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Abstract— One popular approach to controlling humanoid
robots is through inverse kinematics (IK) through stiff joint
position tracking. On the other hand, inverse dynamics (ID)
based approaches have gained increasing acceptance by provid-
ing compliant motions and robustness to external perturbations.
However, the performance of such methods is heavily dependent
on high quality dynamic models, which are often very difficult
to produce for a physical robot. IK approaches only require
kinematic models, which are much easier to generate in
practice. In this paper, we supplement our previous work with
ID-based controllers by adding IK, which helps compensate for
modelling errors. The proposed full body controller is applied
to three tasks in the DARPA Robotics Challenge (DRC) Trials
in Dec. 2013.

I. INTRODUCTION

Many humanoid applications can be decomposed into a
two stage control problem: a behavior level controller that
outputs high level commands and a low level controller that
is responsible for generating joint commands. We believe
that in order to fully utilize the workspace and be robust to
external perturbations, the low level controller has to take
full body kinematics and dynamics into consideration. In
this paper, we present such a controller that solves full body
inverse dynamics (ID) and inverse kinematics (IK) at each
time step to track higher level objectives. Figure 1 shows
a block diagram for the overall system. Both ID and IK
are formulated as two separate Quadratic Programming (QP)
problems, each with their own objectives and constraints. 1

On our Atlas robot, a 28 degree of freedom hydraulic robot
built by Boston Dynamics, joint level servos compute valve
commands based on

i = Kp(qd − q) +Kd(q̇d − q̇) +Kf (τd − τ) + c, (1)

where qd, q̇d, τd are desired joint position, velocity and
torque, q, q̇, τ are measured, and c contains the constant
valve bias term plus some other auxiliary feedback terms.
This joint level servo runs at 1kHz, while we can update
qd, q̇d and τd at 333Hz. In previous work [1], [2], [3], we
focused on torque control with ID that computes τd. To take
full advantage of the on-board high bandwidth PD servo, we
need to compute qd and q̇d with IK.

Using full body inverse dynamics for force control has
become a popular topic in recent humanoid research. Much
of the research originates from [4]. A hierarchical approach
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Fig. 1. The task dependent high level controller generates a set of desired
objectives such as CoM or limb motion, and constraints such as CoP and
joint limits. The proposed full body controller, which is contained by the
dashed rectangle, takes the high level objectives and robot states (q, q̇) as
inputs and outputs position qIK , velocity q̇IK and torque τ for each joint,
which are used as desired values, qd, q̇d and τd, in Eq. 1. Note that IK uses
its own internal states rather than the measured robot states.

for handling constraints and objectives is taken in [5], [6].
Ott et al. demonstrated a balancing controller on a torque
controlled humanoid in [7]. Simple PD servos were used to
generate a desired net ground reaction wrench. Forces are
distributed among predefined contacts using optimization.
[8] describes a recent effort of using floating base inverse
dynamics and ZMP based pattern generation for dynamic
walking. The presented ID formulation solves a smaller
QP with decoupled dynamics. [9] first optimizes individual
ground reaction forces and CoP for each contact and resulting
admissible change in centroidal momenta. Then it solves a
least square problem for the state acceleration. Joint torques
are generated explicitly. Koole et al. [10] generate desired
centroidal momenta change based on instantaneous capture
points, and use QP to optimize for acceleration and contact
forces. Although detail formulation differs in [11], the same
QP inverse dynamics structure is used. [12] and [13] use
orthogonal decomposition to project the allowable motions
into the null space of the constraint Jacobian and minimize
a combination of linear and quadratic costs in the contact
constraints and the commands. [14] resolves redundancy
in inverse dynamics using a kinematic task prioritization
approach that ensures lower priority tasks always exist in
the null space of higher priority ones. Contrary to many hi-
erarchical null space projection approaches, we prefer using
soft constraints by adding terms in the cost function with
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high penalties. We gain numerical stability by sacrificing a
small fraction of precision. We continue to use the same
approach to ID that was previously developed in our group
[1], [2], [15], [3]. Unlike most other approaches that solve a
reduced form of inverse dynamics, we optimize acceleration,
torque, and contact forces simultaneously on the full robot
model. This design choice is very intuitive, and gives us
the most flexibility in terms of trading off directly among
physical quantities of interest. It also provides an easy way
to properly manage all constraints on contact forces and joint
torques. It does make the QP problem higher dimensional
than in other methods, but it is still solvable in real time
with a standard QP solver. In our implementation, ID is
operating at the acceleration and force level, thus it alone
can not compute qd or q̇d to fully use the high bandwidth
joint level controller. We could integrate q̈, the output from
ID, to generate q̇d and qd, but we find this rapidly leads to
constraint violation and instability.

Similar to ID, our IK is also formulated as a QP, where
the unknowns are the velocities of the floating base and all
the joints. At each time step, we solve for a set of q̇ that
obeys kinematic constraints and minimizes a combination of
costs. q is computed by integrating q̇ from the IK results.
Our approach is similar in spirit to [16]. Although Mistry et
al. also solve for q̇, they compute it by carefully constructing
and inverting a matrix composed of end effector and contact
constraint Jacobians. This incremental approach of solving
for q̇ and integrating to obtain q is the primary difference
between our approach and most traditional IK approaches
such as [17], [18]. The incremental method can get stuck in
local minima, but it does not produce discontinuous results.

The main contribution of this work is the successful
application and many modifications of existing techniques
to a physical system, as well as the lessons learned and
intellectual challenges that arise from this endeavor.

II. FULL BODY CONTROL

For many tasks, we specify desired Cartesian motions for
specific locations on the robot (e.g. foot, hand and CoM) in
the high level controller. The proposed low level controller
takes these as inputs, and computes physical quantities for
each individual joint such as joint position, velocity and
torque. These outputs are then used as references in the joint
level servos on the robot. Figure 1 shows a block diagram for
the overall system. Joint position and velocity are computed
separately from joint acceleration and torque. We refer to
the former problem as Inverse kinematics (IK) and the latter
as Inverse dynamics (ID). Both are formulated as Quadratic
Programming (QP) problems.

min
X

0.5X TGX + gTX

s.t. CEX + cE = 0

CIX + cI >= 0.

The unknown, X , and constraints, CE , cE , CI and cI , are
problem specific, which we will elaborate on in the following

sections. Both QP problems are solved at each time step in
a 3ms control loop with a standard solver.

For both problems, we optimize a cost function of the
form 0.5‖AX − b‖2. Thus G = ATA, and g = −AT b. A
and b can be decomposed into smaller blocks as

A =


w0A1

w1A1

...
wnAn

 , b =

w0b0
w1b1

...
wnbn

 . (2)

Each row emphasizes a certain desired behavior with weight,
wi.

III. INVERSE DYNAMICS

The equations of motion and the constraint equations for
a floating base humanoid robot can be described as

M(q)q̈ + h(q, q̇) = Sτ + JT (q)F

J(q)q̈ + J̇(q, q̇)q̇ = ẍ,

where (q, q̇) is the full state of the system including 6 DOF
at the floating base, M(q) is the inertia matrix, h(q, q̇) is the
sum of gravitational, centrifugal and Coriolis forces, S is a
selection matrix, where the first 6 rows that correspond to the
6 DOF floating base are zeros, and the rest form an identity
matrix, τ is a vector of joint torques, JT (q) is the Jacobian
matrix for all the contacts, F is a vector of all contact forces
in the world frame, and x is a vector of contact position
and orientation in Cartesian space. F and JT ’s dimensions
depend on the number of contacts.

We can rewrite the equations of motion as

[
M(q) −S −JT (q)

]  q̈τ
F

+ h(q, q̇) = 0.

Given a state, (q, q̇), the equations of motion are linear in
terms of

[
q̈ τ F

]T
.

Let X =
[
q̈ τ F

]T
. We turn the equations of motions

into the equality constraints. The inequality constraints con-
sist of various terms such as joint torque limits and contact
force limits due to friction cone constraints and center of
pressure (CoP) remaining in the support polygon constraints.

A. Cost function

We list a few examples of the objectives that can be
plugged into the rows of Eq. 2.

1) Cartesian space acceleration: Since

ẍ = J(q)q̈ + J̇(q, q̇)q̇,

we can penalize deviation from the desired Cartesian accel-
eration using

Acart =
[
J(q) 0 0

]
bcart = ẍ∗ − J̇(q, q̇)q̇.

The input ẍ∗ is computed by

ẍ∗ = Kp(x
∗
d − x) +Kd(ẋ

∗
d − ẋ) + ẍ∗d,



where x∗d, ẋ∗d and ẍ∗d are specified by a higher level controller,
and x and ẋ are computed by forward kinematics based on
the current robot state. Many objectives such as CoM, hand,
foot motion and torso orientation are specified in this form.
Depending on the objectives, we sometimes drop the rows
in the Jacobian that we do not want to constrain.

Rather than treating contacts as hard constraints, we find
that using a soft penalty with a high weight is generally more
numerically stable and faster to solve. For such contact costs,
we disregard x∗d and ẋ∗d, and set ẍ∗ = 0.

2) Center of pressure tracking: Given the forces and
torques, bM,b F , specified in foot frame, the location of the
center of pressure in the foot frame is

p =

[
−bMy/

bFz
bMx/

bFz

]
.

We can penalize center of pressure deviation with

Acop =

[
0 0

[
0 0 p∗x 0 1 0
0 0 p∗y −1 0 0

] [
R 0
0 R

]]
bcop = 0,

where (p∗x, p
∗
y) is the desired center of pressure in foot frame

given by a high level controller, and R is the rotation matrix
from the world frame to the foot frame.

3) Weight distribution: In double support, it is often
desirable to specify the desired weight distribution w∗ =
Fzl/(Fzl + Fzr). We add this term to the cost function by

Aweigt =
[
0 0 Sweight

]
bweigt = 0,

where Sweight is a row vector with zeros, except
Sweight(3) = 1− w∗ and Sweight(9) = −w∗.

4) Direct tracking and regularization: We can also di-
rectly penalize X from desired values with

Astate = I

bstate =
[
q̈∗ τ∗ F ∗

]T
.

0 is used if no target value is specified. This term is useful
for directly controlling specific joints or forces. It also
regularizes X to make the QP problem well conditioned.

5) Change in torques: To avoid high frequency oscilla-
tions, we penalize changes in τ with

Adτ =
[
0 I 0

]
bdτ = τprev,

where τprev is output from the last time step.

B. Constraints

Equations of motion are used as equality constraints.
Torque limits can be easily added into the inequality con-
straints. Friction constraints are approximated by

|bFx| ≤ µbFz
|bFy| ≤ µbFz.

The center of pressure also has to be under the feet, which
can be written as

d−x ≤ −bMy/
bFz ≤ d+x

d−y ≤b Mx/
bFz ≤ d+y ,

where bF and bM denote forces and torques in the foot
frame, and d− and d+ are the sizes of foot. The body frame
forces and torques are computed by rotating F into the foot
frame.

IV. INVERSE KINEMATICS

Unlike traditional IK approaches that generate positions
for the entire desired trajectory ahead of time, we compute
desired velocities at each time step and integrate them to
get desired positions. The controller can be more responsive
to changes in the high level commands, and computation is
averaged across the course of motion.

For the IK QP, X = q̇, and the numerically integrated
floating base position and joint position is denoted by qik.
Our IK formulation is very similar to ID’s except rather
than using the real robot states, we use the internal states
to compute the desired velocities. The internal states are set
to the real robot states in the initialization stage. All the
internal states are denoted with subscripts ik.

A. Cost function

We list a few examples of the objectives that can be
plugged into Eq. 2.

1) Cartesian space velocity: We penalize deviation from
the desired Cartesian velocity with

Acart = J(qik)

bcart = ẋ∗,

where
ẋ∗ = Kp(x

∗
d − xik) + ẋ∗d.

We use a different set of Kp here than in ID.
The flow chart in Figure 1 shows that the actual physical

robot state is not used by the IK. Without any such feedback,
it is easy for the IK to diverge significantly from the
measured position of the robot. In fact, it is nearly inevitable
during walking. For example, suppose we wish to take a
step of some specific length. The IK will advance almost
exactly the desired amount. The real robot, however, might
take a step of a significantly different length either because
of tracking error or slipping. After several steps, this can add
up to a large error. This becomes a problem because we wish
to command desired locations (for e.g. feet, hands, or CoM)
in world coordinates.

In order to tie the IK root position to reality, we use
the contact positions as “anchor” points. We use a “leaky”
integrator to adjust the desired contact position x∗contactd
towards the measured contact position xcontact,

x∗contactd = αxcontact + (1− α)x∗contactd . (3)

x∗contactd is the input to IK, and is initialized to the IK’s
internal value upon establishing the contact. Since x∗contactd



essentially contains all the information about long term
tracking error and state estimator drift, and IK will track
x∗contactd obeying all the kinematic constraints, we can use
x∗contactd to update IK’s root position to match the state
estimator’s. ID is not affected since it ignores this term.

2) Direct tracking and regularization:

Astate = I

bstate = q̇∗,

where q̇∗ can be target joint velocity or 0 for regularization.
3) Change in velocity:

Adq̇ = I

bdq̇ = q̇prev,

where q̇prev is the result from the previous time step. This
term is useful to eliminate high frequency oscillation.

B. Constraints

We do not impose equality constraints in the IK QP. In-
equality constraints mainly consist of joint limits. Depending
on the application, we also add constraints in Cartesian space.

The joint limit constraints are

q− ≤ qik + q̇dt ≤ q+,

where dt is the time step, and q− and q+ are the upper and
lower joint limit. For Cartesian space position constraints,

x− ≤ xik + J(qik)q̇dt ≤ x+,

where x− and x+ are the upper and lower limits. Velocity
constraints in joint space can be easily added, and Cartesian
space velocity constraints need to be transformed by a
Jacobian matrix.

V. APPLICATIONS

The proposed full body controller is tested on Boston
Dynamics’s Atlas robot in the DARPA Robotics Challenge.
Atlas has 28 hydraulic actuators, 6 for each leg and arm,
3 for the back joints, and 1 for neck pitch. Our rough
terrain walking, ladder climbing and full body manipulation
controllers are all targeted for it. For all three applications,
the state estimator is based on [19].

A. Static walking

Given the short time frame for development for the DRC
Trials, we decided to use a simple static walking strategy.
The high level desired motions such as CoM and swing foot
trajectories are generated with quintic splines. The given foot
step locations are used as knot points for the splines. Figure
2 shows snapshots of the Atlas robot traversing piled cinder
blocks with tilted tops, and CoM and feet trajectories are
plotted in Figure 3. The desired CoP trajectory is generated
using a Linear Inverted Pendulum Model (LIPM). Figure 4
shows CoP tracking for the Atlas robot stepping up piled
cinder blocks.

Most other teams at the DRC build a map with laser
point clouds and select foot steps with either a human

operator or some combination of heuristics and simple plan-
ning. We provide our human operator with a live camera
stream augmented with the current swing foot pose computed
from forward kinematics, and let the operator “nudge” the
swing foot around in the 6 dimensional Cartesian space by
commanding offsets in foot position and orientation. Once
the operator is satisfied with the foot pose, a “continue”
command is given, allowing the robot to lower the swing
foot straight down until ground contact is detected. Because
of forward kinematic errors in the robot, registering laser
points while moving did not work well. Our main motivation
was to avoid standing still and waiting for sufficient laser
scanner data to accumulate. On the other hand, our approach
requires more (and more difficult) input from the operator,
and extends the single support phase unnecessarily since the
operator commands are given during single support rather
than double support.

The following modifications to the full body controller as
described above were made for the walking task:

1) Ankle torque controlled: To fully control CoP for
achieving better balancing and being more robust to per-
turbation, we control the stance ankle joints in pure torque
mode. IK solutions for the stance ankle joints are ignored.
The downside is that the ankle angle errors propagate up
the kinematic chain, and result in significant errors in swing
foot position tracking. An integrator on the desired swing
foot position is used to compensate for this.

errswing = errswing +Ki(x
′
swingd

− xswing)
x∗swingd = x′swingd + errswing,

(4)

where x′swingd is the desired swing foot position, xswing is
the computed position from forward kinematics, and x∗swingd
is used in IK and ID as inputs.

2) Toe-off: For static walking, the CoM needs to be
completely shifted to the next stance foot during double
support. When taking longer strides or stepping to a greater
height, extending the rear leg knee alone is often insufficient
to move the CoM all the way. Toe-off is one solution to
this problem. During double support in our controller, toe-off
is triggered when the rear knee approaches the joint angle
limit (straight knee). Once triggered, special modifications
are used in both ID and IK. We first move the rear foot
reference point, where the Jacobian is computed to the toe.
In ID, the contact cost term for the rear foot is transformed to
its local frame, and the row that corresponds to pitch angular
acceleration cost is removed. We also constrain the allowed
pitch torque to be zero. This effectively turns the rear foot
contact into an unactuated pin joint around the pitch axis.
In IK, we transform the rear foot’s pitch tracking error into
the foot frame and drop the pitch term. A slightly bent rear
knee angle is used as desired to bias IK towards using ankle
angle for a toe-off solution.

3) Integrator for desired CoM offset: During static robot
experiments, the measured CoM location, which is measured
with foot force sensors, deviates from the model’s prediction.
We also believe this modeling error depends on the robot
configuration. During the second half of double support and



Fig. 2. These photos show the Atlas robot practicing for the segment 3
of the terrain task for DRC. The snapshots were taken every 5 seconds.

full single support phase, we integrate this error and use it
to offset the desired CoM location so that the true CoM
matches the desired. Assuming the robot is moving slowly
enough, we can approximate the true location of CoM with
the measured CoP. The integrator is set up similarly to Eq.
4.

B. Full body manipulation

During full body manipulation, the operator gives a series
of commands requesting either direct joint angles for one or
both arms or target Cartesian locations for one or both hands.
These commands are used to update the desired IK position.
We use equality constraints in the IK QP formulation to
enforce directly-specified joint angles. For large Cartesian
motions, we transition the desired locations through splines
starting at the current target and ending at the new target.
For small motions, we use the “nudge” method as described
above for precise foot placement: single keyboard taps result
in small instantaneous changes in the desired IK position. We
then use PD gains comparing the measured and IK positions
(of hands, CoM, etc.) to produce input desired acceleration
for the ID. Figure 7 shows a picture of the Atlas robot
performing the valve task during the DRC Trials.

We make a few small changes to the basic full body
control algorithm:

1) No anchoring: During manipulation, we keep both feet
planted and do not take any steps. Accordingly, we do not
have to worry about the IK position diverging from the
estimated robot position. However, the leaky integrator in
Eq. 3 can result in a failure mode characterized by a constant
velocity sliding of the foot. We call this failure mode a
“chase condition”, and it occurs when the contact friction
is too low to keep the feet from sliding on its own (usually
because very little weight is on one of the feet). Normally,
the foot would slide a small amount, but then the position
gains from the IK prevent further sliding. However, when we
constantly update the IK to the measured position, it can then
constantly slide farther. We therefore disable this integrator
during manipulation.

2) Allowing rotation: For some tasks, we only care about
the position of the hand, and the orientation is unimportant.
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Fig. 3. These plots show the Atlas robot traversing segment 3 of the
terrain task. X axis is the forward direction, Y points to the robot’s left,
and Z points upward. Left and right foot positions are shown with red
and green lines, and center of mass is plotted in blue. The robot walks in
a straight line in reality. Without external observation, our state estimator
drifts significantly as shown in the top plot.

For such cases, we can turn the weight for the hand orienta-
tion equations in the IK to 0, or we can remove the equations
entirely. For some tasks, we can allow free rotation around
one vector, but not otherwise. For example, while drilling
through a wall, the robot can freely rotate the drill around
the drilling axis, but must maintain its position while keeping
that axis normal to the wall. Allowing the controller the
freedom to rotate around one axis can drastically increase
the available workspace.

To allow rotation about one axis, we first construct a
basis of three orthogonal unit vectors including the desired
free-to-rotate-about axis. We then rotate the IK equations
concerning hand orientation into this basis and remove the
one corresponding to the specified axis.
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Fig. 4. The top plot shows CoP in the X (forward) direction, the middle
plot shows CoP in the Y (side) direction, and the bottom plot shows Z
(vertical positions). This data was collected when the robot was stepping
up the cinder block piles. Measured CoP is plotted in solid blue. Desired
CoP given by the high level controller is shown with dashed green. ID’s
output CoP is shown with solid red. These traces are very similar. Cyan
and magenta lines represent left and right foot position computed through
forward kinematics respectively. CoP tracking is within 1cm.

Fig. 5. These photos show the Atlas robot climbing the top half of the
same ladder as used in DRC. The snapshots were taken every 13 seconds.
The top row shows repositioning of the hook hands, and the bottom row
shows stepping up one tread. Most of the climbing motions are scripted.
After each limb’s rough repositioning, the operator can fine adjust its final
position with “nudge” commands that are small offsets in Cartesian space.
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(a) Measured limb and CoM trajectories in the XZ plane
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Fig. 6. These two plots show the Atlas robot climbing the first five treads
during the actual run at DRC Trials. X axis is the forward direction, Y
points to the robot’s left, and Z points upward. Left and right foot positions
are shown with red and green solid lines, and left and right hand positions
are plotted in cyan and magenta dashed lines. Center of mass is shown with
solid blue line. While approaching the ladder, the robot has its arms outside
of the ladder railings, and we have to first raise both arms all the way up
and around to get them both between the railings. The swinging motions at
the beginning of the hand trajectories are results of this motion.

C. Ladder climbing

The underlying controller for ladder climbing is similar to
that used for manipulation, but the majority of the motion is
scripted ahead of time with only the final placement of the
hands and feet controlled by the operator. Figure 5 shows
snapshots of a complete cycle of the Atlas robot climbing
the ladder. For each limb, the hand or foot is automatically
moved to approximately the desired position by placing it
relative to the other hand or foot. Then, the operator uses the
keyboard to precisely place the limb with 1cm increments.
The correct vertical height is found automatically, using force
sensors to detect contact for the feet and position sensing
when contact is known to have already occurred for the



Fig. 7. The proposed low level controller is applied on the Atlas robot to
turn a valve in the DRC Trials.

hands.
Once on the steps, only the toes of the feet are supported,

so we adjust the CoP constraint accordingly. Having all
of the weight on the toes makes the robot vulnerable to
rotational slipping, causing unexpected yaw rotations. In
order to correctly place the hands on the next rung to recover
from such rotations, we must rotate the IK solution to match
the measured orientation. We therefore periodically rotate the
IK solution such that the feet are aligned with the measured
feet orientations, allowing the robot to reorient its upper body
towards the ladder and correctly reach targets in the real
world. It would have been preferable to update the orien-
tation continuously, but periodic updates were easier from
a software engineering perspective. Additionally, periodic
updates are less susceptible to the “chase condition” problem
described above. This reorienting serves a similar purpose to
Eq. 3, but for rotation instead of translation. To avoid chase
conditions, we disable Eq. 3 if there is not significant (about
20%) weight on the foot.

1) Elbow management: We climb the ladder by placing
the hands (hooks made from pipes) on the steps. The robot’s
shoulders are nearly as wide as the railings, so the necessity
of shifting weight from side to side results in a significant
danger of bumping the arms on the railings. We avoid such
collisions by estimating the railing location based on the hand
location (based on the assumption that the hand is pushed up
against the side of the rung) and adding inequality constraints
to the IK. The inequality constraints limit how far outward
each elbow can move in the lateral direction. Additionally,
when we wish to intentionally lean on the railing, we provide
a desired elbow location (in only the lateral direction) with
a low weight. To prevent the problem from becoming over-

constrained by elbow management, we use low weights for
commanding hand orientation. Specifically, we rotate the
hand orientation equations into a basis containing the hand
axis, a pitch-like vector, and a yaw-like vector. We use a very
low, but non-linear weight for rotation about the hand axis
(roll-like), allowing it roll about 45 degrees nearly freely, but
preventing it from rolling much farther.

2) Hand to CoM integration: Our robot model had inac-
curate forward kinematics. One result is that if the hands
are resting on one rung and the robot steps up one step
on the ladder, even though the true position of the hands
will not have moved, the measured position will have moved
several centimeters. If not accounted for, this will push the
CoM far from the desired location, eventually resulting in
failure. We therefore introduce an integrator that gradually
adjusts the desired position of both hands in the horizontal
plane based on the deviation between the measured and
desired CoM position. Essentially, we are using the arms to
pull or push the CoM into the desired position. To avoid
unintentionally rotating the robot, this integrator is only
active while both hands are in contact with the rung (not
during hand repositioning). CoM and limb trajectories from
the actual run during the DRC Trials are plotted in Figure 6.

VI. DISCUSSION AND FUTURE WORK

During early development on the real robot, we found
using ID alone is insufficient to generate the desired motions
on the physical robot. We attribute this to modeling errors
and joint stiction and friction, especially for the swing leg.
Some control based on kinematics is necessary to achieve
accurate foot placement. We have briefly experimented with
naively integrating desired accelerations from ID into desired
velocity and position, which resulted in unstable overall
behaviors. Thus, a separate IK pass was introduced as a
temporary solution to these problems. Inconsistency between
their answers becomes our major concern. A failure mode we
observe is due to IK and ID having separate constraints. For
example, when ID is unable to produce the demanded CoM
acceleration due to limited friction, the CoM will physically
diverge from the desired trajectory. However, IK is unaware
of such constraints, and it will keep generating the physically
unrealistic answers. We have also experimented with heavily
biasing IK solutions to match the acceleration from ID,
which also resulted in unstable behaviors, and, to its limit, is
equivalent to just integrating the acceleration. We think one
approach to resolve this issue is to replace our current ID
IK combination with Receding Horizon Control on the full
dynamic model similar to [20], which is close to, but not
yet, computationally tractable in a real-time setting.

The current implementation works well for static be-
haviors. Being static allows us to use various integrators
to compensate for modelling errors easily. It also greatly
reduces the effects of all kinds of delays. We want to achieve
more dynamic behaviors in the near future to gain speed and
improve stability. Dynamic walking is one of our top priority
goals. Modelling errors and system delay stopped our early
attempt to walk dynamically with the walking controller



presented in [3]. The high level controller needs to rapidly
re-optimize for step timing and location in a receding horizon
fashion to account for delays and maximize stability. We are
actively experimenting with explicitly accounting for torque
delays in our inverse dynamics formulation. The current low
level controllers are optimizing greedily for the current time
step. We want to include the value function that captures the
future cost similar to [11].

Due to the tight timeline for the DRC Trials, we have
not conducted many system identification procedures on the
robot. We hope to increase the quality for both kinematic
and dynamic models in the near future. All the leg joint
level sensing on the Atlas robot such as positioning, velocity
(numerically differentiated from position) and torque are pre-
transmission. This hardware design choice alleviates jitter
in the low level joint control, but introduces problems for
forward kinematics and torque control. Unmeasured stiction
greatly degrades performance of torque control. Better state
estimation technology is necessary to achieve more accurate
position tracking and force control.

VII. CONCLUSIONS

We modified previous work to implement the proposed
controller on the Atlas robot. Our approach use both ID
and IK in the low level controller. The inverse dynamics
module provides us compliant motion and robustness against
perturbation. The inverse kinematics module helps us battle
modelling errors and makes our approach applicable to the
real hardware. The combined low level controller abstracts
away the details about the physical system and provides
mechanisms to realize and trade off among high level
controllers’ potentially conflicting objectives while obeying
various constraints. We have successfully demonstrated our
approach on three different challenging life applications,
uneven terrain traversal, ladder climbing, and manipulation
during the DRC Trials. We are the only Atlas team that was
able to climb the ladder reliably, and one of the two Atlas
teams that implemented their own walking controller during
the Trials.
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