tuning, we could push the two part walking controller (CoM trajectory op-

timization and full body controller) that we used in the DARPA Robotics Challenge to walk at

0.4m/s with 0.8s per step. However, we cannot achieve a higher cadence with just parameter

tuning. The dominant failure mode was due to the actual CoM state diverging from the planned

trajectory, which eventually resulted in loss of balance in the coronal plane. Although it is possi-

ble to achieve better CoM tracking by controlling angular momentum more intelligently, taking

recovery steps gains a much larger stability margin in general. We also feel more comfortable

about aggressive leg swings than large torso or arm motions. Reoptimizing foot placement be-

comes crucial for achieving faster and more robust dynamic walking on our Atlas.

For all the fast walking and push recovery experiments in this section, the walking controller

consists of three levels: the CoM trajectory planner, the foot placement controller and the full

body controller. We focus on level walking, so LIPM is used for CoM trajectory planning instead

of the 3D nonlinear model. The biggest advantage for using a linear model is fast computation,

which only requires one DDP iteration to converge. Consequently, desired CoM trajectory can

be recomputed within a few milliseconds after touchdown using the estimated states, which also

simplifies the actual software implementation. For the full body controller, the estimated CoM

force compensation is disabled, because the estimation for external force on CoM is designed

only for slow motions. The rest of the full body controller and state estimation remain unchanged.

Cadence

For LIPM, the CoM is always falling, and as indicated by Eq. 5.1, it falls exponentially fast

with respect to time. Intuitively, higher cadence is always preferred, because the robot falls for

a shorter period of time. There are also more chances to correct tracking errors since control is

only intermittent. On the other hand, shorter swing phase requires higher acceleration for the

swing leg that can introduce undesired CoM velocity variations. Change in CoM velocity greatly
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affects the foot placement, which in turn results in more swing leg motions and causes instability.

The effect of CoM velocity on optimized foot placement is apparent in Figure 5.4. For all the

experiments in this section, the walking cycle is set to be at 0.5s per step with a 0.05s double

support phase. Faster cadence can be achieved, but empirically, 0.5s seems to work best for our

robot experiments.

Swing Foot Motion Generation

For every control cycle (500Hz) during the swing phase, a new foot placement is computed based

on the current estimated CoM state and the remaining time to touchdown. Only the position part

of the swing trajectory is modified, the rotational part remains the same. Let p∗ be the original

foot step given by the foot step planner, and p be the optimized foot placement. For the DRC

walking controller in Section 4.2, the liftoff pose and p∗ is used as the end knot points of a spline

for generating the nominal swing foot pose x∗d, velocity ẋ∗d and acceleration ẍ∗d during swing,

which are then used to compute the input target acceleration ẍ∗ for the full body controller with

Eq. 3.19. We have experimented with updating the knot point directly with p, but the resulting

ẍ∗ changes too drastically between time steps, and causes wild swing foot motions that can

sometimes destabilize the walking cycle. Instead, we keep the spline interpolation the same, and

compute ẍ∗ with the following heuristic:

ẍ∗ = Kp(x
∗
d + α(p− p∗)− x) +Kd(ẋ

∗
d − ẋ) + ẍ∗d

α =


t−tLO

TSS
, if t < tLO + TSS

1, otherwise

(5.4)

where TSS is the duration of the swing phase, tLO is the liftoff time, and t is the current time.

This scheme produces a much smoother ẍ∗ since it only incorporates a portion of the new foot

placement position at any time, and regulates the velocity towards the original interpolated one.
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5.2.4 Robot Dynamic Walking Results

All the walking experiments in this section are done with the three level controller that has the

CoM trajectory planner, the foot placement controller and the full body controller. To simplify

the experimental setup, the next desired foot step is always updated with respect to the current

stance foot location, so that the robot only tries to maintain balance rather than an absolute

position after disturbances. This is also the simplest receding-horizon foot step planner.

The overall goal is to keep walking under strong disturbances. The first set of experiments

are conducted with external kicks applied by humans around Atlas’ pelvis, and the second set

requires Atlas to walk over a strip of unstructured terrain made of loose rubble. Snapshots of

these experiments are shown in Figure 5.2 and Figure 5.5(a). Unfortunately, we did not have

instruments to measure the magnitude or the duration of these perturbations, and we are unable

to estimate the net impulse due to noisy estimates of the CoM velocity. Fast walking is also

attempted, and the fastest walking speed we have achieved is around 0.6m/s. The walking

controller is the same for all these experiments, and the high level CoM planner and the full body

controller have few differences from Section 4.2.

Push Recovery

Figure 5.3 and Figure 5.4 show plots of the CoM states and the optimized foot steps when recov-

ering from pushes in the sagittal and coronal plane respectively. The first thing worth noticing is

that we are not controlling the CoM velocity very well, which is quite oscillatory during the sin-

gle support phases. These oscillations also have a direct impact on the optimized foot placement

shown with the orange lines in Figure 5.3(c) and Figure 5.4(c). The oscillations in foot place-

ment require a large amount of smoothing and damping, otherwise they will cause large swing

foot motions that induce further CoM oscillations. This motivates for only partially updating the

position part of the swing foot acceleration computation in Eq. 5.4. However, this heuristic can

introduce a large tracking error when the swing foot needs to move fast. Obviously, there is room
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for improvements for our CoM and swing foot tracking, but this also shows that during high ca-

dence dynamic walking, precise control is marginal, the robot can maintain dynamic balance as

long as it can put down the swing foot somewhere reasonable at the right time. The effectiveness

of CoP control is minimal comparing to taking steps.

Walking on Rubble

Figure 5.5 shows foot steps taken by Atlas when walking over a loose rubble field that is roughly

3m by 0.9m. This experiment is particularly challenging, especially for the state estimator, be-

cause the fundamental assumption of stationary contacts is often violated. Physically, the actual

support region for the stance foot is shrunk significantly, and the robot is effectively walking

on stilts. Estimating the actual support is close to impossible in this case. It will very difficult

to walk over this kind of terrain statically since precise CoP control will be incredibly hard.

Many of the position controlled humanoids achieve compliance with feedbacks on the measured

ground reaction wrench. We also speculate that these approaches will not work well on this

terrain because of noisy measurements and limited bandwidth for their force feedback.

Fast Walking

We want to explore how fast our Atlas can walk in the last set of experiments, and the fastest

walking speed we achieved is roughly at 0.6m/s. Data for this experiment are plotted in Figure

5.6. This speed is computed by averaging the estimated CoM velocity over a couple cycles once

the robot starts walking forward. We think a hardware limit stopped us from going faster. The

onboard pump is unable to deliver the amount of flow at the desired pressure when the robot

is walking that fast. Our Atlas starts going down as it walks, which is also evident from large

torque tracking errors for the stance knee. We are not able to walk for a longer distance due to

limited lab space. We do not think this is the absolute limit for Atlas’ walking speed, since a

more powerful pump (potentially offboard) can easily solve this issue. On the other hand, our
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(a) Push in the sagittal plane

(b) Push in the coronal plane

Figure 5.2: Snapshots of Atlas recover from external pushes by stepping. The snap shots are
taken every 0.5s. Data for these experiments are shown in Figure 5.3 and Figure 5.4.
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(c) CoP and optimized foot step

Figure 5.3: A forward push at Atlas’s pelvis starts around 120.9s ( illustrated by the third
snapshot in Figure 5.2(a)), which is during the late right single stance and the following double
support. Atlas is able to regain balance by taking just one forward step. The grey dashed lines
indicate the touchdown events.
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(b) CoM velocity
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(c) CoP and optimized foot steps

Figure 5.4: A left kick at the right elbow starts around 98.4s (shown by the first snapshot in
Figure 5.2(b)), which is during the late right single support, and it is too late to recover by
extending the left swing leg. For the subsequent steps, the foot step optimizer tries to put the
right foot close to the left, and extend the left foot as mush as possible to regain balance. The
grey dashed lines indicate the touchdown events.
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(a) Atlas walking over a rubble field
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(b) Actual foot steps

Figure 5.5: The top picture shows Atlas walking over unstructured terrain made by pieces of
cinder blocks and wooden blocks, which are not fixed to the ground. The rubble field is about
3m long and 0.9m wide. The bottom figure plots the foot steps Atlas takes and the actual CoM
and foot trajectories through the rubble field.
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Figure 5.6: Single support phase is shown with the shaded area. The onboard pump runs out of
power once the robot starts walking fast, which is indicated by the supply pressure dropping and
the pump motor saturating at top speed. The pump is unable to deliver the amount of flow at the
desired pressure, and the robot’s knee starts collapsing during this experiment. Atlas is walking
at roughly 0.6m/s on average, which is the top speed we are able to achieve at the moment.

current implementation requires large knee torques since it maintains a bent stance knee to avoid

singularities. Walking with straighter knees will reduce the power requirement, and we might be

able to push the speed limit further.

5.3 Angular Momentum Controller

In this section, we use the Linear Inverted Pendulum with Flywheel Model (LIPFM) [82], il-

lustrated in Figure 5.7, to capture center of mass level dynamics of the robot. This model is an

extension to the well known LIPM with an extra flywheel at the CoM. Like LIPM, this model

also decouples sagittal and coronal plane dynamics. For mass m, gravity g, height of CoM z,
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inertia of the flywheel I and time step dt, the discrete time dynamics can be written as follows:

Xt+1 = AXt +BUt

X =



x

θ

ẋ

θ̇


,U =

p
τ



A =



1 0 dt 0

0 1 0 dt

gdt/z 0 1 0

0 0 0 1


, B =



0 0

0 0

−gdt/z dt/(mz)

0 dt/I


,

(5.5)

where x is the horizontal position of CoM, θ is the angle of the flywheel with respect to vertical,

p is the location of CoP, and τ is the torque applied at CoM. With a desired trajectory, Q and R,

we first use DDP to plan a nominal trajectory with its value function and linear policy. The same

model is used for both DDP and the receding-horizon controller.

5.3.1 Formulation

With aN time step horizon, the terminal state, XN+1, is linear with respect to X1 and the stacked

controls, U , shown in Eq. 5.6.

XN+1 = AX1 + BU

U =


U1

...

UN


A = AN ,B =

[
AN−1B . . . AB B

]
(5.6)
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Figure 5.7: Illustration for the Linear Inverted Pendulum with Flywheel Model (LIPFM). CoM
and CoP are denoted by x and p. The model assumes no vertical motion, and the height is z. The
flywheel is at the CoM, and it can apply torque τ . θ is the angle of the flywheel with respect to
veritical. The state is [x, θ, ẋ, θ̇], and the control is [p, τ ].

The angular momentum controller is also formulated as a quadratic programming problem. The

cost function has two components. The first one is a penalty on the terminal state using the value

function approximation given by DDP, and the second part regularizes U . For the first part,

cstate = (XN+1 −X∗N+1)
TVN+1(XN+1 −X∗N+1)

= (AX1 + BU −X∗N+1)
TV ′TV ′(AX1 + BU −X∗N+1)

= (AstateU − bstate)T (AstateU − bstate)

Astate = V ′B, bstate = V ′(X∗N+1 −AX1),

(5.7)
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where V ′TV ′ = VN+1. For regularizing U ,

creg =
N∑
t=1

(Ut −U∗t )
TR(Ut −U∗t )

= (AregU − breg)T (AregU − breg)

Areg =



R′I2×2 0 . . . 0

0 R′I2×2 . . . 0

0 0 . . . 0

...
... . . . ...

0 0 . . . R′I2×2


, breg =


R′U∗1

...

R′U∗N

 ,
(5.8)

where R′TR′ = R. Astate, bstate, Areg and breg can be plugged into Eq. 3.7 together with

wstate = wreg = 1 to generate the cost function for the QP solver.

There are no equality constraints for this problem. p is bounded by the size of the support

polygon, and we set some arbitrary torque limits on the flywheel. In this implementation, we do

not constrain θ. For a more practical implementation, this is however necessary. We then need

to include the inequality constraints for θ on every time step. This can be achieved similarly to

Eq. 5.6.

5.3.2 Simulated Push Recovery Results

For this simulated experiment, the overall goal is to maintain balance at the center of the left foot

in single support. We use LIPFM both for the high level planner and the angular momentum

controller. Due to linear dynamics and fixed-point tracking, the high level controller reduces

to a LQR controller. Two separate pairs of controllers are used for the sagittal and coronal

plane: m = 97kg, z = 0.85, Is = 11 and Ic = 23, where subscripts s and c stand for the

sagittal and coronal plane respectively. dt = 0.01s and N = 60. Q is a diagonal matrix with

[10, 0.01, 1, 0.01], and R is also a diagonal matrix with [1000, 0.01]. Only the ID module is used
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in the full body controller. The combined controller runs at 500Hz.

Given the estimated angular momentum L and moment of inertia around the CoM Isys, we

compute a overall angular velocity ωsys = I−1sysL. Since there is no equivalent position term for

angular momentum, we use the angle of the torso as a substitute. Input states for the simple

model are computed by

Xs =



xCoM [X]

−θtorso[Y ]

ẋCoM [X]

−ωsys[Y ]


,Xc =



xCoM [Y ]

θtorso[X]

ẋCoM [Y ]

ωsys[X]


. (5.9)

The output CoP p is directly used as desired CoP in the ID controller. τ is treated as desired

change in total angular momentum for the centroidal dynamics term in Section 3.5.2, and τs

needs to be negated first. Desired CoM accelerations in the XY plane are also computed using

LIPFM dynamics. CoM height is controlled with a PD servo as in Eq. 3.19, and desired change

in angular momentum around the Z axis is set as a pure damping term.

For testing, we apply a constant force at the pelvis for 0.1s in the horizontal plane. Snapshots

of two experiments are shown in Figure 5.8: one with 350N push in the negative X direction

(backwards); and the other with 200N push in the positive Y direction (left). We also show a

comparison between using only DDP and the proposed angular momentum controller in Figure

5.9. The force is applied at 19s, and lasts for 0.1s, which is indicated by the black vertical lines.

The spikes at the end of the push in all the plots are due to a sudden jump in the pelvis accelera-

tion, which is an artifact of the Gazebo simulator. In the DDP only case, control constraints are

enforced after applying the linear policy in Eq. 2.3. Using DDP alone is not able to recover from

the 200N push. It performs poorly when up against the CoP constraint. In contrast, the angular

momentum controller uses the fly wheel to generate much larger CoM acceleration when CoP

control is limited, and the ID controller is able to track the desired commands well.
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(a) Push in -X direction

(b) Push in Y direction

Figure 5.8: Snapshots of the simulated Atlas recovering from external pushes. In Figure 5.8(a),
we push the robot backwards with 350N applied at pelvis for 0.1s, and the snapshots are taken
every second. In Figure 5.8(b), the robot is pushed towards its left with 200N at pelvis for 0.1s,
and the snapshots are taken every 1.75s. In both case, the push is applied slightly before the
second snapshot.
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Figure 5.9: This figure shows a comparison between using DDP alone and the angular momen-
tum controller against the same 20Ns push at the pelvis to the robot’s left. Using DDP alone is
not able to recover from the push. For Figure 5.9(a), Figure 5.9(b) and Figure 5.9(c), inputs and
outputs of the inverse dynamics controller are shown, where the inputs are generated by either
DDP or the angular momentum controller. ID stands for the output of the inverse dynamics con-
troller. RHC and DDP stand for the angular momentum controller and just using DDP’s policy.
For both experiments, the velocity traces are shown in Figure 5.9(d).
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5.4 Summary

In this chapter, we add a receding-horizon layer between the long term CoM planner and instan-

taneous full body controller. Two versions of the new component are implemented: one focuses

on optimizing swing foot placement, and the other utilizes angular momentum. Although only

the foot placement controller is implemented on the real robot, both enlarge the stability region

and are much more effective against external perturbations when compared with the two level

setup in Chapter 4. In particular, the foot placement controller enabled our Atlas to recover from

large pushes and walk over loose rubble fields.

The changes to both the CoM planner and the full body controller are minimal when imple-

menting the foot placement controller after the DRC Finals. Once implemented, little tunning

is necessary for successful robot deployment. From past experiences during the DRC, precise

control of the CoM position and velocity is critical for a good static walking controller. This

requires accurate and low delay state estimation for the CoM state, especially for the velocity, as

well as good CoP and force control at the contacts. Correctly estimating the CoM modelling er-

ror also plays an important role. In contrast, foot placement is much more important for dynamic

walking. In some sense, the robot is constantly falling down, and it just need to put the foot in the

right place at the right time to start “falling” according to the plan. The control authority through

foot placement is magnitudes bigger than controlling the CoP within the support region. We no

longer require fine control over the CoM states, which greatly reduces performance requirements

for the low level controllers and state estimators. When planned in a receding-horizon fashion,

foot placement does not have to be very precise as long as the robot can roughly capture itself

in the next step. On the other hand, timing is important. Dynamic walking is much easier in

the sense that its error tolerance for all the individual components is much larger than for static

walking.
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Chapter 6

Future Work and Conclusion

6.1 Planning with Simple Models

Simple models are easy to understand and provide us with important intuitions. They are also

powerful tools for analysis. Using simple models imposes structures on the underlying problem

and reduces the search space. Simpler optimization problems are also less likely to encounter

numerical and local minima issues. We think planning with simple models can still be beneficial

even without computational limits. We want to extend our simple planners in the following ways

to improve the current walking controller:

• add angular momentum to the high level trajectory planner

• combine the foot placement and the angular momentum controller

• optimize step timing

We think these modifications can be achieved in a relatively short period of time, and they will

improve the current implementation in terms of robustness and potentially agility as well. Be-

yond these, we also want to address the question of when do we need more of a receding-horizon

component. We think replanning using sensed states and environment is important, but the divid-

ing line between a “planner” and a “receding-horizon controller” is rather vague. We imposed a
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distinction based on different computation budgets, but it might not be necessary in the future.

We are also interested in determining the right complexity for the models used for planning.

Aside from high computational costs, it is possible for the optimizer to fall into unsatisfactory

local minima or fail to find an solution due to the complexity. Contact dynamics are hard to

model correctly, and taking derivatives around contact events can be difficult as well. Receding-

horizon control with full body dynamics has been experimented with in [16], where special con-

tact models are used to speed up and stabilize the trajectory optimization. However, the motions

generated by this controller can be counter-intuitive at times, and it is much harder to decipher

the outputs with such high dimensional models. Inverted pendulum based models capture typical

walking well, and yet they are extremely simple. Finding similar simple models for manipulation

or multi-contact locomotion will be very helpful. Although more complex, planning with cen-

troidal momentum [13] seems to be a likely candidate. Demonstrating these dynamic locomotion

skills on real hardware is another very interesting challenge.

6.1.1 Step Timing

Touchdown timing is not optimized in the foot placement controller described in Section 5.2 due

to nonlinearity of the optimization. On the other hand, we think timing is another crucial aspect

for the stepping strategy. In order to test this hypothesis, another simple stepping controller is

developed and tested in simulation without constraints on computation. The problem setup is

almost identical to the simple example presented in Section 5.2.2, except we optimize for the

time to touchdown t as well. This controller treats X and Y independently, although they need

to be coupled for a real implementation because of timing [99]. Let f(X, t, p) be the nonlinear

function that describes the CoM evolution starting from X based on LIPM. We can write the
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touchdown state as XTD = f(X, t, pcur). The nonlinear optimization problem is formulated as:

min
t,p

∑
i

(f(XTD, Ti, p)−X∗Ti)
TVTi(f(XTD, Ti, p)−X∗Ti) + w(p− p∗)2

s.t. tmin ≤ t ≤ tmax, pmin ≤ p ≤ pmax,

(6.1)

where X∗Ti and VTi are from the nominal trajectory sampled at Ti after touchdown. For the X

direction, pmin = −1 + pcur, and pmax = 1 + pcur. In the lateral direction, pmin = −0.6 + pcur,

and pmax = −0.17 + pcur for single support left, and pmin = 0.17 + pcur, and pmax = 0.6 + pcur

for the right side. Timing’s inequality constraints are set based on the optimized touchdown time

tprev from the last step: tmin = max(tprev − 0.05, 0), tmax = min(tprev + 0.05, 2). For the

beginning of the swing phase, tprev = 0.5s, which is the nominal cycle time. This is to very

crudely simulate motion constraints on the swing foot.

Two sets of push recovery tests are conducted in theX and Y directions. The desired behavior

is to walk forward at 1.2m/s on average in the X direction, and step in place for the Y direction.

The nominal walking cycle is 0.5s, and the desired foot steps are 0.6m and 0.34m apart for X

and Y respectively. CoM height is set to 0.88m, and the simulation time step is 0.002s. Although

not planned for, CoP control is available during simulation. It is generated by the DDP policy

and bounded by the size of the stance foot (±0.12m for X , and ±0.04m for Y ). For both X

and Y , three strategies are tested for robustness: foot placement only, step timing only, and

using both. The basins of attraction are plotted in Figure 6.1, and two example trajectories are

shown in Figure 6.2. Perturbations are given as instantaneous CoM velocity changes, and they

are plotted in the Y axis. The X axis shows the time of perturbation during the walking cycle.

The color represents number of steps taken before converging into a steady state cycle, and the

white spaces indicate falling. With LIPM dynamics, the CoM acceleration is determined by the

relative position of the CoM and the current stance foot, and the CoM state evolves exponentially

with respect to time. Being able to adjust the stance duration is very important for speeding up or

slowing down the CoM especially with limited swing foot reachability. For the lateral direction,
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the CoM can be accelerating towards the wrong side half of the time during push recovery,

so minimizing those stance phases should help. For the timing only strategy, we can examine it

from a capture point of view. Essentially, the system can not be stabilized when the CoM velocity

(energy) exceeds a certain threshold given the current state and the sequence of stances (capture

region). The effectiveness of changing step timing is limited by future foot steps. Combining

both strategies greatly enlarges the margin of stability as shown in Figure 6.1. We think this is a

really promising direction for maximizing robustness during walking. Although the optimization

problem becomes more complex, we are still confident about a real-time implementation soon.

6.1.2 Gaps Between Hierarchies

To be computationally feasible for real-time control, we used a cascade of smaller optimizations

with different models. However, this naturally introduces gaps between the hierarchies because

the models have different expressive powers. Although practical and effective, our approach

suffers from the common problem that plagues hierarchical systems: how to generate a different

high level plan when something goes wrong at a lower level, which is not even modeled or

represented by the high level planner? Currently, we do not have the bottom-up channel to

propagate information up the hierarchy. A possible solution is to introduce state dependant cost

biases in the low dimensional state space, e.g. lower CoM height at the beginning and end of the

swing phase to increase swing leg reachability. This information can be gathered by running the

simulated full controller offline for many different scenarios. Using policies is another practical

way to introduce these biases.

In terms of the top-down channel, we pass the value function that encodes the high level

planner’s future preferences down to the lower level modules. This gives them limited “foresight”

and guides them towards the high level goal in their limited horizon [47]. We have experimented

with providing the approximated local value function computed by DDP to the inverse dynamics

controller, but we have yet to observe a significant increase in either performance or stability.
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Figure 6.1: These plots show the number of steps taken after perturbation using three stepping
strategies. Blue blocks correspond to quick recoveries, and slow recoveries are marked by red.
Falls are indicated by the white blocks. The desired behavior is to walk forward at 1.2m/s on
average in the X direction, and step in place for the Y direction. Perturbation is given as a CoM
velocity change, and it is plotted in the Y axis. The X axis shows the time of perturbation after
touchdown. The lateral pushes happens during single support right.
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Figure 6.2: Trajectories of push recovery by optimizing both foot placement and touchdown
timing.
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The input desired CoM acceleration to the ID controller is generated by the DDP policy, which is

derived together with the value function approximation. So adding this particular value function

approximation in ID’s cost function does not provide much additional information. However,

with a longer horizon or a different value function approximation, e.g. from a trajectory library

or derived with full dynamics, the difference should be more significant. Investigating this issue

can also provide useful insights to whether planning with full dynamics is useful or not.

In general, we think the ideal solution is to include as complete a model as possible in the

high level planner and replan as often as possible. On the other hand, this is harder for analysis

and acquiring physical intuition as opposed to using simple models. Aside from the obvious

computational costs, using more complex models can potentially make the optimization frag-

ile and have more local minima issues. We still need to find the right balance between model

complexity and performance.

6.1.3 Utilizing Offline Planning

For fixed behaviors, generating the optimal control is trivial when given a value function. We

can represent the value function using a library of local approximations [50] either derived with

full dynamics or simple models. Offline computation can also be used to spawn a large range of

nominal trajectories, and with proper low dimensional embeddings [41], the online search space

can be reduced. The cached nominal trajectories can also guide subsequent joint level motion

generation. During the DRC Finals, most of the walking related issues were caused by kinematic

constraints such as ankle joint limit and knee singularity. We worked around them with special

purpose joint space heuristics, which are not generalizable. Trajectory optimization is useful for

automatically generating these complex behaviors [13, 56], which can then be stabilized using

the full body controller during execution.
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6.2 Full Body Control

6.2.1 Singularity

Since most of the desired behaviors are specified in Cartesian space, computing joint space ac-

celerations requires a matrix inversion at some level. This is susceptible to singularity, which

is why most of the humanoid robots walk with bent knees. In the current implementation, we

mitigate this issue by regulating joint acceleration when it is close to singularity. One way to fun-

damentally address this issue is to directly specify joint space references. For regular walking,

it might be sufficient to control the swing knee and hip using simple feedbacks on the desired

foot position and touchdown timing. Establishing contact at the right place at the right time is

important, but tracking some arbitrary swing foot trajectory precisely is entirely artificial. To

avoid obstacles properly, joint space trajectories should be planned in any case. Another possible

direction is to significantly reduce the Cartesian gains in the singular directions. We should be

able to rotate the desired Cartesian motions and the corresponding gains into the space spanned

by the manipulability ellipsoid, and then reduce the gains in the singular direction.

6.2.2 Adding Kinematic Constraints

Inverse kinematics can be embedded in inverse dynamics. Specifying position and velocity con-

straints in terms of acceleration can be easily done with Taylor expansion. For constraints in

generalized coordinates, we have

q− ≤ qt + q̇tdt+ 0.5q̈dt2 ≤ q+

q̇− ≤ q̇t + q̈dt ≤ q̇+,

(6.2)
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and for constraints in Cartesian space,

x− ≤ xt + Jq̇tdt+ 0.5(Jq̈ + J̇ q̇t)dt
2 ≤ x+

ẋ− ≤ ẋt + (Jq̈ + J̇ q̇t)dt ≤ ẋ+.

(6.3)

We briefly experimented with adding joint limits when preparing for the DRC Finals, but de-

cided not to use them in the end. We ran into an issue about the ID controller generating large

accelerations when some kinematic constraints were violated. The inequality constraint forces

an acceleration that snaps the position back to the constraint surface in the next time step, which

can cause stability issues. Adding these inequality constraints also slows down the QP solver. So

for the DRC Finals, we added potential wells in the cost function to force the joints away from

their limits. We need to investigate this issue more in the future.

6.2.3 Compensating for Modeling Errors

We introduce a generalized force τerr in the equations of motion to explain the difference between

the model’s prediction and physical reality. For the preliminary results presented here,

r = −Mq̈m − h+ Sτm + JTλm

τerr = ατerr + (1− α)r.
(6.4)

M , h and JT are computed with the model, and q̈m, τm and λm are measured by the sensors. q̈m

is measured by finite differencing the velocity signals. S is a selection matrix, where the first six

rows are zeros, and the rest form an identity matrix. r represents the residual of the equations

of motion when the measured signals are plugged in. We hope to use the estimator in [103] as a

replacement for Eq. 6.4 in the future. α = 0.99 for the experiments here. In the ID controller, this

term can be directly added to h, which is the sum of gravitational and Coriolis and centrifugal

forces.

In the following simulated example, a different robot model is used in the controller, which
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has heavier hands. We also add a constant 10Nm offset to the left knee torque command given

to the simulator, and a−10Nm offset in the measured left knee torque. With τerr enabled around

7.2s in Figure 6.3, the controller is able to compensate for these modeling errors and bring the

robot back to the nominal pose. The model used in the controller is about 3.5kg heavier than in

simulation. The weight difference is roughly 34N in terms of gravitational force, and matches

the estimated generalized force in the Z axis shown with the red trace in Figure 6.3(g). The

estimated compensation torque for the left knee is roughly 10Nm smaller than the right knee,

which correlates with the added fictional torque well.

6.2.4 Compensating for Fixed Delays

Assuming a fixed T time step delay in the torque commands, instead of using the current

measured state (qt, q̇t) in the inverse dynamics calculation, we use a forward simulated state

(qt+T , q̇t+T ), which is generated from the current state and the past commands using approxi-

mated forward dynamics.

Let Nc be the number of contacts, and N is the dimension for the generalized acceleration.

Assuming the 6Nc contact constraints are linearly independent, we can perform QR decomposi-

tion on JT [54],

JT = Q

R
0

 , (6.5)

where Q is orthogonal, and R is an upper triangular matrix of rank 6Nc. Multiplying the equa-

tions of motion by QT , we have

ScQ
T (Mq̈ + h) = ScQ

TSτ +Rλ

SuQ
T (Mq̈ + h) = SuQ

TSτ

Sc =

[
I6Nc×6Nc 06Nc×(N−6Nc)

]
Su =

[
0(N−6Nc)×6Nc I(N−6Nc)×(N−6Nc)

]
.

(6.6)
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Figure 6.3: The first three rows correspond to CoM, pelvis roll and knee. Position and ac-
celeration data are shown in the left and right column respectively. The bottom plot shows the
estimated generalized force τerr. Since there is no desired knee joint angle, we use the right knee
as a reference.
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Assuming no contact force constraints and the zero contact acceleration, q̈ can be computed by

q̈ =M−1
QRβ

MQR =

SuQTM

J


β =

SuQT (Sτ − h)

−J̇ q̇

 .
(6.7)

For each time step t + i, q̈t+i is computed using Eq. 6.7, and (qt+i+1, q̇t+i+1) is generated with

numerical integration.

6.3 Conclusion

We focus on using online optimization to control a full size humanoid robot in this thesis. In

order to enable real-time application, a hierarchical scheme is implemented. It has a top level

center of mass trajectory planner, a receding-horizon layer that uses stepping or angular momen-

tum for balance, and an inverse dynamics based full body controller for generating joint level

commands. The top level planner reasons about long term goals using a simple model, and the

lower level modules use progressively more complete models and constraints but optimize for

shorter horizons into the future. In addition to a nominal trajectory, a value function approxi-

mation generated by the top level planner is passed down the hierarchy to encode preferences

about the future states and guide the lower level optimizations. The receding-horizon component

closes the loop by rapidly replanning a short trajectory that tracks the long term goal consid-

ering critical physical constraints. The low level full body controller abstracts away the robot

details and provides a behavior level interface, which greatly facilitates application design and

implementation.

With just the CoM trajectory planner and the full body controller, we have achieved relatively
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reliable walking and static manipulation capabilities. These controllers were successfully devel-

oped for the Atlas robot and demonstrated in the DARPA Robotics Challenge. We completed two

one-hour long missions at the DRC Finals without falling or any physical human intervention,

and we scored 7 out of 8 points for both missions. A receding-horizon component that optimizes

foot placement was later introduced to enable faster and more robust dynamic walking on the

robot. With the complete controller, our Atlas can withstand large external pushes, walk over

unstructured terrain made by loose rubble, and achieve a top speed of 0.6m/s for flat ground

walking.

To summarize, we list a few lessons that we learned from this work and important directions

for future work:

• An open loop sense-plan-act approach does not work well in the real world. Using feed-

back and replanning in real-time is critical for developing robust systems. This is achieved

by the receding-horizon layer in this thesis.

• Simple models are powerful tools for analysis and optimization. Even with unlimited

computation, they can still be beneficial because of simplicity and the added structure,

which simplifies controllers and may make them more robust. On the other hand, due to

their limited expressive powers, planners using simple models either generate potentially

infeasible plans or become overly conservative. We still need to find a better balance

between model complexity and performance.

• In terms of motion tracking, torque control alone performs poorly for lightly-loaded joints,

e.g. ones on the swing leg, due to modeling errors. We used a hybrid torque and veloc-

ity control scheme to trade off compliance during swing for motion accuracy. Another

potential solution is to directly estimate and compensate for the modeling errors.

• Foot placement and timing are both important for dynamic walking, and we should start

optimizing both for bigger stability margins. Angular momentum provides more control

authority during single stance, and should be incorporated for planning and control.
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• Although sensing and state estimation are not discussed in depth here, they are critical

for model-based full state feedback approaches. Comparing to actuators, sensors are be-

coming cheaper, smaller and much more accurate. Adding redundant sensing on the robot

improves state estimation and increases the overall performance of the system [103]. With

additional touch sensors, we can estimate the contact locations and control the contact

wrenches properly in the full body controller, so that we can start designing contact rich

behaviors.
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